5刚体力学基础习题思考题

合集下载

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

第05章刚体力学基础学习知识补充

第05章刚体力学基础学习知识补充

第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。

[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。

[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。

那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。

[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。

如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。

[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。

[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。

刚体力学基础 习题 解答

刚体力学基础 习题 解答

衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题命题教师:郑永春 试题审核人:张郡亮一、填空题(每空1分)1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。

此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__12ma 2_,对通过三角形中心和一个顶点的轴的转动惯量为J B =__21ma 2 。

2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρ B (ρA >ρB ),且两圆盘的总质量和厚度均相同。

设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。

3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ =__4.0rad4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。

5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。

如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。

二、单项选择题(每小题2分)( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是:A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零;B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;C.当这两个力的合力为零时,它们对轴的合力矩也一定是零;D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。

大学物理第三章刚体力学基础习题答案

大学物理第三章刚体力学基础习题答案

方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma

g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr

5刚体力学基础习题思考题

5刚体力学基础习题思考题

5刚体力学基础习题思考题习题5-1. 如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2 m r ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。

受力分析如图ma T mg 222=- (1) ma mg T =-1 (2)βJ r T T =-)(12 (3)βJ r T T =-)(1 (4)βr a = (5)联立 g a 41=, mg T 811=5-2. 如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。

(1)设杆的线lm=λ,在杆上取一小质元dx dm λ= gdx dmg df μλμ==gxdx dM μλ= 考虑对称mgl gxdx M l μμλ?==20412(2)根据转动定律dtd J JB M ω===-tw Jd Mdt 0ω0212141ωμml mglt -=-所以 glt μω30=5-3. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。

假设定滑轮质量为M 、半径为R ,其转动惯量为2/2MR ,试求该物体由静止开始下落的过程中,下落速度与时间的关系。

dtdvmma T mg ==- βJ TR = βR dtdv= 整理 mg dt dv M m =+)21( gdt M m m dv t v ??+=0021 2 Mm mgtv +=5-4. 轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为4/M ,均匀分布在其边缘上,绳子A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为4/M 的重物,如图。

第三章 思考题-习题解答

第三章 思考题-习题解答

第三章思考题3.1刚体一般是由n (n 是一个很大得数目)个质点组成。

为什么刚体的独立变量却不是3n 而是6或者更少?3.2何谓物体的重心?他和重心是不是 总是重合在一起的? 3.3试讨论图形的几何中心,质心和重心重合在一起的条件。

3.4简化中心改变时,主矢和主矩是不是也随着改变?如果要改变,会不会影响刚体的运动? 3.5已知一匀质棒,当它绕过其一端并垂直于棒的轴转动时,转动惯量为231ml ,m 为棒的质量,l 为棒长。

问此棒绕通过离棒端为l 41且与上述轴线平行的另一轴线转动时,转动惯量是不是等于224131⎪⎭⎫ ⎝⎛+l m ml ?为什么?3.6如果两条平行线中没有一条是通过质心的,那么平行轴定理式(3.5.12)能否应用?如不能,可否加以修改后再用?3.7在平面平行运动中,基点既然可以任意选择,你觉得选择那些特殊点作为基点比较好?好处在哪里?又在(3.7.1)及(3.7.4)两式中,哪些量与基点有关?哪些量与基点无关? 3.8转动瞬心在无穷远处,意味着什么?3.9刚体做平面平行运动时,能否对转动瞬心应用动量矩定理写出它的动力学方程?为什么?3.10当圆柱体以匀加速度自斜面滚下时,为什么用机械能守恒定律不能求出圆柱体和斜面之间的反作用力?此时摩擦阻力所做的功为什么不列入?是不是我们必须假定没有摩擦力?没有摩擦力,圆柱体能不能滚?3.11圆柱体沿斜面无滑动滚下时,它的线加速度与圆柱体的转动惯量有关,这是为什么?但圆柱体沿斜面既滚且滑向下运动时,它的线加速度则与转动惯量无关?这又是为什么? 3.12刚体做怎样的运动时,刚体内任一点的线速度才可以写为r ω⨯?这时r 是不是等于该质点到转动轴的垂直距离?为什么? 3.13刚体绕固定点转动时,r ω⨯dtd 为什么叫转动加速度而不叫切向加速度?又()r ωω⨯⨯为什么叫向轴加速度而不叫向心加速度?3.14在欧勒动力学方程中,既然坐标轴是固定在刚体上,随着刚体一起转动,为什么我们还可以用这种坐标系来研究刚体的运动?3.15欧勒动力学方程中的第二项()21I I -y x ωω等是怎样产生的?它的物理意义又是什么?第三章思考题解答3.1 答:确定一质点在空间中得位置需要3个独立变量,只要确定了不共线三点的位置刚体的位置也就确定了,故须九个独立变量,但刚体不变形,此三点中人二点的连线长度不变,即有三个约束方程,所以确定刚体的一般运动不需3n 个独立变量,有6个独立变量就够了.若刚体作定点转动,只要定出任一点相对定点的运动刚体的运动就确定了,只需3个独立变量;确定作平面平行运动刚体的代表平面在空间中的方位需一个独立变量,确定任一点在平面上的位置需二个独立变量,共需三个独立变量;知道了定轴转动刚体绕转动轴的转角,刚体的位置也就定了,只需一个独立变量;刚体的平动可用一个点的运动代表其运动,故需三个独立变量。

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。

解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

上海理工大学 大学物理 第五章_刚体力学答案

一、选择题[ C ] 1、基础训练(2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断.参考答案:逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T >[ B ] 2、基础训练(5)如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A)MLm v . (B)MLm 23v . (C)MLm 35v . (D)MLm 47v .图5-9[ C ] 3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-7m图5-11v21v俯视图[ C ] 4、自测提高(2)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为 .如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 .[ A ] 5、自测提高(7)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.二、填空题6、基础训练(8)绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β=-0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ= 250rad .7、基础训练(9)一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图5-12所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0= g/l ,杆与水平方向夹角为60°时的角加速度β= g/2l .图 5-128、基础训练(10)如图5-13所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为 50ml 2 。

刚体力学基础


1).形状、大小相同时, m↑→J↑(决定于m); 2).m相同, m分布离轴越远,J越大(决定于m的分布); 3).同一刚体,转轴不同,J不同,(决定于转轴的位置).
3.计算
1).质量不连续分布 J= miri2 i
m1
r2
r1
其中ri为Δmi到转轴的垂直距离
J m1r12 m2r22 m3r32
4.均匀细棒可绕棒一端的垂直于棒的水平轴无摩擦转
动.若细棒竖直悬挂,现有一弹性小球水平飞来与细棒
发生完全非弹性碰撞,在碰撞过程中球、棒组成的系
统的动量是否守恒?对转轴的角动量是否守恒?机械能
是否守恒?
动量不守恒,角动量守恒,机械能不守恒.
质点与刚体碰撞组成的系统一般 情况下动量不守恒,而角动量守恒.
1.刚体角动量定理 M J J d
dt
M J J d
dt
2
Mdt Jd J2 J1
1
刚体所受合外力的冲量矩等于其角动量的增量
2.刚体角动量守恒定律
条件:M 0, J 常量
刚体所受合外力矩为零,则其角动量守恒.
注意:1).L=Jω=常量, J、ω可变但乘积不变;
2).M、L、ω均对同一转轴, M为合外力矩;
a1 a2 a
a R
J 1 m R2
2
a1
a2
a
(m2 m1 )g
m1
m2
1 2
m
T1
m1
2m2g m1 m2
1 2
mg 1m 2
T2
m2
2m1g m1 m2
1 mg 2 1m
2
注意:1.涉及滑轮转动,滑轮两端绳的张力不相等T1≠T2; 2.绳与滑轮无相对滑动, a=R α

大学物理学第二章刚体力学基础自学练习题

⼤学物理学第⼆章刚体⼒学基础⾃学练习题第⼆章刚体⼒学基础⾃学练习题⼀、选择题4-1.有两个⼒作⽤在有固定转轴的刚体上:(1)这两个⼒都平⾏于轴作⽤时,它们对轴的合⼒矩⼀定是零;(2)这两个⼒都垂直于轴作⽤时,它们对轴的合⼒矩可能是零;(3)当这两个⼒的合⼒为零时,它们对轴的合⼒矩也⼀定是零;(4)当这两个⼒对轴的合⼒矩为零时,它们的合⼒也⼀定是零;对上述说法,下述判断正确的是:()(A )只有(1)是正确的;(B )(1)、(2)正确,(3)、(4)错误;(C )(1)、(2)、(3)都正确,(4)错误;(D )(1)、(2)、(3)、(4)都正确。

【提⽰:(1)如门的重⼒不能使门转动,平⾏于轴的⼒不能提供⼒矩;(2)垂直于轴的⼒提供⼒矩,当两个⼒提供的⼒矩⼤⼩相等,⽅向相反时,合⼒矩就为零】4-2.关于⼒矩有以下⼏种说法:(1)对某个定轴转动刚体⽽⾔,内⼒矩不会改变刚体的⾓加速度;(2)⼀对作⽤⼒和反作⽤⼒对同⼀轴的⼒矩之和必为零;(3)质量相等,形状和⼤⼩不同的两个刚体,在相同⼒矩的作⽤下,它们的运动状态⼀定相同。

对上述说法,下述判断正确的是:()(A )只有(2)是正确的;(B )(1)、(2)是正确的;(C )(2)、(3)是正确的;(D )(1)、(2)、(3)都是正确的。

【提⽰:(1)刚体中相邻质元间的⼀对内⼒属于作⽤⼒和反作⽤⼒,作⽤点相同,则对同⼀轴的⼒矩和为零,因⽽不影响刚体的⾓加速度和⾓动量;(2)见上提⽰;(3)刚体的转动惯量与刚体的质量和⼤⼩形状有关,因⽽在相同⼒矩的作⽤下,它们的运动状态可能不同】3.⼀个⼒(35)F i j N =+v v v 作⽤于某点上,其作⽤点的⽮径为m j i r )34(-=,则该⼒对坐标原点的⼒矩为()(A )3kN m -?v ;(B )29kN m ?v ;(C )29kN m -?v ;(D )3kN m ?v。

【提⽰:(43)(35)4302092935i j kM r F i j i j k k k =?=-?+=-=+=v v v v v v v v v v v v v 】4-3.均匀细棒OA 可绕通过其⼀端O ⽽与棒垂直的⽔平固定光滑轴转动,如图所⽰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题5-1. 如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2mr ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。

解:受力分析如图ma T mg 222=- (1) ma mg T =-1 (2)βJ r T T =-)(12 (3) βJ r T T =-)(1 (4)βr a = (5)联立 g a 41=, mg T 811=5-2. 如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。

(1) 设杆的线lm=λ,在杆上取一小质元dx dm λ=gdx dmg df μλμ==gxdx dM μλ= 考虑对称 mgl gxdx M l μμλ⎰==20412(2) 根据转动定律d M J J dtωβ==⎰⎰=-tw Jd Mdt 0ω0212141ωμml mglt -=-所以 glt μω30=5-3. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。

假设定滑轮质量为M 、半径为R ,其转动惯量为2/2MR ,试求该物体由静止开始下落的过程中,下落速度与时间的关系。

dtdvm ma T mg ==- βJ TR =βR dtdv= 整理 mg dt dvM m =+)21( gdt M m m dv t v ⎰⎰+=0021 2Mm mgtv +=5-4. 轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为4/M ,均匀分布在其边缘上,绳子A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为4/M 的重物,如图。

已知滑轮对O 轴的转动惯量4/2MR J =,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?解:选人、滑轮与重物为系统,设u 为人相对绳的速度,v 为重 物上升的速度,系统对轴的角动量MuR MvR R MR v u M vR M L -=+--=23)4()(42ω根据角动量定理 dtdLM =)23(43MuR MvR dt d MgR -= 0=dt du MRa dt dv MR MgR 232343== 所以 2ga =5-5. 计算质量为m 半径为R 的均质球体绕其轴线的转动惯量。

证明:设球的半径为R ,总重量为m ,体密度343Rmπρ=, 将球体划分为许多厚度为dZ 的圆盘, 则盘的体积为 dZ Z R 222)(-π22252182()2155R R J R Z dZ R mR ππρρ-=-==⎰5-6. 一轻弹簧与一均匀细棒连接,装置如图所示,已知弹簧的劲度系数N/m 40=k ,当0θ=o 时弹簧无形变,细棒的质量kg 0.5=m ,求在0θ=o 的位置上细棒至少应具有多大的角速度ω,才能转动到水平位置?解:机械能守恒 22212121kx J mg=+ω 根据几何关系 22215.1)5.0(+=+x 128.3-⋅=s rad ω5-7. 如图所示,一质量为m 、半径为R 的圆盘,可绕O 轴在铅直面内转动。

若盘自静止下落,略去轴承的摩擦,求: (1)盘到虚线所示的铅直位置时,质心C 和盘缘A 点的速率;(2)在虚线位置轴对圆盘的作用力。

解:在虚线位置的C 点设为重力势能的零点,下降过程机械能守恒221ωJ mgR =2221mR mR J += Rg34=ω 34RgR v c ==ω 1623A Rgv R ω==273y F mg mR mg ω=+=方向向上 m 2的小5-8. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和别为l31球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分和l 32.轻杆原来静止在竖直位置。

今有一质量为m 的小球,以水平速度0v 与杆下端小球m 作对心碰撞,碰后以021v 的速度返回,试求碰撞后轻杆所获得的角速度。

解:根据角动量守衡 有022021322)3()32(32v ml m l m l l mv ⋅-⋅+=ωω lv 230=ω 5-9. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动。

开始时,圆盘静止,一质量为m 的子弹以水平速度v 垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求:(1)子弹击中圆盘后,盘所获得的角速度;(2)经过多少时间后,圆盘停止转动。

(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩。

) 解(1)角动量守恒 ωω2221mR MR mvR +=2(2)mvm M R ω=+(2)2022π3R M M dM dmgr gr rdr MgR R μμμπ====⎰⎰⎰2221()032MgR t MR mR μω⋅∆=+-,()224M m t R Mg ωμ+∴∆=由(1)已得:()22m M m R ω=+v ,代入即得32m t Mg μ∆=v5-10. 有一质量为1m 、长为l 的均匀细棒,静止平放在滑动摩擦系数为的水平桌面上,它可绕通过其端点O 且与桌面2m 的小垂直的固定光滑轴转动。

另有一水平运动的质量为滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短。

已知小滑块在碰撞前后的速度分别为1v 和2v ,如图所示。

求碰撞后从细棒开始转动到停止转动的过程所需的时间。

(已知棒绕O 点的转动惯量2131l m J =) 碰撞时角动量守恒22112213m v l m l m v l ω=-lm v v m 1212)(3+=ω细棒运动起来所受到的摩擦力矩gl m gxdx l m M l10121μμ==⎰ dtd JM ω=-⎰-=tgl m d l m dt 01212131μω gm v v m g l t 1212)(232μμω+==5-11. 如图所示,滑轮转动惯量为2m kg 01.0⋅,半径为cm 7;物体的质量为kg 5,用一细绳与劲度系数N/m 200=k 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计。

求:(1)当绳拉直、弹簧无伸长时使物体由静止而下落的最大距离。

(2)物体的速度达最大值时的位置及最大速率。

(1)机械能守恒。

设下落最大距离为hmgh kh =221 m kmgh 49.02==(2)mgx J mv kx =++222212121ω12222mgx kx v J m r ⎡⎤-⎢⎥=⎢⎥+⎢⎥⎣⎦若速度达最大值,0=dxdv)(245.0m kmgx ==1122222222259.80.2452000.245 1.31/0.015(710)mgx kx v m s J m r -⎡⎤⎡⎤⎢⎥-⨯⨯⨯-⨯⎢⎥===⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⨯⎣⎦5-12. 设电风扇的功率恒定不变为P ,叶片受到的空气阻力矩与叶片旋转的角速度ω成正比,比例系数的k ,并已知叶片转子的总转动惯量为J 。

(1)原来静止的电扇通电后t 秒时刻的角速度;(2)电扇稳定转动时的转速为多大?(3)电扇以稳定转速旋转时,断开电源后风叶还能继续转多少角度?解:(1)通电时根据转动定律有 dtd J M M r ω=- ωPM = ωk M r =代入两边积分 ωωωωd k P J dt t ⎰⎰-=02)1(2t J ke kP--=ω (2)电扇稳定转动时的转速 kP m =ω (3) θωωωd d J k =- ⎰⎰=-00md d JkωθωθkP k J =θ 5-13. 如图所示,物体A 放在粗糙的水平面上,与水平桌面之间的摩擦系数为μ,细绳的一端系住物体A ,另一端缠绕在半径为R 的圆柱形转轮B 上,物体与转轮的质量相同。

开始时,物体与转轮皆静止,细绳松弛,若转轮以0ω绕其转轴转动。

试问:细绳刚绷紧的瞬时,物体A 的速度多大?物体A 运动后,细绳的张力多大?解:细绳刚绷紧时系统机械能守恒2220212121mv J J +=ωω ωR v = 013v R ω=ma mg T =-μβJ TR =-3mgT μ=βR a =5-14. 质量为m 的小孩站在半径为R 、转动惯量为J 的可以自由转动的水平平台边缘上(平台可以无摩擦地绕通过中心的竖直轴转动)。

平台和小孩开始时均静止。

当小孩突然一相对地面为v 的速率沿台边缘逆时针走动时,此平台相对地面旋转的角速度ω为多少?解:此过程角动量守恒 ωJ mrv -=0JmRv=ω 5-15. 以速度0v 作匀速运动的汽车上,有一质量为m (m 较小),边长为l 的立方形货物箱,如图所示。

当汽车遇到前方障碍物急刹车停止时,货物箱绕其底面A 边翻转。

试求:(1)汽车刹车停止瞬时,货物箱翻转的角速度及角加速度;(2)此时,货物箱A 边所受的支反力。

解:(1)角动量守恒 ω2322ml l mv = l v 430=ω根据转动定律 β2322ml l mg= lg 43=β (2)0ct 0cn cx x 45cos ma 45cos ma ma N -==思考题5-1. 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量1m 和2m 的物体 (1m <2m ),如图所示.绳与轮之间无相对滑动,某时刻滑轮沿逆时针方向转动,则绳的张力多大?a m T g m 111=- (1)a m g m T 222=- (2) 插入图5-29 βJ r T T =-)(21 (3)βr a = (4)联立方程可得 1T 、2T 。

12T T φ5-2. 一圆盘绕过盘心且与盘面垂直的轴O 以角速度ω按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面方向同时作用到盘上,则盘的角速度ω怎样变化?答:增大5-3. 个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的: (A )机械能守恒,角动量守恒;(B )机械能守恒,角动量不守恒, (C )机械能不守恒,角动量守恒;(D )机械能不守恒,角动量不守恒. 答:(C )5-4. 在边长为a 的六边形顶点上,分别固定有质量都是m 的6个质点,如图所示。

试求此系统绕下列转轴的转动惯量:(1)设转轴Ⅰ、Ⅱ在质点所在的平面内,如图a 所示;(2)设转轴Ⅲ垂直于质点所在的平面,如图b 所示。

相关文档
最新文档