09-10上八年级期末考试试题有答案(定)
人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。
人教版数学八年级上册期末考试试卷有答案

人教版数学八年级上册期末考试试题一、单选题(本大题共16小题,共48分)1.若一个三角形的两边长分别是3和4,则第三边的长可能是A.8B.7C.2D.12.下列图形中具有不稳定性的是( )A.长方形B.等腰三角形C.直角三角形D.锐角三角形3.如图,平移ΔABC得到ΔDEF,若∠DEF=35°,∠ACB=50°,则∠A的度数是A.65°B.75°C.95°D.105°4.探究多边形的内角和时,需要把多边形分割成若干个三角形.在分割六边形时,所分三角形的个数不可能的是A.3个B.4个C.5个D.6个5.如图,在RtΔABC中,∠ABC=90°,BD是高,E是ΔABC外一点,BE=BA,∠E=∠C,若DE=23BD,AD=95,BD=125,则ΔBDE的面积为A.2725B.1825C.3625D.54256.剪纸是我国古老的民间艺术.下列四个剪纸图案为轴对称图形的是A. B. C. D.7.如图,在等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,若∠BEC= 90°,则∠ACE的度数A.60°B.45°C.30°D.15°8.下列式子不能用“两数和乘以这两数差的公式”计算的是A.(3b−a)(3b+a)B.(3b−a)(−3b−a)C.(3b−a)(6b+2a)D.(3b−a)(a−3b)9.下列多项式相乘,能用平方差公式计算的是A.(5x+2y)(3x−2y)B.(2x−y)(2x+y)C.(−m+n)(m−n)D.(a−2b)(2a+b)10.如图是小明的作业,那么小明做对的题数为A.2B.3C.4D.511.下列从左边到右边的变形中,是因式分解的是A.a2−9=(a−3)(a+3)B.(x−y)2=x2−y2C.x2−4+4x=(x+2)(x−2)+4xD.x2+3x+1=x(x+3+1x)12.如果多项式x2−5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是A.2B.3C.4D.513.下列分式中属于最简分式的是( )A.x+2y+2B.1−x2x−2C.2x+2y6x−6yD.x2−9x+314.如果把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,那么分式的值A.不变B.缩小为原来的12C.变为原来的2倍D.变为原来的4倍15.假期正是读书的好时候,小颖同学到重庆图书馆借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是A.140x+140x−21=14B.280x+280x+21=14C.140140101016.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是A.40×1.25x−40x=800 B.800x−8002.25x=40C.800x−8001.25x=40D.8001.25x−800x=40二、填空题(本大题共6小题,共18分)17.一个正多边形的每个内角都等于120°,那么它的内角和是______.18.如图,BD是ΔABC的角平分线,DE⊥AB于点E.ΔABC的面积为20,AB=12,BC=8,则DE的长为______.19.两位同学将同一个二次三项式进行因式分解时,一位同学因看错了一次项系数而分解成(x−1)(x−9);另一位同学因看错了常数项而分解成(x−2)(x−4),则原多项式因式分解的正确结果是:______.20.如图,在ΔABC中,BC边的垂直平分线交BC于D,交AB于E.若CE平分∠ACB,∠B=42°,则∠A=______.21.某校九年级学生去距学校6千米的地铁站参观,一部分同学们步行先走,过了40分钟后,其余学生乘坐公共汽车出发,结果他们同时到达,已知公共汽车的速度的步行学生速度的3倍,求步行学生的速度.若设步行学生的速度为x km/h,则可列方程______.22.化简:(1x−4−8x2−16)⋅(x+4)=______.三、计算、画图、解答题(本大题共6小题,共48分)23.如图,∠B=∠E,BF=EC,AB=DE.求证:AC//DF.24.在如图所示的网格(每个小正方形的边长为1)中,ΔABC的顶点A的坐标为(−2,1),顶点B的坐标为(−1,2). (1)在网格图中画出两条坐标轴,并标出坐标原点; (2)作ΔA'B'C'关于x轴对称的图形ΔA''B''C''; (3)求ΔABB''的面积.25.因式分解(1)3a2−6ab+3b2. (2)m2(m−2)+4(2−m).26.先化简再求值: (1)y(x+y)+(x+y)(x−y)−x2,其中x=−2,y=12. 27.(2)2(a−3)(a+2)−(3+a)(3−a),其中a=−2.27.已知分式y−a y+b,当y=−3时无意义,当y=2时分式的值为0,求当y=−7时分式的值.28.为庆祝建党100周年,学校组织初二学生乘车前往距学校132千米的某革命根据地参观学习.二班因事耽搁,比一班晚半小时出发,为了赶上一班,平均车速是一班平均车速的1.2倍,结果和一班同时到达.求一班的平均车速是多少千米/时?答案和解析1.【答案】C;【解析】解:设第三边长x. 根据三角形的三边关系,得1<x<7. 故选:C. 根据三角形的三边关系求得第三边的取值范围解答即可. 此题主要考查三角形三边关系的知识点,此题比较简单,注意三角形的三边关系.2.【答案】A;【解析】解:等腰三角形,直角三角形,锐角三角形都具有稳定性, 长方形不具有稳定性. 故选:A. 根据三角形具有稳定性解答. 此题主要考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.3.【答案】C;【解析】解:∵平移ΔABC得到ΔDEF,∠DEF=35°, ∴∠B=∠DEF=35°, ∵∠ACB=50°, ∴∠A=180°−∠B−∠ACB=95°. 故选:C. 由平移的性质可得∠B=∠DEF=35°,从而利用三角形的内角和定理即可求∠A的度数. 此题主要考查三角形的内角和定理,平移的性质,解答的关键是由平移的性质得到∠B=∠DEF.4.【答案】A;【解析】解:分割六边形,可以从一顶点连接对角线,分割成四个三角形,如图1; 可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形,如图2; 可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形,如图3. 故选:A. 分割六边形,可以从一顶点连接对角线,分割成四个三角形;可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形;可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形. 此题主要考查了多边形内角和问题,解题关键是把多边形分割成若干三角形来研究.5.【答案】C;【解析】解:∵∠ABD=∠C=∠E,,AB=BE, 在BD上截取BF=DE, 在ΔABF与ΔBED中, AB=BE∠ABD=∠EBF=DE, ∴ΔABF≌ΔBED(SAS), ∴SΔBDE=SΔABF. ∴SΔABD=12BD⋅AD=12⋅125⋅95=5425. ∵DE=23BD, ∴BF=23BD, ∴SΔABF=23SΔABD=3625, ∴SΔBDE=3625. 故选:C. 根据SAS证明ΔABF与ΔBED全等,进而利用全等三角形的性质解答即可. 此题主要考查全等三角形的判定和性质,关键是根据SAS证明ΔABF与ΔBED全等.6.【答案】C;【解析】解:A、不是轴对称图形,本选项不符合题意; B、不是轴对称图形,本选项不符合题意; C、是轴对称图形,本选项符合题意; D、不是轴对称图形,本选项不符合题意. 故选:C. 根据轴对称图形的概念求解即可. 此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,7.【答案】D;【解析】解:∵等边三角形ABC中,AD⊥BC, ∴BD=CD,即:AD是BC的垂直平分线, ∴BE=CE, ∴∠EBC=∠ECB, ∵∠BEC=90°, ∴∠EBC=∠ECB=45°, ∵ΔABC是等边三角形, ∴∠ACB=60°, ∴∠ACE=∠ACB−∠ECB=15°, 故选:D. 先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论. 此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.8.【答案】D;【解析】解:A、(3b−a)(3b+a)=(3b)2−a2,故A不符合题意; B、(3b−a)(−3b−a)=−(3b−a)(3b+a)=−[(3b)2−a2],故B不符合题意; C、(3b−a)(6b+2a)=2(3b−a)(3b+a)=2[(3b)2−a2],故C不符合题意; D、(3b−a)(a−3b)=−(a−3b)(a−3b)=−(a−3b)2,故D符合题意; 故选:D. 根据平方差公式进行分析求解即可. 此题主要考查整式的混合运算,解答的关键是对平方差公式的掌握与应用.9.【答案】B;【解析】解:A、原式=15x2−10xy+6xy−4y2=15x2−4xy−4y2,不符合题意; B、原式=4x2−y2,符合题意; C、原式=−(m−n)2=−(m2−2mn+n2)=−m2+2mn−n2,不符合题意; D、原式=2a2+ab−4ab−2b2=2a2−3ab−2b2,不符合题意. 故选:B. 利用平方差公式的结构特征判断即可. 此题主要考查了平方差公式,熟练掌握平方差公式的结构特征是解本题的关键.10.【答案】A;【解析】解:(1)∵a m=3,a n=7, ∴a m+n=a m⋅a n=3×7=21,本小题正确; (2)原式=(−0.125)2020×82020×8 =(−0.125×8)2020×8 =(−1)2020×8 =1×8 =8,本小题正确; (3)原式=2a2b÷ab−ab÷ab (4)原式=(−2)3⋅a3 =−8a3,本小题错误; (5)原式=2x2+x−6x−3 =2x2−5x−3,本小题错误, 则小明做对的题数为2. 故选:A. (1)利用同底数幂的乘法法则计算得到结果,即可作出判断; (2)原式变形后,逆用积的乘方运算法则计算得到结果,即可作出判断; (3)原式利用多项式除以单项式法则计算得到结果,即可作出判断; (4)原式利用积的乘方运算法则计算得到结果,即可作出判断; (5)原式利用多项式乘多项式法则计算,合并得到结果,即可作出判断. 此题主要考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.11.【答案】A;【解析】解:A、符合因式分解的定义,故本选项符合题意; B、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; C、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; D、右边不是整式的积的形式(含有分式),不符合因式分解的定义,故本选项不符合题意. 故选:A. 多项式的因式分解是将多项式变形为几个整式的乘积形式,由此解答即可. 此题主要考查因式分解的定义.解答该题的关键是掌握因式分解的定义,属于基础题型.12.【答案】C;【解析】解:当c=4时, x2−5x+c =x2−5x+4 =(x−1)(x−4). 故选:C. ∵4=−1×(−4),−1+(−4)=−5,∴可以用十字相乘法因式分解. 此题主要考查了因式分解−十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.13.【答案】A;【解析】解:A、x+2y+2是最简分式,故本选项符合题意; B、原式=−12,不是最简分式,故本选项不符合题意; C、原式=x+y3x−3y,不是最简分式,故本选项不符合题意; D、原式=x−3,该式子不是最简分式,故本选项不符合题意; 故选:A. 最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 此题主要考查了分式的基本性质和最简分式,能熟记分式的化简过程是解此题的关键,首先要把分子分母分解因式,然后进行约分.14.【答案】C;【解析】解:∵2.(2x)2−3.(2y)22x−2y=8x2−12y22x−2y=4(2x2−3y2)2(x−y)=2(2x2−3y2)x−y, ∴把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,则分式的值变为原来的2倍. 故选:C. 根据分式的基本性质解决此题. 此题主要考查分式的基本性质,熟练掌握分式的基本性质是解决本题的关键.15.【答案】C;【解析】解:读前一半用的时间为:140x, 读后一半用的时间为:140x+21. 由题意得,140x+140x+21=14, 故选:C. 设读前一半时,平均每天读x页,关键描述语为:“在两周借期内读完”;等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可. 此题主要考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.16.【答案】C;【解析】解:小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒, 方程是800x−8001.25x=40, 故选:C. 先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 该题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.17.【答案】720°;【解析】解:设所求正多边形边数为n, ∵正n边形的每个内角都等于120°, ∴正n边形的每个外角都等于180°−120°=60°. 又因为多边形的外角和为360°, 即60°⋅n=360°, ∴n=6. 所以这个正多边形是正六边形. 所以内角和是120°×6=720°. 故答案为:720°. 设所求正多边形边数为n,根据内角与外角互为邻补角,可以求出外角的度数.根据任何多边形的外角和都是360度,由60°⋅n=360°,求解即可. 此题主要考查了多边形内角和外角的知识,解答本题的关键在于熟练掌握任何多边形的外角和都是360°并根据外角和求出正多边形的边数.18.【答案】2;【解析】解:作DF⊥BC于F, ∵BD是ΔABC的角平分线,DE⊥AB,DF⊥BC, ∴DF=DE, ∴12×AB×DE+12×BC×DF=20,即12×12×DE+12×8×DF=20, ∴DF=DE=2. 故答案为:2. 作DF⊥BC于F,根据角平分线的性质得到DF=DE,根据三角形面积公式计算即可. 此题主要考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解答该题的关键.19.【答案】(x-3)2;【解析】解:根据题意得:(x−1)(x−9)=x2−10x+9,(x−2)(x−4)=x2−6x+ 8, 原多项式为x2−6x+9=(x−3)2. 故答案为:(x−3)2. 根据两位同学的结果确定出原多项式,分解即可. 此题主要考查了因式分解−十字相乘法,熟练掌握因式分解的方法是解本题的关键.20.【答案】54°;【解析】解:∵E在线段BC的垂直平分线上, ∴BE=CE, ∵CE平分∠ACB, ∴∠ACD=2∠ECB=84°, 又∵∠A+∠B+∠ACB=180°, ∴∠A=180°−∠B−∠ACB=54°, 故答案为:54°. 由线段垂直平分线和角平分线的定义可得∠B=∠ECB=∠ACE=40°,在ΔABC中由三角形内角和定理可求得∠A. 此题主要考查线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解答该题的关键.21.【答案】6x−63x=23;【解析】解:设步行学生的速度为x km/h,则汽车的速度为3x km/h, 由题意得,6x−63x=23, 故答案为:6x−63x=23. 表示出汽车的速度,然后根据汽车行驶的时间等于步行行驶的时间减去时间差列方程即可. 此题主要考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解答该题的关键.22.【答案】1;【解析】解:(1x−4−8x2−16)⋅(x+4) =x+4−8(x+4)(x−4)⋅(x+4) =x−4(x+4)(x−4)⋅(x+4) =1, 故答案为:1. 先根据分式的减法法则算减法,再算乘法即可. 此题主要考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.23.【答案】证明:∵BF=EC, ∴BF+CF=EC+CF, ∴BC=EF, 在△ABC和△DEF中, BC=EF∠B=∠EAB=DE, ∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE, ∴AC∥DF.;【解析】 证明ΔABC≌ΔDEF(SAS),由全等三角形的性质得出∠ACB=∠DFE,由平行线的判定可得出结论. 此题主要考查了全等三角形的判定与性质、平行线的判定.解答该题的关键是证明ΔABC≌ΔDEF.24.【答案】解:(1)如图,平面直角坐标系如图所示: (2)如图,△A″B″C″即为所求; =3×4-12×1×1-12×3×3-12×2×4=3. (3)S△ABB″;【解析】 (1)根据A,B两点坐标确定平面直角坐标系即可; (2)利用轴对称的性质分别作出A',B',C'的对应点A'',B'',C''即可; (3)把三角形面积看成矩形面积减去周围三个三角形面积即可. 此题主要考查作图−轴对称变换,三角形的面积等知识,解答该题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.25.【答案】解:(1)原式=3(a2-2ab+b2) =3(a-b)2; (2)原式=m2(m-2)-4(m-2) =(m-2)(m2-4) =(m-2)(m-2)(m+2) =(m-2)2(m+2).;【解析】 (1)先提公因式3,再利用完全平方公式即可进行因式分解; (2)先提公因式(m−2),再利用平方差公式进行因式分解即可. 此题主要考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.26.【答案】解:(1)原式=xy+y2+x2-y2-x2 =xy, 当x=-2,y=12时, 原式=-2×12=-1; (2)原式=2(a2+2a-3a-6)-(9-a2) =2a2-2a-12-9+a2 =a2-2a-21, 当a=-2时,原式=(-2)2-2×(-2)-21 =4+4-21 =-13.;【解析】 (1)直接利用单项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案; (2)直接利用多项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案. 此题主要考查了整式的混合运算−化简求值,正确运用乘法公式计算是解题关键.27.【答案】解:∵当y=-3时无意义, ∴-3+b=0, ∴b=3. ∵当y=2时分式的值为0, ∴2-a=0,2+3≠0, ∴a=2. ∴该分式为y−2y+3, 当x=-7时, y−2y+3 =−7−2−7+3 =−9−4 =94. 答:当x=-7时分式的值为94.;【解析】 分式无意义的条件是分母等于0,分式等于0的条件是分子等于0,且分母不等于0. 此题主要考查分式无意义的条件和分式值为0的条件,解题时注意分式为0的条件是分子等于0,且分母不等于0.28.【答案】解:设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时, 依题意得:132x-1321.2x=12, 解得:x=44, 经检验,x=44是原方程的解,且符合题意. 答:一班的平均车速是44千米/时.;【解析】 设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时,利用时间=路程÷速度,结合二班比一班少用半小时,即可得出关于x的分式方程,解之经检验后即可得出一班的平均车速. 此题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解答该题的关键.。
人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试题一、单选题1.下列长度的三根木棒能组成三角形的是( )A .2 ,3 ,4B .2 ,2 ,4C .2 ,3 ,6D .1 ,2 ,4 2.若分式224x x +-有意义,则x 的取值范围是( ) A .x≠2 B .x≠ ±2 C .x≠﹣2 D .x ≥﹣23.五边形的外角和等于( )A .180°B .360°C .540°D .720°4.某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为( )A .152×105米B .1.52×10﹣5米 C .﹣1.52×105米 D .1.52×10﹣4米 5.若把分式xy x y +的x 和y 都扩大3倍,那么分式xy x y+的值( ) A .扩大3倍 B .扩大9倍 C .扩大4倍 D .不变 6.如果三角形的三个内角的度数比是2:3:4,则它是( )A .锐角三角形B .钝角三角形C .直角三角形D .钝角或直角三角形7.若点A (m ,n )和点B (5,﹣7)关于x 轴对称,则m+n 的值是( )A .2B .﹣2C .12D .﹣128.如图,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 、CE ,若△ABC 的面积是8,则阴影部分的面积为( )A .2B .4C .6D .89.如图,△ABC 中AB 边上的高是( )A .线段ADB .线段AC C .线段CD D .线段BC10.如图,在Rt△ABC 中,△ACB =90°,△A =30°,CD 是斜边AB 上的高,BD =2,那么AD 的长为( )A .2B .4C .6D .8二、填空题11.分解因式:23m m -=________.12.一个正多边形的内角和等于1440°,则此多边形是________边形.13.若a m =3,a n =4,则a m+n =_____.14.已知1112a b -=,则ab b a -的值是_____. 15.如图,已知△ABC△△DCB ,△BDC=35°,△DBC=50°,则△ABD=________.16.如图,若△A =15°,AB =BC =CD =DE =EF ,则△DEF 等于_____.17.如图.已知ABC 中,12AB AC ==厘米,B C ∠=∠,8BC =厘米,D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C向点A 运动.若点Q 的运动速度为a 厘米/秒,则当BPD △与CQP 全等时,a 的值为______.18.如图,在ABC ∆中,AC 的垂直平分线交BC 于点D ,交AC 于点E ,ABD ∆的周长为12,cm AC 的长为5cm ,那么ABC ∆的周长是___________cm三、解答题19.解方程:312x x =-. 20.先化简,再求值:2229344--⋅+-+x x x x x ,其中x =﹣1 21.已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2﹣4a ﹣8b+20=0,c=3cm ,求△ABC 的周长.22.如图,在四边形ABCD 中,AD△BC ,E 为CD 的中点,连接AE 、BE ,BE△AE ,延长AE 交BC 的延长线于点F. 已知AD=2cm ,BC=5cm.(1)求证:FC=AD ;(2)求AB 的长.23.某服装店用960元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.()1该服装店第一次购买了此种服装多少件?()2两次出售服装共盈利多少元?24.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A ( ),'B ( ),'C ( ),(3)求出'''A B C 的面积25.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、a 2﹣2ab+b 2=(a ﹣b )2B 、a 2﹣b 2=(a+b )(a ﹣b )C 、a 2+ab=a (a+b )(2)应用你从(1)选出的等式,完成下列各题:△已知x 2﹣4y 2=12,x+2y=4,求x ﹣2y 的值.△计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣2119)(1﹣2120).26.如图,△ABC 和△AOD 是等腰直角三角形,AB=AC ,AO=AD ,△BAC=△OAD=90°,点O 是△ABC 内的一点,△BOC=130°.(1)求证:OB=DC ;(2)求△DCO 的大小;(3)设△AOB=α,那么当α为多少度时,△COD 是等腰三角形.27.如图,,ABC AEF ∆∆均为等边三角形,连接BE ,连接并延长CF 交BE 于点D . (1)求证:CAF BAE ∆≅∆;(2)连接AD ,求证DA 平分CDE ∠.参考答案1.A2.B3.B4.B5.A6.A7.C8.B9.C10.Cm m11.(3)12.1013.1214.215.45°.16.60°17.2或3【分析】此题要分两种情况:△当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求a;△当BD=CQ时,△BDP△△CQP,计算出BP的长,进而可得运动时间,然后再求a.【详解】解:当BD=PC时,△BPD与△CQP全等,△点D为AB的中点,AB=6cm,△BD=12△BD=PC,△BP=8-6=2(cm),△点P在线段BC上以2厘米/秒的速度由B点向C点运动,△运动时间时1s,△△DBP△△PCQ,△BP=CQ=2cm,△a=2÷1=2;当BD=CQ时,△BDP△△CQP,△BD=6cm,PB=PC,△QC=6cm,△BC=8cm,△BP=4cm,△运动时间为4÷2=2(s),△a=6÷2=3(m/s),故答案为:2或3.【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS 、SAS 、ASA 、AAS 、HL .18.17.【分析】由DE 是AC 的垂直平分线,可得AD=DC ,由ABD △的周长为12cm ,可得AB+AD+BD=12cm ,再由AD=DC ,可得AB+BC=12cm ,结合AC=5cm 进行计算即可.【详解】解:△ABD △的周长为12cm ,△AB+AD+BD=12cm ,△DE 是AC 的垂直平分线,△AD=DC ,△AB+DC+BD=12cm ,△AB+BC=12cm ,△AC=5cm ,△AB+BC+AC=17cm ,即ABC 的周长是17cm ,故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,正确理解线段的垂直平分线的性质是解题的关键.19.3x =【分析】根据分式方程的一般求解步骤求解即可,最后检验方程的根. 【详解】解:312x x =- 化为整式方程为:3(2)x x -=去括号得:36x x -=移项,合并同类项得:26x =解得:3x =经检验:3x =是原方程的根,所以原方程的解为:3x =【点睛】本题考查了分式方程的解法,熟悉掌握分式方程的解法步骤是解题的关键. 20.32x x --,43【分析】根据分式乘法的运算法则对分式进行化简,然后代入求解即可.【详解】解:2229344--⋅+-+x x x x x 2(3)2)3(3)(2x x x x x -+--⋅+=, 32x x -=-, 将1x =-代入得, 原式134123--==--, 【点睛】此题考查了分式的化简求值,解题的关键是掌握分式的有关运算法则,正确对分式进行化简.21.△ABC 的周长为9.【分析】由a 2+b 2﹣4a ﹣8b+20=0,利用非负数的性质可求得a ,b 的值,然后根据三角形的周长公式进行求解即可得.【详解】△a 2+b 2﹣4a ﹣8b+20=0,△a 2﹣4a+4+b 2﹣8b+16=0,△(a ﹣2)2+(b ﹣4)2=0,又△(a ﹣2)2≥0,(b ﹣4)2≥0,△a ﹣2=0,b ﹣4=0,△a=2,b=4,△△ABC 的周长为a+b+c=2+4+3=9,答:△ABC 的周长为9.【点睛】本题考查了因式分解的应用、非负数的性质等,解题的关键是利用因式分解将所给式子的左边转化成非负数的和的形式.22.(1)证明见解析 ;(2)AB=7cm.【详解】试题分析:(1)根据AD△BC 可知△ADC=△ECF ,再根据E 是CD 的中点可求出△ADE△△FCE ,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF 即可.试题解析:(1)△AD△BC△△ADC=△ECF ,△E 是CD 的中点,△DE=EC ,△在△ADE与△FCE中,ADC ECFDE ECAED CEF∠=∠⎧⎪=⎨⎪∠=∠⎩,△△ADE△△FCE(ASA) ,△FC=AD ;(2)△△ADE△△FCE,△AE=EF,AD=CF ,△BE△AE ,△BE是线段AF的垂直平分线,△AB=BF=BC+CF,△AD=CF ,△AB=BC+AD=5+2=7(cm).23.(1)该服装店第一次购买了此种服装30件;(2)两次出售服装共盈利960元【分析】(1)设该服装店第一次购买了此种服装x件,则第二次购进2x件,根据单价总价数量结合第二次购进单价比第一次贵5元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据销售单价x销售数量两次进货总价利润,即可求出结论.【详解】解:()1设该服装店第一次购买了此种服装x件,则第二次购进2x件,根据题意得:222096052x x-=,解得:x30=,经检验,x30=是原方程的根,且符合题意.答:该服装店第一次购买了此种服装30件.()()246303029602220960(⨯+⨯--=元).答:两次出售服装共盈利960元.【点睛】本题考查分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量间的关系,列式计算.24.(1)所画图形见解析;(2)3,-3 ;-1,-3;0,4 ;(3)11【分析】(1)分别作出各点关于y轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S'''.【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=, △11A B C S '''=△.25.(1)B ;(2)△3;△2140. 【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)△把x 2﹣4y 2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;△利用(1)的结论化成式子相乘的形式即可求解.【详解】(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ;(2)△△x 2﹣4y 2=(x+2y )(x ﹣2y ),△12=4(x ﹣2y )得:x ﹣2y=3;△原式=(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)…(1﹣119)(1+119)(1﹣120)(1+120) 1324351820192122334419192020=⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯ =12×2120 =2140. 26.(1)证明见解析;(2)40°;(3)当α的度数为115°或85°或145°时,△AOD 是等腰三角形【分析】(1)由已知证明△AOB△△ADC ,根据全等三角形的性质即可证得;(2)由△BOC=130°,根据周角的定义可得△BOA+△AOC=230°,再根据全等三角形的性质继而可得△ADC+△AOC=230°,由△DAO=90°,在四边形AOCD 中,根据四边形的内角和即可求得△DCO 的度数;(3)分三种情况进行讨论即可得.【详解】(1)△△BAC=△OAD=90°,△△BAC ﹣△CAO=△OAD ﹣△CAO ,△△DAC=△OAB ,在△AOB 与△ADC 中,AB AC OAB DAC AO AD =⎧⎪∠=∠⎨⎪=⎩,△△AOB△△ADC ,△OB=DC;(2)△△BOC=130°,△△BOA+△AOC=360°﹣130°=230°,△△AOB△△ADC△AOB=△ADC,△△ADC+△AOC=230°,又△△AOD是等腰直角三角形,△△DAO=90°,△四边形AOCD中,△DCO=360°﹣90°﹣230°=40°;(3)当CD=CO时,△△CDO=△COD=1801804022DCO︒-∠︒-︒==70°,△△AOD是等腰直角三角形,△△ODA=45°,△△CDA=△CDO+△ODA=70°+45°=115°,又△AOB=△ADC=α,△α=115°;当OD=CO时,△△DCO=△CDO=40°,△△CDA=△CDO+△ODA=40°+45°=85°,△α=85°;当CD=OD时,△△DCO=△DOC=40°,△CDO=180°﹣△DCO﹣△DOC=180°﹣40°﹣40°=100°,△△CDA=△CDO+△ODA=100°+45°=145°,△α=145°,综上所述:当α的度数为115°或85°或145°时,△AOD是等腰三角形.27.(1)见解析;(2)详见解析.【分析】(1)利用SAS证明即可;(2)逆用角的平分线性质定理证明.【详解】(1)△△ABC,△AEF 是等边三角形,△AC=AB,AF=AE,△CAB=△EAF,△△CAB -△FAB =△EAF -△FAB,△△CAF=△BAE,△△CAF△△BAE;(2)过点A 分别作AH△CD 于点H,AG△BE,交BE 的延长线于点G, 由(1)知,△CAF△△BAE ,△CF=BE ,CAF BAE S S =, △1122CE AH BE AG ⨯⨯=⨯⨯,△AH=AG ,△DA 平分△CDE.。
八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图案,不是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.(﹣3a2)3=﹣9a6B.(6a6)÷(﹣3a2)=2a3C.(a﹣3)2=a2﹣9 D.4a﹣5a=﹣a3.下列各式中,是最简二次根式的是()A. B.C.D.4.化简(﹣)÷的结果是()A.y B.C.D.5.已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS7.已知点P在∠AOB的平分线上,点P到OA的距离为10,点Q是OB边上的任意一点,则下列结论正确的是()A.PQ>10 B.PQ≥10 C.PQ<10 D.PQ≤108.已知a2﹣5a+2=0,则分式的值为()A.21 B.C.7 D.9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD10.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.计算:=.12.计算=.13.若分式的值为0,则a的值为.14.若9x2﹣mxy+25y2是完全平方式,则m=.15.实数a、b在数轴上的位置如图所示,化简=.16.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为cm.17.如图,在平面直角坐标中,已知四边形ABCD是正方形,点A在原点,点B的坐标是(3,1),则点D的坐标是.18.如图,已知点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点,现有如下结论:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正确的结论是(只填序号).三、简单题(一)(本大题共4小题,共32分)19.(1)计算:()﹣3+(1﹣)0﹣;(2)先化简,再求值:÷﹣(+1),其中x=﹣.20.(1)分解因式:16x3﹣x;(2)已知a=2+,b=2﹣,求代数式﹣的值.21.如图,在△ABC中,AB=AD=DC,∠BAD=24°,求∠BAC的度数.22.解方程:+=.四、解答题(二)(本大题共2小题,共14分)23.如图,已知△ABC的三个顶点的坐标为:A(2,4),B(4,3),C(1,1),直线l过点(﹣1,0)且平行于y轴.(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)作出△ABC关于直线l对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.五、证明与探究:(本大题共2小题,共20分)25.某经销商用8000元购进了一种衬衫,他以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但每件进价比第一次多4元,服装店仍按每件58元出售,全部售完.(1)设他第一次购进这种衬衫的价格为x元/件,则他第一次购进这种衬衫件,他第二次购进这种衬衫件;(2)问他在这次服装生意中共盈利多少元?26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a 和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE 有何关系?直接说出结论,不必说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图案,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列计算正确的是()A.(﹣3a2)3=﹣9a6B.(6a6)÷(﹣3a2)=2a3C.(a﹣3)2=a2﹣9 D.4a﹣5a=﹣a【考点】整式的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据积的乘方等于乘方的积,单项式的除法系数除系数,同底数的幂相除;差的平方等于平方和减积的二倍;合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、积的乘方等于乘方的积,故A错误;B、单项式的除法系数除系数,同底数的幂相除,故B错误;C、差的平方等于平方和减积的二倍,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点评】本题考查了整式的除法,熟记法则并根据法则计算是解题关键.3.下列各式中,是最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数含分母,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.化简(﹣)÷的结果是()A.y B.C.D.【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故选C【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.5.已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定【考点】分母有理化.【分析】把a=的分母有理化即可.【解答】解:∵a===2﹣,∴a=b.故选B.【点评】本题考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式是解答此题的关键.6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.7.已知点P在∠AOB的平分线上,点P到OA的距离为10,点Q是OB边上的任意一点,则下列结论正确的是()A.PQ>10 B.PQ≥10 C.PQ<10 D.PQ≤10【考点】角平分线的性质;垂线段最短.【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为10,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于10,∴点P到OB的距离为10,∵点Q是OB边上的任意一点,∴PQ≥10.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.8.已知a2﹣5a+2=0,则分式的值为()A.21 B.C.7 D.【考点】分式的值.【分析】根据题意将原式变形得出a﹣5+=0,进而利用完全平方公式得出(a+)2=25,进而得出答案.【解答】解:∵a2﹣5a+2=0,∴a﹣5+=0,故a+=5,∴(a+)2=25,∴a2++4=25,∴=a2+=21.故选:A.【点评】此题主要考查了分式的值以及完全平方公式的应用,正确应用完全平方公式是解题关键.9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD【考点】剪纸问题.【分析】利用图形的对称性特点解题.【解答】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选:B【点评】解决本题的关键是利用图形的对称性把所求的线段进行转移.10.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.二、填空题(本题共8小题,每小题3分,共24分)11.计算:=﹣1.5.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:原式(﹣×1.5)2015×1.5=﹣1.5.故答案为:﹣1.5.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.计算=.【考点】二次根式的混合运算.【专题】计算题.【分析】根据乘方的意义得到原式=[(﹣1)(+1)]•(+1),然后前面两项利用平方差公式进行计算.【解答】解:原式=[(﹣1)(+1)]•(+1)=(2﹣1)(+1)=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.13.若分式的值为0,则a的值为4.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:a2﹣16=0且a+4≠0,解得x=4.故答案为:4.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.14.若9x2﹣mxy+25y2是完全平方式,则m=±30.【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【解答】解:∵9x2﹣mxy+25y2=(3x)2﹣mxy+(5y)2,∴﹣mxy=±2•3x•5y,解得m=±30.故答案为:±30.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.15.实数a、b在数轴上的位置如图所示,化简=﹣2b.【考点】二次根式的性质与化简;实数与数轴.【专题】计算题.【分析】由数轴可知a<0,b>0,a﹣b<0,根据二次根式的性质=|a|,化简计算.【解答】解:∵a<0,b>0,a﹣b<0,∴,=|a|﹣|b|﹣|a﹣b|,=﹣a﹣b+a﹣b=﹣2b.故本题答案为:﹣2b.【点评】本题考查了二次根式的性质与化简.关键是根据数轴判断被开方数中底数的符号.16.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为3cm.【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到NB=NA,根据三角形的周长公式计算即可.【解答】解:∵线段AB的垂直平分线交AC于点N,∴NB=NA,△BCN的周长=BC+CN+BN=7cm,∴BC+AC=7cm,又AC=4cm,∴BC=3cm,故答案为:3.【点评】此题主要考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,在平面直角坐标中,已知四边形ABCD是正方形,点A在原点,点B的坐标是(3,1),则点D的坐标是(﹣1,3).【考点】全等三角形的判定与性质;坐标与图形性质;正方形的性质.【分析】过B作BE⊥x轴于E,过D作DF⊥y轴于F,于是得到∠BEA=∠DFA=90°,根据正方形的性质得到AD=AB,∠DAB=90°,求得∠DAF=∠BAE,推出△ABE≌△ADF,根据全等三角形的性质得到BE=DF,AE=AF,即可得到结论.【解答】解:过B作BE⊥x轴于E,过D作DF⊥y轴于F,∴∠BEA=∠DFA=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAF=∠BAE,在△ABE与△AFD中,,∴△ABE≌△ADF,∴BE=DF,AE=AF,∵B的坐标是(3,1),∴AE=3,BE=1,∴AF=3,DF=1,∴点D的坐标是(﹣1,3).故答案为:(﹣1,3).【点评】本题考查了全等三角形的判定和性质,坐标与图形的性质,正方形的性质,正确的作出辅助线构造全等三角形是解题的关键.18.如图,已知点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点,现有如下结论:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正确的结论是②③④(只填序号).【考点】全等三角形的判定与性质.【分析】①由三角形内最多只有一个直角得出该结论不成立;②通过证明△ABE≌△DBC得出AE=DC,根据直角三角形斜边上中线的特点,可得出结论成立;③通过证明△ABM≌△DBN得出∠DBN=∠ABM,通过等量替换得出结论成立;④由②中的三角形全等可知其面积也相等,故其面积的一半也相等,结论成立.【解答】解:①∵∠ABD=∠DBC,且点B在线段AC上,∴∠ABD=∠DBC=180°÷2=90°,在△BDC中,∠DBC=90°∴∠BDN=∠BDC<90°(三角形中最多只有一个直角存在),∴∠ABD≠∠BDN,即①不成立.②在直角△ABE与直角△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,又M,N分别是AE,CD的中点,∴BM=AE,BN=DC,∴BM=BN,即②成立.③在△ABM和△DBN中,,∴△ABM≌△DBN,∴∠DBN=∠ABM,∴∠MBN=∠MBD+∠DBN=∠MBD+∠ABM=∠ABD=90°,∴MB⊥NB,即③成立.④∵M,N分别是AE,CD的中点,∴S△ABM=S△ABE,S△BCN=S△DBC,由②得知,△ABE≌△DBC,∴S△ABM=S△BCN,即④成立.故答案为:②③④.【点评】本题考查的全等三角形的判定和性质,解题的关键是通过证明三角形全等找到相应的等量关系,从而验证给出结论成立不成立.三、简单题(一)(本大题共4小题,共32分)19.(1)计算:()﹣3+(1﹣)0﹣;(2)先化简,再求值:÷﹣(+1),其中x=﹣.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂.【分析】(1)分别根据0指数幂及负整数指数幂的计算法则、数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=8+1﹣11=﹣2;(2)原式=•﹣=﹣=,∴当x=﹣时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(1)分解因式:16x3﹣x;(2)已知a=2+,b=2﹣,求代数式﹣的值.【考点】分式的化简求值;提公因式法与公式法的综合运用.【分析】(1)先提取公因式,再根据平方差公式进行分解即可;(2)先求出a+b,a﹣b及ab的值,再代入代数式进行计算即可.【解答】解:(1)原式=x(16x2﹣1)=x(4x+1)(4x﹣1);(2)∵a=2+,b=2﹣,∴a+b=4,ab=﹣1,a﹣b=2,∴原式====8.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.如图,在△ABC中,AB=AD=DC,∠BAD=24°,求∠BAC的度数.【考点】等腰三角形的性质.【分析】先根据AB=AD,∠BAD=24°求出∠B的度数,再由AD=DC得出∠C=∠DAC,根据三角形内角和定理得出∠DAC的度数,进而可得出结论.【解答】解:∵AB=AD,∠BAD=24°,∴∠B==78°.∵AD=DC,∴∠C=∠DAC.∵∠B+∠BAD+∠DAC+∠C=180°,即78°+2∠DAC+24°=180°,解得∠DAC=39°,∴∠BAC=∠BAD+∠DAC=24°+39°=63°.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.22.解方程:+=.【考点】解分式方程.【专题】计算题.【分析】把各分母进行因式分解,可得到最简公分母是x(x+1)(x﹣1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘x(x+1)(x﹣1),得7(x﹣1)+3(x+1)=6x,解得x=1.经检验:x=1是增根.∴此方程无解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.四、解答题(二)(本大题共2小题,共14分)23.如图,已知△ABC的三个顶点的坐标为:A(2,4),B(4,3),C(1,1),直线l过点(﹣1,0)且平行于y轴.(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)作出△ABC关于直线l对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接;(2)分别作出点A、B、C关于直线l对称的点,然后顺次连接,并写出△A1B1C1三个顶点的坐标.【解答】解:(1)所作图形如图所示:(2)所作图形如图所示:A1(﹣4,4),B1(﹣6,3),C1(﹣3,1).【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【考点】全等三角形的判定与性质.【专题】探究型.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE,CF平分DE(三线合一).【点评】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.五、证明与探究:(本大题共2小题,共20分)25.某经销商用8000元购进了一种衬衫,他以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但每件进价比第一次多4元,服装店仍按每件58元出售,全部售完.(1)设他第一次购进这种衬衫的价格为x元/件,则他第一次购进这种衬衫件,他第二次购进这种衬衫件;(2)问他在这次服装生意中共盈利多少元?【考点】分式方程的应用.【分析】(1)第一批衬衫的进价为x元,则第二批的进价(x+4)元,利用总价÷单价=数量分别求得两次购进衬衫的数量即可;(2)根据题意可得等量关系:第一批所进的件数×2=第二批所进的件数,根据等量关系列出方程,解方程即可.【解答】解:(1)第一次购进这种衬衫件,第二次购进这种衬衫件;(2)依题意有:×2=,解得:x=40,经检验x=40是原分式方程的解.x+4=44,第一次,第二次的进价分别是40元和44元,第一次购进200件,第二次购进400件,所以两次共盈利200×18+400×14=9200元.答:在这次服装生意中共盈利9200元.【点评】此题主要考查了分式方程的应用,关键是理解题意,找出题目中的等量关系:第一批所进的件数×2=第二批所进的件数,列出方程,解决问题.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a 和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE 有何关系?直接说出结论,不必说明理由.【考点】一次函数综合题.【分析】(1)根据a2﹣2ab+b2=0,可得a=b,又由∠AOB=90°,所以可得出△AOB的形状;(2)OD=OE,OD⊥OE,通过证明△OAD≌△OBE可以得证;(3)由∠DEB+∠BEO=45°,∠ACB=∠COE+∠BEO=45°,得出∠DEB=∠COE,根据三角形外角的性质得出∠ABC=∠BDE+∠DEB=90°,从而得出∠BDE+∠COE=90°,所以∠BDE与∠COE互余.【解答】解:(1)∵a2﹣2ab+b2=0.∴(a﹣b)2=0,∴a=b,又∵∠AOB=90°,∴△AOB为等腰直角三角形;(2)OD=OE,O D⊥OE,理由如下:如图②,∵△AOB为等腰直角三角形,∴AB=BC,∵BO⊥AC,∴∠DAO=∠EBO=45°,BO=AO,在△OAD和△OBE中,,△OAD≌△OBE(SAS),∴OD=OE,∠AOD=∠BOE,∵∠AOD+∠DOB=90°,∴∠DOB+∠BOE=90°,∴OD⊥OE;(3)∠BDE与∠COE互余,理由如下:如图③,∵OD=OE,OD⊥OE,∴△DOE是等腰直角三角形,∴∠DEO=45°,∴∠DEB+∠BEO=45°,∵∠ACB=∠COE+∠BEO=45°,∴∠DEB=∠COE,∵∠ABC=∠BDE+∠DEB=90°,∴∠BDE+∠COE=90°∴∠BDE与∠COE互余.【点评】本题是一次函数的综合题,考查了等腰三角形的判定和性质,三角形全等的判定和性质以及三角形外角的性质,熟练掌握性质定理是解题的关键.。
人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.下列所述图形中,不是轴对称图形的是()A .矩形B .平行四边形C .正五边形D .正三角形2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为()A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.若一个多边形的内角和是540°,则该多边形的边数为 ()A .4B .5C .6D .74.下面因式分解错误的是()A .22()()x y x y x y -=+-B .22816(4)x x x -+=-C .2222()x xy x x y -=-D .222()x y x y +=+5.以下列各组线段为边,能组成三角形的是()A .1cm ,2cm ,4cmB .4cm ,6cm ,8cmC .5cm ,6cm ,12cmD .2cm ,3cm ,5cm6.解分式方程22311x x x++=--时,去分母后变形为A .()()2231x x ++=-B .()2231x x -+=-C .()()2231x x -+=-D .()()2231x x -+=-7.下列计算正确的是()A .2a +3b =5abB .x 8÷x 2=x 6C .(ab 3)2=ab 6D .(x +2)2=x 2+48.将0.0000025用科学记数法表示为()A .2.5×10﹣5B .2.5×10﹣6C .25×10﹣7D .1.2×10﹣89.若分式242x x -+的值为0,则x 的值为()A .-2B .0C .2D .±210.如图,△ABC 中,AB=5,AC=8,BD 、CD 分别平分∠ABC ,∠ACB ,过点D 作直线平行于BC ,分别交AB 、AC 于E 、F ,则△AEF 的周长为()A.12B.13C.14D.18二、填空题11.计算:|﹣2|﹣20210+(12)﹣1=______________.12.分解因式:xy―x=_____________.13.如图,AC与BD相交于点O,且AB=CD,请添加一个条件_____________,使得△ABO≌△CDO.14.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是__________.15.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC =7,则△BDC的面积是________.16.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.17.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上动点,则CMD △周长的最小值为______.18.如图,将一个边长为3的正方形纸片进行分割,部分①的面积是边长为3的正方形纸片的一半,部分②的面积是部分①的一半,部分③的面积是部分②的一半,以此类推,n 部分的面积是______.(用含n 的式子表示)三、解答题19.计算:()()()222x y x y x y x +++--20.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x =.21.解方程:28124x x x -=--.22.如图,AB AD =,25BAC DAC ∠=∠=︒,80D ∠=︒.求BCA ∠的度数.23.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?24.如图,已知ABC 中,10cm AB AC ==,8cm BC =,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BPD △与CQP V 是否全等,请说明理由.②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP V 全等.(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC 三边运动,求经过多长时间点P 与点Q 第一次在ABC 的哪条边上相遇.25.已知:22214816x x x A x x x +-=÷--+,221x m B x -=-(1)化简分式A ;(2)若关于x 的分式方程:1A B +=的解是非负数,求m 的取值范围;(3)当x 取什么整数时,分式A 的值为整数.26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,AB BC CD DA ===,60A ∠=︒,点E ,F 分别为线段AD ,CD 上的动点,且60EBF ∠=︒.(1)当BE AD ⊥时,求证:12AE AD =;(2)连接EF ,判断BEF 的形状,并作证明;(3)当AB 的长度为定值时,四边形BEDF 的面积是否为定值?请说明理由.参考答案1.B【分析】由轴对称图形的定义对选项判断即可.【详解】矩形为轴对称图形,不符合题意,故错误;平行四边形不是轴对称图形,符合题意,故正确;正五边形为轴对称图形,不符合题意,故错误;正三角形为轴对称图形,不符合题意,故错误;故选:B .【点睛】本题考查了轴对称图形的概念,如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.识别轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【分析】利用关于x 轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点(3,2)关于x 轴对称的点的坐标为(3,-2),故选:D.【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.3.B【分析】根据多边形的内角和公式可直接求出多边形的边数.【详解】设这个多边形的边数为n,根据多边形内角和定理得(n-2)×180°=540°,解得n=5;故选:B.【点睛】本题考查了多边形的内角和定理,熟记多边形的内角和为(n-2)×180°是解题的关键.4.D【分析】分别利用完全平方公式、平方差公式以及提公因式法分解因式,进而判断得出答案.【详解】解:A、x2﹣y2=(x+y)(x﹣y),正确,不合题意;B、x2﹣8x+16=(x﹣4)2,正确,不合题意;C、2x2﹣2xy=2x(x﹣y),正确,不合题意;D、无法进行因式分解,此选项错误,符合题意.故选:D.【点睛】此题主要考查了公式法以及提取公因式法分解因式,熟练应用乘法公式是解题关键.5.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能够组成三角形;D、2+3=5,不能组成三角形.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6.D【详解】解:方程223 11xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.7.B【分析】由相关运算法则计算判断即可.【详解】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.8.B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可.【详解】解:0.0000025=2.5×10-6.故选:B.【点睛】本题考查用科学记数法表示较小的数,注意掌握其一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C【详解】由题意可知:24020 xx=⎧-⎨+≠⎩,解得:x=2,故选C.10.B【分析】根据平行线的性质得到∠EDB=∠DBC,∠FDC=∠DCB,根据角平分线的性质得到∠EBD=∠DBC,∠FCD=∠DCB,等量代换得到∠EDB=∠EBD,∠FDC=∠FCD,于是得到ED=EB,FD=FC,即可得到结果.【详解】解:∵EF BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.【点睛】此题考查了等腰三角形的判定与性质.此题难度适中,注意证得△BDE与△CDF 是等腰三角形是解此题的关键.11.3【分析】先化简绝对值、零指数幂和负整数指数幂,再算加减即可【详解】解:|﹣2|﹣20210+(12)﹣1=2-1+2=3.故答案为:3.【点睛】本题考查了有理数的意义,熟练掌握绝对值、零指数幂和负整数指数幂的意义是解答本题的关键,非零数的负整数指数幂等于这个数的正整数次幂的倒数;非零数的零次幂等于1.12.x(y-1)【详解】试题解析:xy―x=x(y-1)13.∠A=∠C(答案不唯一)【分析】根据全等三角形的判定定理得出即可.【详解】∵∠AOB、∠COD是对顶角,∴∠AOB=∠COD,又∵AB=CD,∴要使得△ABO≌△CDO,则只需添加条件:∠A=∠C.故答案为:∠A=∠C(答案不唯一)考点:1.全等三角形的判定;2.开放型.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.14.22cm【分析】分两种情况讨论:当4cm为腰时,而449,+<不合题意,舍去,当9cm为腰时,而4+99,>符合题意,从而可得答案.【详解】解:等腰三角形有两条边长为4cm和9cm,当4cm为腰时,而449,+<不合题意,舍去,当9cm为腰时,而4+99,>符合题意,所以三角形的周长为:49922++=(cm),故答案为:22cm【点睛】本题考查的是三角形三边关系的应用,等腰三角形的定义,掌握“等腰三角形的定义及清晰的分类讨论”是解本题的关键.15.7【分析】过点D作DE⊥BC于E,根据角平分线上的点到角的两边距离相等可得DE=AD,然后利用三角形的面积公式列式计算即可得解.【详解】如图,过点D作DE⊥BC于E,∵∠A=90°,BD是∠ABC的平分线,∴DE=AD=2,∴△BDC的面积=12BC•DE=12×7×2=7.故答案为:7【点睛】本题考查角平分线的性质,熟练掌握角平分线上的点到角的两边距离相等的性质是解题关键.16.3【分析】根据题意依据等腰三角形的性质,即可得到BD=12BC,进而分析计算即可得出结论.【详解】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3.故答案为:3.【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.17.10【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴CM=AM,∴CD+CM+DM=CD+AM+DM,∵AM+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=10.故答案为10.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.92n【分析】根据图形和题意,求出①、②、③、④的面积从而可以推出n 部分的面积;【详解】解:19922=⨯=①面积21199222=⨯⨯=②面积3111992222=⨯⨯⨯=③面积411119922222=⨯⨯⨯⨯=④面积以此类推可知n 部分的面积为92n 故答案为:92n【点睛】本题考查图形的变化规律、有理数的混合运算、列代数式,解答本题的关键是明确题意,求出所求式子的值.19.2xy【分析】先根据完全平方公式计算,再合并同类项即可【详解】解:()()()222x y x y x y x +++--=2222222x xy y x y x +++--=2xy .【点睛】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键.完全平方公式是(a±b)2=a 2±2ab+b 2;平方差公式是(a+b)(a-b)=a 2-b 2.20.22x +1+.【分析】括号内先进行分式的加减运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可.【详解】原式()()()22121x x x x x x +--=⋅--=2x x+,当x =时,原式1=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.21.无解【分析】根据解分式方程的步骤去解答:去分母将分式方程化为整式方程、解整式方程、检验、回答.【详解】解:原方程可化为:812(2)(2)x x x x -=-+-.方程两边同时乘以(2)(2)x x +-,得(2)(2)(2)8x x x x +-+-=.化简,得248x +=.解得2x =.检验:2x=时(2)(2)0x x +-=,所以2x =不是原分式方程的解,所以原分式方程无解.【点睛】本题考查解分式方程,熟练掌握解分式方程的步骤,尤其是检验是解分式方程的重要步骤.22.75°.【分析】由三角形的内角和定理求出∠DCA=75°,再证明△ABC ≌△ADC ,即可得到答案.【详解】∵25DAC ∠=︒,80D ∠=︒,∴∠DCA=75°,∵AB AD =,25BAC DAC ∠=∠=︒,AC=AC ,∴△ABC ≌△ADC ,∴∠BCA=∠DCA=75°.【点睛】此题考查三角形的内角和定理,全等三角形的判定及性质,这是一道比较基础的三角形题.23.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得:312042009x x=-,解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a+35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.(1)①BPD CQP V V ≌,理由见解析;②15cm /s 4Q v =;(2)经过80s 3点P 与点Q 第一次在边AB 上相遇【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度;(2)根据题意结合图形分析发现:由于点Q 的速度快,且在点P 的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个腰长.【详解】解:(1)①∵1s t =,∴313cm BP CQ ==⨯=,∵10cm AB =,点D 为AB 的中点,∴5cm BD =.又∵PC BC BP =-,8cm BC =,∴835cm PC =-=,∴PC BD =.又∵AB AC =,∴B C ∠=∠,在BPD △和CQP V 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BPD CQP ≌△△.②∵P Q v v ≠,∴BP CQ≠若BPD CPQ △≌△,B C ∠=∠,则4cm BP PC ==,5cm CQ BD ==,∴点P ,点Q 运动的时间4s 33BP t ==,∴515cm /s 443Q CQ v t ===.(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯,解得803x =.∴点P 共运动了80380cm 3⨯=.ABC 周长为:1010828cm ++=,若是运动了三圈即为:28384cm ⨯=,∵84804cm AB -=<的长度,∵点P 、点Q 在AB 边上相遇,∴经过80s 3点P 与点Q 第一次在边AB 上相遇.【点睛】此题主要是运用了路程=速度×时间的公式,解题的关即使熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.25.(1)241x x x --(2)12m ≥-且2m ≠(3)当2x =-时,分式的值为4-;当0x =时,分式的值为0;当2x =时,分式的值为4-;当4x =时,分式的值为0【分析】(1)将分式的分子、分母分解因式,将除法化为乘法,约分计算即可;(2)将A 、B 的值代入解方程,根据解是非负数,得到21055m +≥,计算即可;(3)将A 利用完全平方公式及整式加减法添括号法则变形为331x x ---,由值为整数得到x 的值,代入计算.(1)解:()()()21114(4)x x x x A x x ++-=÷--()()()()214411x x x x x x +-=⋅-+-241x x x -=-;(2)解:由题意:2242111x x x m A B x x--+=+=--2242111x x x m x x ---=--,22421x x x m x --+=-,2155x m =+.∵解是非负数,∴21055m +≥∴12m ≥-.∵10x -≠即1x ≠,∴25511m +≠,解得2m ≠,∴12m ≥-且2m ≠;(3)解:241x x A x -=-()21211x x x ---=-2111x x x +=---()21311x x x -+=---331x x =---.当2x =-时,分式的值为4-;当0x =时,分式的值为0;当2x =时,分式的值为4-;当4x =时,分式的值为0.【点睛】此题考查了分式的除法运算法则,解分式方程,正确掌握分式的分解,运算法则,完全平方公式是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD △和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.【点睛】本题考查了全等三角形的判定和性质,直角三角形两锐角互余,掌握全等三角形的判定是本题的关键.27.(1)见解析(2)等边三角形,见解析(3)是定值,见解析【分析】(1)连接BD ,可证ABD △是等边三角形,再由等边三角形的三线合一即可得证;(2)由ABD △是等边三角形,可得FBD ABE ∠=∠,由BCD △是等边三角形,可得60BDC ∠=︒.由ASA 可证得ABE △和DBF 全等,从而BE BF =,即可证明BEF 是等边三角形;(3)由ABE DBF △△≌,可得面积相等,故ABD BEDF S S = 四边形,当AB 的长度为定值时,ABD △的面积为定值,四边形BEDF 的面积也为定值.(1)证明:连接BD .∵AB AD =,60A ∠=︒,∴ABD △是等边三角形.∵BE AD ⊥,∴12AE AD =.(2)解:BEF是等边三角形,理由如下:∵ABD △是等边三角形,∴AB BD =,60ABD ∠=︒,∴60ABE EBD ∠+∠=︒.∵60EBF ∠=︒,∴60FBD EBD ∠+∠=︒,∴FBD ABE ∠=∠,∵AB BC CD ==,∴BD BC CD ==,∴BCD △是等边三角形,∴60BDC ∠=︒.在ABE △和DBF 中,60ABE DBFAB DB A BDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴ABE DBF △△≌(ASA ).∴BE BF =,∴BEF 是等边三角形.(3)解:四边形BEDF 的面积是定值,理由如下:∵ABE DBF △△≌,∵DBF BED ABE BED ABD BEDF S S S S S S =+=+= 四边形∴当AB 的长度为定值时,ABD △的面积为定值,四边形BEDF 的面积也为定值.。
八年级上学期期末考试语文试卷(附答案)

八年级上学期期末考试语文试卷(附答案)一.知识积累(16分)散文犹如文字的宝石,是心灵的花朵,是从灵魂的泉眼中涌出的汩.汩清泉。
在朱自清笔下,父亲为“我”买橘子时爬上爬下,看到.那臃肿的背景、蹒.跚动作,这时“我”才觉察到,父亲悄悄变老了:在茅盾笔下,白杨精神以高尚、正义为魂魄,以伟岸、峻拔为外形,以粗犷豁达,不折不挠.的为风骨,它是西北大地生机的象征:在汪曾祺笔下,昆明的雨季明亮,丰满、浓绿,字里行间流露出作家内心深厚的昆明情结,就是这种的情结,让汪老在年近时,还几度千里迢.迢来到昆明,寻觅自己青年时代留下的足迹.1.上面语段中加点字的读音完全正确的一项是()A.汩.汩(gǔ)蹒.跚(pán)不折不挠.(náo)千里迢.迢(tiáo)B.汩.汩(gū)蹒.跚(mán)不折不挠.(ráo)千里迢.迢(zhāo)C.汩.汩(gǔ)蹒.跚(mán)不折不挠.(náo)千里迢.迢(zhāo)D.汩.汩(gū)蹒.跚(pán)不折不挠.(ráo)千里迢.迢(tiáo)2.上面语段横线处填写的词语,书写完全正确的一项是()A.气概篷勃魂牵梦萦古希B.气概蓬勃魂牵梦萦古稀C.气慨蓬勃魂牵梦莹古希D.气慨篷勃魂牵梦莹古稀3.下列句子加点成语使用恰当的一项是()A.秋日里,来趵突泉欣赏菊花的游人络绎不绝,公园外的车辆摩肩接踵....。
B.面对浩如烟海....的商品,我不知道该如何选择。
C.小明在图书馆翻找了半天终于发现了心仪已久的小说,可谓妙手偶得....。
D.在航天强国的道路上,中国航天人殚精竭虑....,勇攀高峰,逐渐将梦想化作现实。
4.下列句子没有语病的一项是()A.劳动课能够让学生感受到劳动的快乐,有利于提升他们的劳动技能和劳动习惯B.纵观古今,每一个实现梦想的人,都会经历追梦、筑梦、圆梦三个阶段。
C.长期吃外卖快餐的人容易生病,是因为油盐聂入过度以及饮食结构不合理造成的。
人教版数学八年级上册期末考试试卷附答案
人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。
每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0 D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3 D.1<x<35.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;(2)直接写出△ABC的面积:S△ABC=;(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0 D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3 D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1 B.2 C.3 D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;(2)直接写出△ABC的面积:S△ABC=5;(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);(2)S△ABC=3×4﹣×2×2﹣×2×3﹣×4×1=5;故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。
09-10第一学期期末八年级试题
2009~2010学年度第一学期期末考试八年级数学试题亲爱的同学,你好!本学期即将结束,今天是展示你才华的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现!可要注意喽,本试卷分卷Ⅰ和卷Ⅱ两部分,收卷时只收卷Ⅱ,卷Ⅰ由学生自己保留.不使用计算器. 卷Ⅰ(共40分)一、选一选,比比谁细心(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,把这个正确的选项填在卷Ⅱ的相应位置). 1.下列图形中不是..轴对称图形的是2.下列数中是无理数的是 A .4B .72C . 3D .38-3.下列各式由左边到右边的变形中,属于分解因式的是A .a (x + y )=a x + a yB .x 2-4x+4=x (x -4)+4C .10x 2-5x=5x (2x -1)D .x 2-16+3x=(x -4)(x+4)+3x 4.下列图象中,以方程220y x --=的解为坐标的点组成的图象是(第4题图)(第1题图)(第7题图)5.下列各数互为相反数的是 A .3322--与 B .与2- C .212与- D .π与∣-π∣ 6.下列运算中,正确的是A .3x 2÷2x =x B .x 3·x 3=x 6C .(x 2)3= x 5D .(x +y 2)2= x 2+y 47.如图,直线b kx y +=与x 轴交于点(2,0),则y <0时,x 的取值范围是A .x >2B .x <2C .x >0D .x <08.如图,等腰三角形ABC 中,AB AC =,∠A =44°,CD ⊥AB 于D ,则∠DCB 等于A .44°B .68°C .46°D .22°9.如图,△ABE ≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( ) A .AB=ACB .AD=DEC .BE=DCD .∠BAE=∠CAD10.甲、乙二人沿着相同的路线由A 到B 匀速行进,A 、B两地间的路为20㎞,他们行进的路程s (㎞)与甲出发后的时间t (h )之间的函数图象如图所示,根据图象信息,下列说法正确的是 A .甲的速度是4㎞/hB .乙的速度是10㎞/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h(第9题图) (第8题图) A B D(第10题图)二、填一填,看看谁仔细(本大题共10小题,每小题2分,共20分,把最简答案填在卷Ⅱ的相应位置). 11.你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O 上下转动,立柱OC 与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA ',BB '之间的数量关系是:AA ' BB '(填=或≠) 12.()=-22 .13直接写出因式分解的结果:2a ab -= ________________.14.如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm ,△ABD 的周长为14cm ,则△ABC 的周长为_________ cm .15.若a +2b =5,则ab b a 4422++= .16.若点)1()1(-b ,,k 和关于x 轴对称,则直线b kx y +=不经过第 象限. 17.如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,AB =AC ,若∠B =20°,则∠C = .18.如图,在△ACB 中,∠C=90°,斜边AB 的垂直平分线DE 交AB 于E ,交AC 于D ,• ∠DBC=30°,BD=10cm ,则D 到AB 的距离为_____cm .(第14题图)ABDCE(第17题图) (第19题图)A CBB 'O A ' (第11题图)(第18题图)19.如图,在△ABC中,AB=AC,D为△ABC内一点,且∠1=∠2,若∠A=50°,则∠BDC = °20.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5 ,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,再计算n23+1得a3;……………………依此类推,则a2010=______________.2009~2010学年度第一学期期末考试八年级数学试题卷II (共60分)一、选择题(本大题共10个小题;每小题2分,共20分.把卷Ⅰ每个选择题符合题目的答案填在下面的表格里)二、填一填,看看谁仔细(本大题共10小题,每小题2分,共20分,把卷Ⅰ填空题的最简答案填在下面的横线上). 11.. 12. .13. . 14. . 15. . 16. . 17. . 18. . 19. . 20. .三、解答题:(本大题共6小题,共60分,解答应写出文字说明,说理过程或演算步骤)21.计算(每个4分,共16分): (1)322-+ (2)332)(a a ÷-(3))1)(1(52-+x x x (4)()()221442x y x y xy ⎛⎫⎡⎤--+÷- ⎪⎣⎦⎝⎭22.(本小题满分6分)一种水果每千克售2元,写出水果的总售价y (元)与所售水果的数量x (千克)之间的函数关系式,画出这个函数的图象.小强是这样解答的:解:根据题意得:y (元)与x (千克)之间的函数关系式为y =2x .列表得:在平面直角坐标系中,描出以下各点 (-3,-6),(-2,-4),(-1,-2),(0,0), (1,2),(2,4),(3,6),…,用平滑的曲线连结描出的各点,即得到y =2x 的图象(如图). 上面小强的解答过程有两个地方不完全正确, (1)_______ ________, (2)________________, 原因是_______________ ______________.23.(本小题满分10分)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择: 方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元. (1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和蔬菜加工厂自己加工制作纸箱的费用2y (元)关于x(个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.(第22题图)24.(本小题满分8分)如图,△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点. E ,F 分别在AB ,AC 上,且BE =AF ,连结AD .(1)求证:△BDE ≌△ADF(2)求证:△DEF 为等腰直角三角形.25.(本小题满分10分)已知:如图,直线1l 与y 轴交点坐标为(0,-1),直线2l 与x 轴交点坐标为(3,0),两直线交点为P (1,1)(1)求出直线1l 的解析式; (2)请列出一个二元一次方程组,要求能够根据图象所提供的信息条件直接得到该方程组的解为11x y =⎧⎨=⎩; (3)当x 为何值时,1l 、2l 表示的两个一次函数的函数值都大于0?(第25题图)(第24题图)(1)如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.猜想:EF与BE、CF之间有怎样的数量关系?并说明理由.(2)如图②,△ABC中,若AB≠AC,(1)中其他条件不变,请你直接写出EF与BE、CF之间的数量关系,不必说明理由.(3)如图③,△ABC中,若AB≠AC,∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.EF与BE、CF之间的数量关系又如何?说明你的理由.(第26题图)。
人教版八年级上学期期末考试数学试卷及答案解析(共六套)
人教版八年级上学期期末考试数学试卷(一)一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,34.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a56.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= .12.计算:(x﹣1+)÷= .13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过秒后,△BPD≌△CQP.14.分式方程﹣1=的解是.15.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= .16.若a+b=4,且ab=2,则a2+b2= .三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断一个式子是否是分式,关键要看分母中是否含有未知数,然后对分式的个数进行判断.【解答】解:,的分母都有字母,故都是分式,其它的都不是分式,故选:B.3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3【考点】三角形三边关系.【分析】根据三角形三边关系定理进行判断即可.【解答】解:3+4<8,则3,4,8不能组成三角形,A不符合题意;5+6=11,则5,6,11不能组成三角形,B不合题意;5+6>10,则5,6,10能组成三角形,C符合题意;1+2=3,则1,2,3不能组成三角形,D不合题意,故选:C.4.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD【考点】全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、AB=AD、AC=AC、BC=CD,符合全等三角形的判定定理SSS,能推出△ABC≌△ADC,故本选项不符合题意;B、AB=AD、∠BAC=∠DAC、AC=AC,符合全等三角形的判定定理SAS,能推出△ABC ≌△ADC,故本选项不符合题意;C、AB=AD、AC=AC、∠B=∠D=90°,符合全等三角形的判定定理HL,能推出△ABC ≌△ADC,故本选项不符合题意;D、AB=AD、AC=AC、∠ACB=∠ACD,不符合全等三角形的判定定理,不能推出△ABC ≌△ADC,故本选项符合题意;故选D.5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3•a3=a6故A不符合题意;B、a0÷a3=a﹣3,故B符合题意;C、积的乘方的乘方等于乘方的积,故C不符合题意;D、底数不变指数相乘,故D不符合题意;故选:B.6.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°【考点】三角形的外角性质;三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲【考点】全等三角形的判定.【分析】首先观察图形,然后根据三角形全等的判定方法(AAS与SAS),即可求得答案.【解答】解:在△ABC和乙三角形中,有两边a、c分别对应相等,且这两边的夹角都为50°,由SAS可知这两个三角形全等;在△ABC和丙三角形中,有一边a对应相等,和两组角对应相等,由AAS可知这两个三角形全等,所以在甲、乙、丙三个三角形中和△ABC全等的是乙和丙,故选:A.8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°【考点】等腰三角形的性质.【分析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°,故选C.9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【考点】整式的混合运算.【分析】首先进行乘法运算,化简整式方程,然后,把ab=ab+a+b代入化简即可.【解答】解:∵a*b=ab+a+b,∴原式=a(﹣b)+ab=﹣ab+ab=﹣(ab+a+b)+(ab+a+b)=﹣ab﹣a﹣b+ab+a+b=0故选A.10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3【考点】分式的混合运算.【分析】由已知得:a+b=﹣c,b+c=﹣a,a+c=﹣b,再将所求的式子去括号后,同分母加在一起,分别将所求的式子整体代入约分即可.【解答】解:∵a+b+c=0,∴a+b=﹣c,b+c=﹣a,a+c=﹣b,a(+)+b(+)+c(+),=+++++,=++,=++,=﹣1﹣1﹣1,=﹣3,故选D.二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= 12 .【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则把式子展开,再整体代入计算即可求解.【解答】解:∵a+b=,且ab=1,∴(a+2)(b+2)=ab+2(a+b)+4=1+7+4=12.故答案为:12.12.计算:(x﹣1+)÷= x+1 .【考点】分式的混合运算.【分析】先算括号内的减法,把除法变成乘法,最后约分即可.【解答】解:原式=[+]÷=•=x+1,故答案为:x+1.13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过 1 秒后,△BPD≌△CQP.【考点】勾股定理;全等三角形的判定;等腰三角形的性质.【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等即可得出结论.【解答】解:∵AB=AC,∴∠B=∠C,设点P、Q的运动时间为t,则BP=3t,CQ=3t,∵AB=10cm,BC=8cm,点D为AB的中点,∴BD=×10=5cm,PC=(8﹣3t)cm,∵△BPD≌△CQP,∴BD=PC,BP=CQ,∴5=8﹣3t且3t=3t,解得t=1.故答案为:1.14.分式方程﹣1=的解是x=﹣1 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+3x﹣x2﹣2x+3=2,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:x=﹣115.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= 42°.【考点】多边形内角与外角.【分析】利用360°减去等边三角形的一个内角的度数,减去正方形的一个内角的度数,减去正五边形的一个内角的度数,然后减去∠1和∠2即可求得.【解答】解:等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=42°.故答案是:42°.16.若a+b=4,且ab=2,则a2+b2= 14 .【考点】完全平方公式.【分析】根据完全平方公式即可求出a2+b2的值.【解答】解:∵a+b=4,ab=2,(a+b)2=a2+2ab+b2,∴16=a2+b2+4,∴a2+b2=14故答案为:14三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.【考点】全等三角形的判定与性质.【分析】首先得出AC=DF,利用平行线的性质∠BAC=∠EDF,再利用SAS证明△ABC≌△DEF,即可得出答案.【解答】证明:∵CF=AD,∴CF+AF=AD+AF,∴AC=DF,∵AB∥DE,∴∠BAC=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b=[a3b2﹣a2b﹣a2b+a3b2]÷2a2b=[2a3b2﹣2a2b]÷2a2b=ab﹣1,当a=﹣,b=时,原式=﹣1.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.【考点】轴对称﹣最短路线问题.【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.【解答】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?【考点】分式方程的应用.【分析】设江水的流速为Vkm/h,则顺水速=静水速+水流速,逆水速=静水速﹣水流速.根据顺流航行96千米所用时间,与逆流航行64千米所用时间相等,列方程求解.【解答】解:设江水的流速为Vkm/h,根据题意可得: =,解得:V=6.4,经检验:V=6.4是原分式方程的解,答:江水的流速为6.4km/h.21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 B (填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【考点】平方差公式的几何背景.【分析】(1)根据题意,将前后两个图形的面积表示出来即可.(2)根据平方差公式即可求出答案.【解答】解:(1)图1中,边长为a的正方形的面积为:a2,边长为b的正方形的面积为:b2,∴图1的阴影部分为面积为:a2﹣b2,图2中长方形的长为:a+b,长方形的宽为:a﹣b,∴图2长方形的面积为:(a+b)(a﹣b),故选(B)(2)原式=(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=×××…×=×=22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据所给式子发现=;(2)将++++…++化为+…++,再利用所给规律化简即可.【解答】解:(1)∵=﹣; =; =; =﹣;…∴=;故答案为:;(2)∵=﹣; =; =; =﹣;…=;∴++++…++=+…++,=1+…=1=.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.【考点】作图﹣轴对称变换;等边三角形的性质.【分析】(1)根据题意可以作出相应的图形,连接A′B,由题意可得到四边形AA′BC是菱形,根据菱形的对角线平分每一组对角,可以得到∠BFC的度数;(2)画出相应的图形,根据对称的性质可以得到相等的线段和相等的角,由等边△ABC,可以得到BC=BA,然后根据三角形内角和是180°,可以推出直线BD 和A′C相交所成的锐角的度数,本题得以解决.【解答】解:(1)补全的图1如下所示:连接BA′,∵由已知可得,BD垂直平分AA′,∠ABD=30°,△ABC是等边三角形,∴△BA′A是等边三角形,AA′∥BC且AA′=BC,A′A=A′B,∴四边形AA′BC是菱形,∵∠ACB=60°,∴∠BCE=30°;(2)直线BD和A′C相交所成的锐角的度数是定值,若下图所示,连接AF交BC于点G,由已知可得,BA′=BA,BA=BC,FA′=FA,则∠BA′A=∠BAA′,∠FA′A=∠FAA′,BA′=BC,∴∠BA′C=∠BCA′,∠FA′B=∠FAB,∴∠BCA′=∠FAB,∵∠FGC=∠BGA,∠ABC=60°,∴∠CFA=∠ABC=60°,∵∠AFC+∠AFD+∠A′FD=180°,∠A′FD=∠AFD,∴∠A′FD=60°,即直线BD和A′C相交所成的锐角的度数是定值,这个锐角的度数是60°.人教版八年级上学期期末考试数学试卷(二)一、选择题1、下列标志是轴对称图形的是()A、B、C、D、2、PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000 002 5用科学记数法表示为()A、2.5×106B、0.25×10﹣6C、25×10﹣6D、2.5×10﹣63、使分式有意义的x的取值范围是()A、x≠3B、x>3C、x<3D、x=34、下列计算中,正确的是()A、(a2)3=a8B、a8÷a4=a2C、a3+a2=a5D、a2•a3=a55、如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A、2B、3C、4D、56、在平面直角坐标系中,已知点A(2,m)和点B(n,﹣3)关于x轴对称,则m+n的值是()A、﹣1B、1C、5D、﹣57、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N 重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A、SSSB、SASC、ASAD、AAS8、下列各式中,计算正确的是()A、x(2x﹣1)=2x2﹣1B、=C、(a+2)2=a2+4D、(x+2)(x﹣3)=x2+x﹣69、若a+b=1,则a2﹣b2+2b的值为()A、4B、3C、1D、010、如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A、20°B、30°C、40°D、50°11、若分式的值为正整数,则整数a的值有()A、3个B、4个C、6个D、8个12、如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A、6B、8C、10D、12二、填空题13、当x=________时,分式值为0.14、分解因式:x2y﹣4y=________.15、计算:=________.16、已知等腰三角形的两条边长分别为3和7,那么它的周长等于________.17、如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB的度数为________.18、等式(a+b)2=a2+b2成立的条件为________19、如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为________.20、图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:表中“☆”处应填的数字为________;根据上述探索过程,可以猜想V,F,E 之间满足的等量关系为________;如图2,若网眼形状为六边形,则V,F,E之间满足的等量关系为________.三、解答题21、计算:﹣(π﹣3)0﹣()﹣1+|﹣3|.22、已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.23、计算:.24、解方程:.四、解答题25、已知x﹣y=3,求[(x﹣y)2+(x+y)(x﹣y)]÷2x的值.26、北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.27、已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.五、解答题28、如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14﹣6×20=48,再选择其它位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为________.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为________(直接写出结果).29、数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC 的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为________(直接写出结果).答案解析部分一、<b >选择题</b>1、【答案】B【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【分析】根据轴对称图形的概念求解.2、【答案】A【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10﹣6,故选:A.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.3、【答案】A【考点】分式有意义的条件【解析】【解答】解:由分式有意义,得x﹣3≠0,解得x≠3,故选:A.【分析】根据分式的分母不为零分式有意义,可得答案.4、【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、幂的乘方底数不变指数相乘,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、不是同底数幂的乘法指数不能相加,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.【分析】根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,同底数幂的乘法底数不变指数相加,可得答案.5、【答案】A【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选A.【分析】根据全等三角形的对应边相等推知BD=AC=7,然后根据线段的和差即可得到结论.6、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:由点A(2,m)和点B(n,﹣3)关于x轴对称,得n=﹣2,m=3.则m+n=﹣2+3=1.故选:B.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得m、n的值,根据有理数的加法,可得答案.7、【答案】A【考点】全等三角形的判定【解析】【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.8、【答案】B【考点】单项式乘多项式,多项式乘多项式,完全平方公式,约分【解析】【解答】解:A、原式=2x2﹣x,错误;B、原式= = ,正确;C、原式=a2+4a+4,错误;D、原式=x2﹣x﹣6,错误,故选B【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式约分得到最简结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可作出判断.9、【答案】C【考点】平方差公式【解析】【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选C.【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.10、【答案】B【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠A=40°,∴∠ABC= (180°﹣∠A)= (180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选B.【分析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.11、【答案】B【考点】分式的值【解析】【解答】解:分式的值为正整数,则a+1=1或2或3或6.则a=0或1或2或5.故选B.【分析】分式的值为正整数,则a+1的值是6的正整数约数,据此即可求得a的值.12、【答案】C【考点】轴对称-最短路线问题【解析】【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,= BC•AD= ×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+ BC=8+ ×4=8+2=10.故选C.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.二、<b >填空题</b>13、【答案】0【考点】分式的值为零的条件【解析】【解答】解:依题意得:x=0且x﹣1≠0,解得x=0.故答案是:0.【分析】分式的值为零时:x=0且x﹣1≠0,由此求得x的值.14、【答案】y(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).【分析】先提取公因式y,然后再利用平方差公式进行二次分解.15、【答案】【考点】分式的乘除法【解析】【解答】解:= .故答案为:.【分析】直接利用分式的乘方运算法则化简求出答案.16、【答案】17【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.【分析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.17、【答案】110°【考点】三角形的外角性质【解析】【解答】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°﹣∠BED﹣∠D=45°,又∵∠A=25°,∵∠ACB=180°﹣(∠A+∠B)=110°.故答案为:110°【分析】由DE与AB垂直,利用垂直的定义得到∠BED为直角,进而确定出△BDE 为直角三角形,利用直角三角形的两锐角互余,求出∠B的度数,在△ABC中,利用三角形的内角和定理即可求出∠ACB的度数.18、【答案】ab=0【考点】完全平方公式【解析】【解答】解:∵(a+b)2=a2+2ab+b2,∴等式(a+b)2=a2+b2成立的条件为ab=0,故答案为:ab=0.【分析】先根据完全平方公式得出(a+b)2=a2+2ab+b2,即可得出答案.19、【答案】5【考点】角平分线的性质【解析】【解答】解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,= BC•EF= ×5×2=5.∴S△BCE故答案为:5.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.20、【答案】17①V+F﹣E=1②V+F﹣E=1【考点】点、线、面、体【解析】【解答】解:由表格数据可知,1个网眼时:4+1﹣4=1;2个网眼时:6+2﹣7=1;3个网眼时:9+4﹣12=1;4个网眼时:12+6﹣☆=1,故“☆”处应填的数字为17.据此可知,V+F﹣E=1;若网眼形状为六边形时,一个网眼时:V=6,F=1,E=6,此时V+F﹣E=6+1﹣6=1;二个网眼时:V=10,F=2,E=11,此时V+F﹣E=10+2﹣11=1;三个网眼时:V=13,F=3,E=15,此时V+F﹣E=13+3﹣15=1;故若网眼形状为六边形时,V,F,E之间满足的等量关系为:V+F﹣E=1.故答案为:17,V+F﹣E=1,V+F﹣E=1.【分析】根据表中数据可知,边数E比结点数V与网眼数F的和小1,从而得到6个网眼时的边数;依据以上规律可得V+F﹣E=1;类比网眼为四边形时的方法,可先罗列网眼数是1、2、3时的V、F、E,从而得出三者间关系.三、<b >解答题</b>21、【答案】解:原式=2﹣1﹣2+3=2【考点】实数的运算,零指数幂,负整数指数幂【解析】【分析】原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.22、【答案】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE【考点】全等三角形的判定与性质【解析】【分析】由AC、BD平行,可知∠ACB=∠DBC,再根据已知条件,即可得到△ABC≌△EDB,即得结论AB=DE.23、【答案】解:原式= •= •=【考点】分式的混合运算【解析】【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.24、【答案】解:方程两边乘以(x+1)(x﹣1),得x(x+1)﹣(x+1)(x﹣1)=3(x ﹣1),去括号得:x2+x﹣x2+1=3x﹣3,解得:x=2,检验:当x=2时,(x+1)(x﹣1)=3≠0,则原分式方程的解为x=2【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.四、<b >解答题</b>25、【答案】解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,当x﹣y=3时,原式=x﹣y=3【考点】整式的混合运算【解析】【分析】原式中括号中利用完全平方公式及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x﹣y=3代入计算即可求出值.26、【答案】解:设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时.根据题意得:﹣= ,解得:x=180,经检验,x=80是所列分式方程的解,且符合题意.则1.5x=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时【考点】分式方程的应用【解析】【分析】首先设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时,利用高铁列车比普通快车用时少了20分钟得出等式进而求出答案.27、【答案】(1)解:如图所示:(2)解:BD=DE,证明:∵BD平分∠ABC,∴∠1= ∠ABC.∵AB=AC,∴∠ABC=∠4.∴∠1= ∠4.∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∴∠3= ∠4.∴∠1=∠3.∴BD=DE【考点】作图—复杂作图【解析】【分析】(1)①以A为圆心,AB长为半径画弧交BC于C;②根据角平分线的作法作∠ABM的角平分线;③以C为圆心CD长为半径画弧交CM于E,再连接ED即可;(2)根据角平分线的性质可得∠1= ∠ABC,根据等边对等角可得∠ABC=∠4,∠2=∠3,然后再证明∠1=∠3,根据等角对等边可得BD=DE.五、<b >解答题</b>28、【答案】(1)24(2)解:定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1)(3)976【考点】整式的混合运算【解析】【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2015,解得:a=976.故答案为:976.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2015求出a的值即可.29、【答案】(1)解:如图1作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,∵AB=AB,∠AB D′=∠ABD,B D′=BD,。
2010学年八年级数学上学期期末考试试题
AB F CD 本站特供2009—2010学年八年级数学上学期期末考试试题1.下列图案是轴对称图形的有() A 、1个B 、2个C 、3个D 、4个2.下列计算正确的是( )A .633x x x =+ B .326a a a =÷ C .ab b a 853=+ D .333)(b a ab -=- 3.在实数37-、0 3.1415、2π2.123122312223…中,无理数的个数为( )A 、2个B 、3个C 、4个D 、5个4.下列说法正确的是:( )A 、-4是-16的平方根B 、4是(-4)2的平方根 C 、(-6)2的平方根是-6D ±45、下列各组数中互为相反数的是( ) A 2- B 、2- C 、22-与D 、6.函数25+-=x xy 中自变量x 的取值范围是( ). A .5≥x B .25-≠≤x x 且 C .5≤x D .25-≠<x x 且 7.如图,C F B E ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明△ABC≌△DEF的是( ) A .AB=DE B ..DF ∥AC C .∠E=∠ABC D .AB ∥DE 8.已知x 2+kxy +64y 2是一个完全平方式,则k 的值是( ) A .8 B .±8 C .16 D .±169.如右图,△BDC′是将矩形纸片ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )A 、2对B 、3对C 、4对D 、5对10.如图∠BOP=∠AOP=15°,PC//OB ,PD ⊥PB 于D ,PC=2,则PD 的长度为( )。
A 、4B 、3C 、2D 、111.如图,在直角坐标系xoy 中,△ABC 是关于直线y =1轴对称的图形,已知点A 坐标是(4,4),则点B 的坐标是( ) A 、(4,-4) B 、(-4,2) C 、(4,-2) D 、(-2,4) 12.某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到 达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟, 那么他们从B 地返回学校用的时间是( ) A 、45.2分钟B.、48分钟 C 、46分钟 D 、33分钟二、填空题:(本题共6小题,每题3分,共18分)13.若))(3(152n x x mx x ++=-+则m 、n 的值分别为14.如图,在△ABC 中,点D 在BC 边上,且AC=AB=BD ,DA=DC ,则∠BAC= 度. 15.△ABC中,∠BAC=100°,若DE 、FG 分别垂直平分AB 和AC ,则∠EAF=_____________16.函数y=kx+b (k≠0)的图象平行于直线y=2x+3,且交y 轴于点(0,-1),•则其解析式是_________.17.将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm .设x 张白纸粘合后的纸条总长度为ycm ,则y 与x 的函数关系式为18.若,12,7==+mn n m 则2n mn m +-的值是三、解下列各题:(本题共7小题,共46分) 19.(每小题5分,共10分)ABC D PB AC G DE F(1)计算;231(2)2⎛⎫-- ⎪⎝⎭;(2)分解因式:2222216)4(b a b a -+20.(本题8分)(1)在图1所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为 ;关x 轴对称的两个三角形的编号为 ; (2)在图2中,画出与△ABC 关于x 轴对称的△A 1B 1C 1,并分别写出点A 1 、B 1、C 1的坐标: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009--2010学年度上期期末统一考试
八年级生物试卷
一、想一想,填一填(仔细读题、认真填写,
祝你得满分!)(每空1分,本题共16分)
1. 生活在不同环境中的动物,其运动方式总是表现出与生活环境是相适应的。
动物的运动对动物的生存和繁衍后代有着十分重要的意义。
2. 人体躯体运动的动力来源于骨骼肌的收缩,人体动作的完成类似于杠杆运动,在小腿的抬起动作中,膝关节相当于支点。
3. 食物充足的季节,松鼠会把采集到的覃类架在树杈上凉晒待日后食用,这种行为与婴儿吮奶的行为一致吗?一致。
公鸡有好斗的特性,所以人类在家养的鸡群中一般只留一只公鸡,将其余的全部阉割,这样做的目的是为了阻止攻击行为的发生。
4. 食物链中处于第一环节的生物通常是绿色植物。
在一定的自然区域内,各种生物之间有复杂的捕食与被捕食的关系,这种营养联系形成了食物链。
5. 动物多样性包括物种多样性、遗传多样性和生态系统多样性。
生物圈中分布最广的一类个体微小、结构简单的低等的单细胞生物是微生物。
6. 生殖是指生物产生后代和繁衍种族的过程。
为了控制人口数量和提高人口素质,我国把计划生育列为一项基本国策,提出晚婚、晚育、少生、优生等基本要求。
7.营养生殖是指利用绿色开花植物的营养器官繁殖新个体的生殖方式。
家蚕的发育过程经历了卵、幼虫、蛹、成虫四个时期,这样的发育过程叫做完全变态。
8. 生物体性状传给后代的现象叫遗传。
亲代与子代之间以及子代的不同个体之间的性状差异叫变异。
二、相信自己,做出决策,选择最佳
(每小题2分,共36分。
每小题只有一个正确答案,请将每
小题正确答案的番号填入以下答题栏内)
1. 小华与爷爷相比,不易骨折,这是因为在骨的成分上,小华骨内的无机物:
A. 不到1/3
B. 超过1/3
C. 不到2/3
D. 超过2/3
2. 骨折后,对骨的愈合起重要作用的是:
A. 骨膜
B. 骨干
C. 骨质
D. 红骨髓
3. 上臂与前臂之间的关节叫:
A. 腕关节
B. 肩关节
C. 膝关节
D. 肘关节
4. 伸肘时,下列肌群的状态是:
A. 肱二头肌收缩,肱三头肌舒张
B. 肱二头肌舒张,肱三头肌收缩
C. 肱二头肌舒张,肱三头肌舒张
D. 肱二头肌收缩,肱三头肌收缩
5. 动物的行为是指:
A. 动物的动态动作
B. 动物的内部生理活动
C. 动物的捕食活动
D. 动物体在内外刺激下产生的活动表现
6. 下列现象,属于学习行为的是:
A. 大山雀偷喝牛奶
B. 蜘蛛结网
C. 蜜蜂采蜜
D. 野鸭的迁徙
7. 公鸡每天早啼报晓的行为是:
A. 攻击行为
B. 取食行为
C. 节律行为
D. 社群行为
8. 人类研究动物行为所采用的主要方法是:
A. 观察法和干扰法
B. 实验法和刺激法
C. 干扰法和刺激法
D. 观察法和实验法
9. 动物与环境之间的正确关系是:
A. 动物与环境相互影响
B. 环境影响动物
C. 动物与环境相互不影响
D. 动物影响环境
10. 属世界珍稀和我国特产的淡水爬行类动物是:
A. 中华鲟
B. 杨子鳄
C. 大鲵
D. 白鳍豚
11. 建立自然保护区是属于动物多样性保护中的哪一项措施:
A. 就地保护
B. 法制教育和管理
C. 异地保护
D. 以上三项都是
12. 在生态系统中寄生性微生物和腐生性微生物分别属于:
A. 生产者和消费者
B. 消费者和分解者
C. 生产者和分解者
D. 消费者和生产者
13. 青少年男子长出胡须,喉结突出,声音变低,这种表现是男性的:
A. 差异
B. 特征
C. 第一性征
D. 第二性征
14. 无性生殖是指什么样的生殖方式:
①不经过生殖的结合②经过生殖的结合
③由生殖细胞产生新个体④由母体直接产生新个体
A. ①④
B. ②③
C. ①③
D. ②④
15. 以下不属于相对性状的是:
A. 人的眼睑是单眼皮与双眼皮
B. 人类的耳有耳垂与无耳垂
C. 人的眼色是棕色与皮肤黄色
D. 人的舌能卷曲与不能卷曲
16. 夫妇双方都有耳垂,基因都是Dd,那么他们的受精卵的基因组成可能有多少种?且受精卵的基因组成可能为:
①一种②二种③三种④Dd ⑤DD、Dd ⑥Dd、dd ⑦DD、Dd、dd
A. ①④
B. ③⑦
C. ②⑤
D. ②⑥
17. 决定生男生女的主要因素是:
A. 饮食和气候条件
B. 父母双方的血型
C. 卵细胞中的性染色体
D. 与卵细胞结合的精子中的性染色体
18. 近亲结婚,其婚后所生子女得遗传病的可能性:
A. 很难说
B. 不大
C. 很小
D. 很大
三、下面的说法正确吗?(正确的用√表示,错误的用× 表示。
请把它们填在下面的表格中。
每小题1分,共6分。
)
1. 骨之所以具有柔韧性,是因为骨中的有机物主要是骨胶蛋白。
2. 乌贼遇到危险时,释放墨汁,这一行为是一种学习行为。
3. 我们保护生物多样性就是要全面禁止开发和利用。
4. 细菌都是对人类有害的,应当把它们彻底消灭。
5. 在染色体上起着控制生物性状的基本遗传单位叫做基因
6. 由遗传物质的改变而引起的变异称可遗传的变异
四、识图(每空2分,共16分)
1. 看长骨的结构图,回答以下问题:(在 [ ] 内填番号)(8分)
⑴
骨的基本结构有[ b ] 骨膜 、骨质
和[ c ] 骨髓 三部分。
⑵ 仔细观察纵剖开的长骨,在骨干部分,称为
[ d ] 骨密质 ,它使骨变得坚硬。
⑶ 成年人在严重失血时,c 结构将发生转化。
转化为 红骨髓 ,而恢复造血功能。
2. 右图是女性生殖系统结构简图。
(8分)
(1)说出a 的两项主要功能:
① 产生卵细胞 ② 分泌雌性激素
(2)受精作用发生在[ b ] 输卵管 中
(3)C 的生理功能是 胚胎发育的场所
五、分析说明:(26分)
1. 下图是一草原生态系统的食物网示意图,据图回答。
(8分)
(1) 此生态系统中的生产者的是 草 ,
属于消费者的是 兔、狐、鼠、蛇、鹰 等动物。
(2) 生产者与消费者之间的关系主要是 捕食与被捕食 的关系。
它们之间相互交叉形成了 食物网 。
从图中可以看出有 五 条食物链。
其中最长的食物链是 草→鼠→蛇→鹰 。
⑶ 倘若一些不法分子为了获取毛皮而大量捕杀狐狸,则会使 鼠和兔 大量增加,导致 草场(生态系统) 被破坏。
2. 由两株果实是圆形的南瓜种子萌发的植株,人工杂交以后,结出的南瓜果实有圆形的,也有椭圆形的。
请你填一填这个生殖过程中基因的传递图解。
(4分) 精子
父本 ( Aa ) ( A 和a )
受精卵 子代
卵细胞 母本 (Aa ) ( A 和a )
圆形果实 ( AA 、Aa ) 椭圆果实 ( aa )
3. 分析资料,说明原因。
(每空2分,8分)
资料一:
一只失去雏鸟的美国红雀,总是给养鱼池边浮到水面张口求食的金鱼喂它捕来的昆虫,就像喂养自己的雏鸟一样,一连喂了好几个星期。
资料二:
很多年前,在英格兰有一只大山雀,一次偶然碰巧打开了放在门外的奶瓶盖,偷喝了牛奶,不久那里的其他大山雀也学会了偷喝牛奶。
请问:(1)从行为获得的途径看,美国红雀喂鱼的行为和其他大山雀偷喝牛奶的行为分别属于繁殖行为(先天性行为)和后天学习行为。
(2)美国红雀喂鱼的行为是有什么物质决定的?本能(遗传物质)。
其他大山雀偷喝牛奶的行为是什么因素作用而形成的?学习。
4、小芳是单眼皮,她的父母却都是双眼皮。
(以A表示双眼皮基因,a表示单眼皮基因)。
请根据下图用遗传知识分析并回答下列问题。
(6分)
⑴在单眼皮和双眼皮这对相对性状中,显性性状是双眼皮。
⑵小芳父亲和母亲的基因型分别是Aa、Aa 。
小芳父亲和母亲遗传给她的基因分别是 a 和 a 。
⑶小芳的父母能生育一个双眼皮的孩子吗?能。
生育一个双眼皮孩子的可能性是1/4 。