七年级数学上册基本计算题练习 (111)
七年级数学上册动点问题

七年级数学上册动点问题1如图,有一数轴原点为0,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点 B .(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.动点A、B的速度比是1: 4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)假设A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C 立即停止运动.假设点C 一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.3、数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为(1)假设点P到点A,点B的距离相等,求点A 0 p1 1 1B1P对应的数;-2 - 1 03*X.(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?假设存在,请求出x的值;假设不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/ 分的速度从0点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B 之间,求当点A与点B重合时,点P所经过的总路程是多少?4、数轴上两个质点A、B所对应的数为-8、4, A、B两点各自以一定的速度在上运动,且A点的运动速A呂一度为2个单位/秒. -8O 4 一(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2) A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;〔 3〕 A 、B 两点以〔 1〕中的速度同时出发,向数轴负方向运动,与此同时, C 点从原点出发作同方向的运动,且在运动过程中,始终有CB : CA=1 :2,假设干秒钟后, C 停留在 -10 处,求此时 B 点的位置?5、在数轴上,点 A 表示的数是 -30,点 B 表示的数是 170. 1〕求 A 、 B 中点所表示的数.〔2〕 —只电子青蛙 m ,从点B 出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙 出发以 6 个单位每秒的速度向右运动,假设它们在 C 点处相遇,求 C 点所表示的数.3〕两只电子青蛙在 C 点处相遇后,继续向原来运动的方向运动,当电子青蛙 m 处在 A 子青蛙 n 处在什么位置?〔 4〕如果电子青蛙 m 从 B 点处出发向右运动的同时,电子青蛙 n 也向右运动,假设它们在 求 D 点所表示的数6、数轴上有 A 、B 、C 三点,分别代表 —24,—10, 10,两只电子蚂蚁甲、乙分别从 A 、C 两点同时相向而行,甲的速度为 4 个单位 /秒。
数学计算题七年级上册

数学计算题七年级上册一、有理数运算。
1. 计算:(-2)+3 - (-5)- 解析:- 首先去括号,根据去括号法则,−(−5)=5,所以原式变为-2 + 3+5。
- 然后按照从左到右的顺序计算,-2+3 = 1,1 + 5=6。
2. 计算:(-3)×(-4)÷(-2)- 解析:- 先计算乘法,根据有理数乘法法则,两数相乘,同号得正,异号得负,并把绝对值相乘,所以(-3)×(-4)=12。
- 再计算除法,12÷(-2)= - 6。
3. 计算:-2^2+(-3)^3÷(-1)^2023- 解析:- 先计算指数运算,根据幂的运算法则,−2^2=-4(这里要注意指数运算的优先级高于负号),(-3)^3=-27,(-1)^2023=-1。
- 然后计算除法,-27÷(-1)=27。
- 最后计算加法,-4 + 27 = 23。
4. 计算:<=ft((1)/(2)-(2)/(3)+(5)/(6))×(-18)- 解析:- 根据乘法分配律a(b + c)=ab+ac,这里a=-18,b=(1)/(2),c =-(2)/(3),d=(5)/(6)。
- 则原式=(1)/(2)×(-18)-(2)/(3)×(-18)+(5)/(6)×(-18)。
- 计算可得:-9+12 - 15=-12。
5. 计算:0.25×(-2)^3-<=ft[4÷<=ft(-(2)/(3))^2+1]- 解析:- 先计算指数运算,(-2)^3=-8,<=ft(-(2)/(3))^2=(4)/(9)。
- 然后计算乘法和除法,0.25×(-8)=-2,4÷(4)/(9)=4×(9)/(4)=9。
- 最后计算括号内的式子和减法,-(9 + 1)=-10,-2-10=-12。
二、整式的加减。
第三章整式及其加减单元练习题北师大版七年级数学上册

第三章 整式及其加减单元练习题一.选择题1.在下列表述中,不能表示代数式“4a ”的意义的是( )A . 4的a 倍B . a 的4倍C . 4个a 相加D . 4个a 相乘2. 下列说法正确的是( )A .整式就是多项式B .π是单项式C .x 4+2x 3是七次二项式D. 3x -15是单项式3. 下列各组式子中,为同类项的是( )A .5x 2y 与-2xy 2B .4x 与4x 2C .-3xy 与32yxD .6x 3y 4与-6x 3z 44.用代数式表示“a 与b 两数绝对值的和”正确的是( )A .b a +B .a+bC .b a + I).b a +5.下列去括号正确的是( )A .22222)2(b a a b a a --=--B .22222)()2(y x y x y x y x -+--=+----C .532)5(3222+-=--x x x xD .[]a a a a a a 314)31(42323+-+-=-+---6.如果一个多项式的次数是5,那么这个多项式的任何一项的次数满足() A . 都小于5 B . 小于或等于5 C . 都不小于5 D . 都不大于67. 已知2x 6y 2和-的值是则是同类项17-5mn -9m ,3123n m y x ( )A .-1B .-2C .-3D .-48. 已知A =4a 2-2ab +2b 2,B =2a 2-ab -b 2,则2B -A =( )A .0B .2b 2C .-b2D .-4b29. 下面一组按规律排列的数:0,2,8,26,80,…,则第2 022个数是( )A .32 022B .32 021C .32 022-1D .32 021-1二.填空题10.去括号:a ﹣(﹣2b +c )= .11.化简:4(a ﹣b )+(2a ﹣3b )= .12. 单项式−a 2b 的次数是________,它与单项式3a 2b 的和为________.13. (−2a +3b +5c)(2a +3b −5c)=[3b −(________)][3b +(________)].14.如果0)2(12=++-b a ,则a-b= .15.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…观察后,用你所发现的规律写出223的末位数字是_______.三.解答题16.写出只含字母a 二次三项式,它的二次项系数为4,一次项系数为﹣5,常数项和一次项系数互为相反数.17 已知A =3x 2+x −2,B =2x 2−2x −1.(1)化简A +12B ;(2)当x =−1时,求A +12B 的值.18. (1)先化简,再求值:m 2−2n 2−(−3mn −m 2)−2(−n 2+12mn),其中m =23,n =−4;(2)已知−2x a y 2与2xy b 是同类项.求3a 2b −(−ab)的值.19.求如图(1)(2)(3)阴影部分的面积.20.某经销商去水产批发市场采购太湖蟹,他看中了A,B两家的某种品质相近的太湖蟹,零售价都为60元/千克,批发价各不相同.A家规定:批发质量不超过100千克,按零售价的92%优惠;批发质量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:(1)如果他批发80千克太湖蟹,则他在A家、B家批发分别需要多少元?(2)如果他批发x千克太湖蟹(0<x≤300),请你用含字母x的代数式分别表示他在A家、B家批发所需的费用.。
人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。
七年级数学有理数的运算含答案

有理数的运算中考要求重难点1. 理解并掌握加减法法则且能熟练运用法则计算2. 理解并掌握乘除法法则且能熟练运用法则计算3. 能利用有理数的运算法则简化运算4. 能借助数轴比较有理数的大小课前故事古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷了下棋。
为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。
大臣说:“就在这个棋盘上放一些米粒吧。
第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒、......一直到第64格。
”“你真傻!就要这么一点米粒?!”国王哈哈大笑。
大臣说:”就怕您的国库里没有这么多米!“后等于:+++210222……+632=642-1 =18446744073709551615粒 约2200多吨例题精讲模块一、有理数加法运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差. 有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.【例1】同号两数相加某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:(1)某人向东走5米,再向东走3米,两次一共走了多少米?(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米,再向西走5米,两次一共向东走了多少米?(4)某人向东走5米,再向西走3米,两次一共向东走了多少米?(5)某人向东走3米,再向西走5米,两次一共向东走了多少米?总结:_______________________________________________________.【难度】1星【解析】利用实际情境来推导加法法则,强调和的符号及和与绝对值的关系,进而总结出加法法则【例2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【难度】1星【解析】利用加法法则计算。
北京课改版七年级数学上册全册同步练习(32份,有答案)

北京课改版2019年七年级数学上册全册同步练习(32份,有答案)1.1负数的引入一、夯实基础 1、521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有,负数有. 2、在同一个问题中,分别用正数与负数表示的量具有的意义. 3、向东走10米记作-10米,那么向西走5米,记作____________.4、某城市白天的最高气温为零上6℃,到了晚上8时,气温下降了8℃,该城市当晚8时的气温为_________.二、能力提升5、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数.A 、1个B 、2个C 、3个D 、4个 6、下列说法中,其中不正确的是( )A 、0是整数B 、负分数一定是有理数C 、一个数不是正数,就一定是负数D 、0 是有理数7、正整数集合与负整数集合合并在一起构成的集合是( )A 、整数集合B 、有理数集合C 、自然数集合D 、以上说法都不对 8、下列说法中正确的有( )① 0是取小的自然数;②0是最小的正数;③0是最小的非负数;④0既不是奇数,也不是偶数;⑤0表示没有温度.A 、1个B 、2个C 、3个D 、4个9、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为____这时甲乙两人相距_________m.三、课外拓展10、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在℃至℃范围内保存才合适. 11、如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?四、中考链接12、(2015年广州市)四个数-3.14,0,1,2中为负数的是( ) A.-3.14 B.2 C.1 D.2参考答案夯实基础 1、;106,34,5.2521,76,14.3,732.1,1----- 2、相反 3、+5米 4、-2℃ 能力提升5、C6、C7、D8、B9、-32m ,80根据正负数所表示的意义 课外拓展 10、18 22℃11、 +5m 表示向左移动5米,这时物体离它两次前的位置有0米,即它回到原处. 中考链接 12、A2.1.1字母表示数一、夯实基础1、原产量n 千克增产20%之后的产量应为( ) A.(1-20%)n 千克 B.(1+20%)n 千克C.n+20%千克D.n ×20%千克2、甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示( )A.(x+y)B.(x -y)C.3(x -y)D.3(x+y)3、商店运来一批梨,共9箱,每箱n 个,则共有_______个梨.4、小李x 岁,小王比小李的岁数大5岁,则小王_______岁. 二、能力提升5、-a(a 是有理数)表示的数是( ) A.正数 B.负数C.正数或负数D.任意有理数6、根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为多少亿元( )A.4%nB.(1+4%)nC.(1-4%)nD.4%+n7、观察下列图形,则第n 个图形中三角形的个数是( )A.2n+2B.4n+4C.4n-4D.4n8、在某次飞行表演中,飞机第一次上升的高度是a千米,接着又下降b千米,第二次又上升c千米,此时飞机的高度是千米.9、小明今年a岁,爸爸的年龄是小明的2倍,妈妈比爸爸小3岁,则妈妈今年岁.10、一根木棍原长为m米,如果从第一天起每天折断它的一半.(1)请写出木棍第一天,第二天,第三天的长度分别是多少?(2)试推断第n天木棍的长度是多少?三、课外拓展11、有一张厚度为0.05毫米的长方形纸,将它长对折1次后,厚度为2×0.05毫米.接着按同样的方式将对折后的纸连续对折.(1)对折3次后,厚度为多少毫米?(2)对折n次后,厚度为多少毫米?(3)对折n次后,可以得到多少条折痕?次后纸的厚度四、中考链接12、(2016年菏泽市)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3参考答案夯实基础 1、B 2、C 3、9n 4、x+5 能力提升 5、D 6、A 7、D 8、(a-b+c) 9、(2a-3) 10、(1)2m ;4m ;8m (2)n m 2课外拓展11、(1)对折3次后,厚度为0.4毫米. (2)对折n 次后,厚度为(2n×0.05)毫米. (3)对折n 次后,可以得到(2n -1)条折痕. 中考链接 12、B2.1.2列代数式一、夯实基础1、用代数式表示:“x 的2倍与y 的和的平方”是( ) A.2)(2y x + B. 22y x + C.222y x + D.2)2(y x + 2、如果甲数为x,甲数是乙数的3倍,则乙数为( ) A.3x B.3x C.x+3 D.x+313、用代数式表示:圆的半径为rcm ,它的周长为______cm,它的面积为______2cm .4、用代数式表示:某种瓜子的单价为16元/千克,则n 千克需_____元. 二、能力提升5、“比x 的平方的43小5的数是( ) A.5432+x B.2435x - C.5432-x D.4352⨯-x 6、如数b 增加它的x%后得到c ,则c 为( ) A.bx% B.b(1+x%) C.b+x% D.b(1+x)%7、某市出租车收费标准为:起步价为7元,3千米后每千米价为1.8元,则某人乘坐出租车x(x>3的整数)千米的付费为_________元.8、一件商品,每件成本m元,将成本增加25%定出价格,后因仓库积压减价,按价格的90%出售,每件还能盈利_________元.9、用文字语言叙述下列代数式的意义:3x+5y表示___________________.10、若a﹣2b=3,则2a﹣4b﹣5= .三、课外拓展11、用a米长的篱笆材料在空地上围成一个绿化场地,现有两种设计方案:一种是围成正方形的场地;另一种是围成圆形的场地.试问选用哪一种方案,围成的场地面积较大?请说明理由.四、中考链接12、(2016年重庆市A卷)若a=2,b=﹣1,则a+2b+3的值为()A.﹣1 B.3 C.6 D.513、(2016年济宁市)已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9参考答案夯实基础1、D2、B3、2πr πr24、16n能力提升5、C6、B7、8.1.8(x-3)+7(x>3的整数)8、m(1+25%)×90%-m9、x的3倍与y的5倍的和10、1课外拓展11、解:所围成的正方形的边长为米.所以其面积为()2=(平方米).所围成的圆的半径为米,所以其面积为π·()2=π·=(平方米).因为16>4π,所以<,所以围成圆形场地时,围成的场地面积较大. 中考链接 12、B 13、A2.2.1同类项与合并同类项一、夯实基础1、下列说法正确的是( ). A .a 的系数是0 B .1y是一次单项式 C .-5x 的系数是5 D .0是单项式2、多项式41232--+y xy x 是( ) A 、三次三项式 B 、二次四项式 C 、三次四项式 D 、二次三项式3、单项式342xy -的系数为__________,次数为___________.4、多项式1223+-+-yy xy x 是_______次________项式,各项分别为___________. 二、能力提升 5、如果12221--n b a 是五次单项式,则n 的值为( ) A 、1 B 、2 C 、3 D 、46、对于单项式-2πr 2的系数、次数分别为( ) A 、-2,2 B 、-2,3 C 、2,2π- D 、3,2π- 7、多项式23332--xy y x 的次数和项数分别为( ) A 、5,3 B 、5,2 C 、2,3 D 、3,3 8、下列说法正确的是( ).A .整式就是多项式B .π是单项式C .x 4+2x 3是七次二项次 D .315x -是单项式 9、若x 2yn -1是六次单项式,则n=_______.10、若关于x 的多项式1)32()12(523--+---x n x m x 不含二次项和一次项,求m ,n 的值. 解:三、课外拓展11、有一个多项式a10-a9b+a8b2-a7b3+…,按这样的规律写下去,你知道第7项是什么吗?最后一项呢?这是一个几次几项式?有什么规律?四、中考链接12、(2016年吉林)小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元 B.(4a+3b)元 C.4(a+b)元 D.3(a+b)元参考答案夯实基础 1、D 2、C 3、34-,3 4、三、五, 1,2,,,23y y xy x -- 能力提升 5、B 6、C 7、A 8、B 9、510、解:由题意得,032,012=-=-n m ,解得32,21==n m 课外拓展11、答:可以观察出,从左到右a 的指数逐渐减1,b 的指数逐渐加1,所以第7项是a 4b 6,最后一项是b 10,这是关于a ,b 的十次十一项式,它的每一项与字母的次数的关系是(-1)n +1a 11-n b n -1(n 代表第n 项).中考链接 12、A2.2.2同类项与合并同类项一、夯实基础1、下列各式不是同类项的是( ) A .b a 2-与b a 221 B .x 21与-3x C .b a 231-与251ab D .xy 41与yx - 2、下列各式中,与y x 2是同类项的是( ) A .2xy B .xy 2 C .y x 2- D .223y x 3、-4ab+2ab=________. 4、2xy+( ) =7xy. 二、能力提升5、下列式子中正确的是( ) A .ab b a 33=+B .143-=-mn mnC .4221257a a a =+D .2229495xy x y xy -=- 6、若323y x m -与n y x 42是同类项,则n m -的值是( ) A .0 B .1 C .7 D .-17、如果123237x y a b a b +-与是同类项,那么x =y =. 8、若21xy n 与3x m y 3的和仍是一个单项式,则m=,n=. 9、合并同类项:.3775322222a b ab b ab a a ++--+-解:10、先化简再求值:.43,32,121213232==-+---y x xy x y xy 其中 解:三、课外拓展11、有这样一道题:当a=0.35,b=-0.28时,求多项式的值: a 3b+2a 3-2a 2b+3a 3b+2a 2b -2a 3-4a 3b有一位同学指出:题目中给出的条件a=0.35 , b =-0.28是多余的.他的说法对吗?为什么? 解:四、中考链接12、(2016年泸州)计算3a 2﹣a 2的结果是( ) A .4a 2 B .3a 2 C .2a 2 D .3 13、(2016年潍坊)若3x 2n y m与x 4﹣n y n ﹣1是同类项,则m+n= .参考答案夯实基础 1、C 2、A 3、-2ab 4、5xy 能力提升 5、D 6、B 7、2 1 8、1 3 9、2266b ab a +-.4743,323521322312121323210时,原式=-,当、解:==---=-+---y x x y xy xy x y xy 课外拓展11、对 合并同类项的结果为0 中考链接 12、C 13、351.2用数轴上的点表示有理数一、夯实基础1、在下图中,表示数轴正确的是( ).2、在数轴上,原点左边的点表示的数是( ) A 、正数 B 、负数 C 、非正数 D 、非负数3、在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度.4、指出图所示的数轴上A 、B 、C 、D 、E 各点分别表示的有理数.二、能力提升5、有一只小蚂蚁以每秒2个单位长度的速度从数轴上-4的点A 出发向右爬行3秒到达B 点,则B 点表示的数是()A、2B、-4C、6D、-66、在数轴上表示-2的点离开原点的距离等于()A、2B、-2C、±2D、47、数轴上与原点距离是5的点有 ___个,表示的数是 _______.8、点A在数轴上距原点为3个单位,且位于原点左侧,若将A向右移动4个单位,再向左移动1个单位,这时A点表示的数是_________.9、在数轴上,点A表示-1,与点A相距3个单位长度的点B所表示的数为___________.10、在数轴上表示出下列各有理数:-2,-312,0,3,12;三、课外拓展11、已知x是整数,并且-3<x<4,那么在数轴上表示x的所有可能的数值有.四、中考链接(2015年烟台改编)如图,数轴上点A,B所表示的两个数分别是.参考答案夯实基础 1、B 2、B 3、左 44、A 表示的数是—4,B 表示的数是—1.5 ,C 表示的数是0.5,D 表示的数是3,E 表示的数是4.5. 能力提升5、A6、A7、2 ±5 8、0 9、-4或2 10、课外拓展11、-2、-1、0、1、2、3. 中考链接 12、-3和2.1.3.1相反数和绝对值一、夯实基础1、-(+3)表示的相反数,即-(+3)=; -(-3)表示的相反数,即-(-3)=。
校七年级数学上册 科学计数法练习题
科学计数法基础过关一.选择题1. 把57000用科学记数法表示为( )A 、57×103B 、5.7×104C 、5.7×105D 、0. 57×1052. 假设3400=3.4×10n ,那么n 等于( )A 、2B 、3C 、4D 、53. 假设72020000000=1010 a ,那么a 的值为( )A 、7201B 、-7.201C 、7.20D 、7.2014.我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A 、63×102千米B 、6.3×102千米C 、6.3×103千米D 、6.3×104千米二.填空题5. 把3900000用科学记数法表示为 ,6.用科学记数法记出的数5.16×104的原数是 ,7.比较大小:3.01×104 9.5×103;3.01×104 3.10×104;8.地球的赤道半径是6371千米, 用科学记数法记为 千米9.18克水有水分子约为个200006023个,用科学记数法表示 ; 三.解答题10.用科学记数法表示以下各数(1)900200 (2)300 (3)10000000 (4)51000011.已知以下用科学记数法表示的数,写出原先的数(1)2.01×104 (2)6.070×105 (3)6×105 (4)10412.计算(1)()()612108102.7⨯÷⨯ (2)()()93102.0105.6⨯⨯⨯ 13.光的速度是3×108米/秒,太阳光从太阳射到地球的时刻约500秒,请你计算出太阳与地球的距离(用科学记数法表示).14.飞机每小时飞行6×103千米,光的速度是每秒30万千米,求光的速度是飞机的多少倍?(用科学记数法表示)能力提升观看以下各式:13+23 = 9=14×4×9=14×22×32 13+23 +33= 36=14×9×16=14×32×42 13+23 +33+44= 100=14×16×25=14×42×52 ……若n 为正整数,试猜想13+23+33 +43+……+n 3等于多少?并利用此式比较13+23+33+…+1003与(-5000)2的大小.。
七年级数学上册期末复习线段和角计算专项练习
七年级数学上册期末复习线段和角计算专项练习1.已知点C是线段AB上一点,AC=6 cm,BC=4 cm,若M.N分别是线段AC、BC的中点,求线段MN的长.2.已知线段MN=2,点Q是线段MN的中点,先按要求画图形,再解决问题.(1)反向延长线段MN至点A,使AM=3MN;延长线段MN至点B,使BN=BM.(2)求线段BQ的长度.(3)若点P是线段AM的中点,求线段PQ的长度.3.如图,已知∠BOC = 2∠AOB,OD平分∠AOC,∠BOD = 14°,求∠AOB的度数..如图,线段,,角项点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方..如图,和都是直角.如图,如果,求的度数;找出图中相等的锐角,并说明相等的理由;在图中,利用三角板画一个与相等的10.如图,直线AB,CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=65°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数11.如图,点是线段上一点,点分别是线段的中点.(1)若,则;(2)若,求线段的长.12.如图,C为线段AB的中点,D在线段CB上,AD=11,BD=3.(1)求CD的长;(2)若点E是线段AD的中点,求CE的长.13.如图,C为线段AB上一点,D为AC的中点,E为BC的中点,F为DE的中点.(1)若AC=4,BC=6,求CF的长.(2)若AB=16CF,求的值.14.(1)如图1,已知射线OA,OB,OC,OD,∠AOD=∠BOC=α.①若α=38°,∠COD=30°,求∠BOD、∠AOC的度数;②若∠COD=25°,请找出图中与∠BOD相等的角,并通过计算说明理由;(2)如图2,∠MPN是钝角,请利用三角尺画特殊角的功能,在图2中画一个与∠MPN相等的角.(标出图中特殊角的度数,并写出与∠MPN相等的角)15.如图,已知线段AB上有两点C,D且AC:CD:DB=2:3:4,点E、F分别为AC,DB的中点,EF=3.6cm.求AB的长.。
人教版七年级数学上册第一章1.2.4绝对值专项练习题(无答案)
绝对值专项练习题一、基础题型1、在数轴上表示数a的点与的距离叫做数a的绝对值,记作。
2、一个正数的绝对值是,一个负数的绝对值是,0的绝对值是。
3、任何数都有绝对值,且只有个,绝对值最小的数是。
4、绝对值是正数的数有个,它们互为。
5、如果a>3,则|a-3|= ,|3-a|= .6、当|a|=-a时,a 0,当a>0时,|a|= 。
7、若|-x|=4,则x= ;若|x-3|=0,则x= ;若|x-3|=1,则x= .8、已知|a|=3,|b|=4,且a<b,则a+b= .9、若|x|/x=1,则x是数;若|x|/x=-1,则x是数。
10、代数式|x-2|+3的最小值是。
二.0+0题型1、已知|x-4|+|y+5|=0,则x= ,y= .2、已知|a+1|+(b-2)2=0,求(a+b)的相反数。
3、若|m+3|+(n-5)2+3|2p-6|=0,求p+2n-3m= 。
4、已知a、b、c、都是负数,并且|x+a|+|y-b|+|z-c|=0,则xyz 0(填>或<号)。
5、已知|x+3|=-(y-4)2,求xy的值。
总结:。
三、分类讨论思想1、已知|x|=5,求|x+3|的值。
2、已知|a|=5,|b|=3,且a<b,求a与b的值。
3、已知|x|=2,|y|=4,|z|=5,且x>y>z,求x-2y+z的值。
4、已知|m|=5,|n+2|=2,且|m+n|=m-n,求m、n、m-n的值。
5、已知|x|=3,|y-2|=4,且xy>0,求x-y的值。
6、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a+2b-3c的值。
四、数形结合的思想1、有理数a、b、c、在数轴上位置如图所示,化简-|a|+|b|-|0|-|c|.2、找出所有符合条件的整数ⅹ,使ⅹ+2|+|ⅹ-1|=3成立;3、有理数a,b在数轴上的表示如图所示。
(1)在数轴上表示-a,-b;0 ba (2)试把a ,b ,0,-a ,-b 这五个数按从小到大的顺序用“<”号连接;(3)用“>”“=”“<”号填空:|a| a ,|b| b4、若数轴上表示数a 的点位于-4与6之间,求|a+4|+|a-6|的值;5、数轴上两点间的距离,如2与3的距离可表示为|2-3|=1,2与-3的距离可表示为|2-(-3)|=5.(1)若A ,B 两点表示的数为a ,b ,且A,B 两点间的距离记为d ,则d 和a ,b 有何数量关系?(2)在数轴上标出所有符合条件的整点数P ,使它到5和-5的距离之和为10,并求所有这些整数的和。
合川区第四中学七年级数学上册 第二章 有理数 2.11 有理数的乘方作业 华东师大版
有理数的乘方1.28cm接近于( )A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度2.下列每对数中,不相等的一对是( )A.(-2)3和-23B.(-2)2和22C.(-2)4和-24D.|-2|3和|2|33.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后细胞存活的个数是( ) A.31 B.33 C.35D.374.最接近于(-)3的整数是________.5.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是________.6.现规定一种新运算“*”:a*b=ab,如2*3=23=8,那么*3=________.7.计算:(1)-(-0.1)3.(2)-()2.(3)(-1.5)3.,若拿两张重叠在一起,将它们对折一次后,厚度为4×0.1毫米.(1)对折两次后,厚度为多少毫米?(2)对折6次后,厚度为多少毫米?9. (1)通过计算比较下列各式中两数的大小(填“>”“<”或“=”).①12______21,②23______32,③34______43,④45______54,⑤56______65,….(2)由(1)可以猜测nn+1与(n+1)n(n为正整数)的大小关系:当n____时,nn+1<(n+1)n;当n____时,nn+1>(n+1)n;(3)根据上面的猜想,可以知道:20132014______20142013.参考答案:1.C2.C3.B4.【解析】(-)3=-=-3.375,因而-4<(-)3<-3,最接近的是-3.最接近于(-)3的整数是-3.【答案】-35.【解析】观察可得规律:2n的个位数字每4次一循环,因为15÷4=3…3,所以215的个位数字是8.【答案】86.【解析】*3=()3=.【答案】7.解:(1)-(-0.1)3=-(-0.1)×(-0.1)×(-0.1)=-(-0.001)=0.001.(2)-()2=-(×)=-.(3)(-1.5)3=(-)×(-)×(-)=-(××)=-.8.解:(1)2×22×0.1=0.8(毫米),即对折两次后,厚度为0.8毫米.(2)2×26×0.1=12.8(毫米),即对折6次后,厚度为12.8毫米.9.解:(1)①因为12=1,21=2,所以12<21,②因为23=8,32=9,所以23<32,③因为34=81,43=64,所以34>43,④因为45=1024,54=625,所以45>54,⑤因为56=15625,65=7776,所以56>65,….(2)由(1)可以猜测nn+1与(n+1)n(n为正整数)的大小关系.当n≤2时,nn+1<(n+1)n;当n≥3时,nn+1>(n+1)n;(3)因为n=2013≥3,所以20132014>20142013.7 有理数的乘法第1课时有理数的乘法法则【知识与技能】1.让学生在了解乘法意义的基础上,掌握有理数乘法法则.2.会进行有理数的乘法运算,会求一个有理数的倒数.【过程与方法】经历探索有理数乘法法则的过程,发展学生观察、归纳、猜想、验证的能力.【情感态度】结合本课教学特点,向学生进行热爱生活、热爱学习教育,培养学生观察、归纳能力.【教学重点】有理数乘法的运算.【教学难点】有理数乘法中的符号法则.一、情境导入,初步认识教材第49页上方的图及相关内容.【教学说明】通过水位的升高和下降这个学生比较熟悉的例子,让学生初步感受有理数的乘法.二、思考探究,获取新知1.有理数的乘法的计算法则问题1你能写出下列结果吗?(-3)×4=-12,(-3)×3= ,(-3)×2= ,(-3)×1= ,(-3)×0= .(-3)×(-1)= ,(-3)×(-2)= ,(-3)×(-3)= ,(-3)×(-4)= .【教学说明】学生通过观察、分析、计算,与同伴交流,归纳有理数乘法计算法则.【归纳结论】两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,积仍为0.2.运用有理数乘法法则进行计算问题2计算:(1)(-4)×5;(2)(-5)×(-7);(3)(-38) ×(-83) ;(4)(-3)×(-13) .【教学说明】通过计算,学生进一步掌握有理数乘法的计算法则.【归纳结论】有理数相乘,先确定积的符号,再确定积的绝对值.3.倒数的定义问题 3 问题2中(3),(4)的结果是多少?你发现了什么?由此能得到什么结论?【教学说明】由问题2中(3),(4)两个式子引导学生观察、分析,概括倒数的定义.【归纳结论】如果两个有理数的乘积为1,那么称其中的一个数是另一个的倒数,也称这两个有理数互为倒数.(求一个数的倒数可以把这个数的分子与分母交换位置,而符号不变.)注意:0没有倒数.4.多个有理数相乘的符号法则问题4计算:(1)(-4)×5×(-0.25);(2)(-35) ×(-56) ×(-2).【教学说明】学生通过计算、观察、分析,与同伴交流,归纳多个有理数相乘的符号法则.问:(1)几个有理数相乘,因数都不为0时,积的符号怎样确定?(2)有一个因数为0时,积是多少?【归纳结论】几个不为0的有理数的相乘,而负因数的个数为奇数时,积为负;负因数的个数为偶数时,积为正;如果有一个因数为0,则积为0.三、运用新知,深化理解1.计算(-2)×3的结果是()A.-6B.6C.-5D.52.|-5|的倒数是()A.-5B.-1 5C.5D. 1 53.绝对值不大于4的所有负整数的积是 .4.若|a|=1,|b|=4,且ab<0,则a+b= .5.写出下列各数的倒数:1,-2,114,-0.3.6.计算.(1)(-8)×214;(2)45×(-256) ×(-710) ;(3)23×(-54);(4)(-2413)×(-167)×0×43;(5)54×(-1.2)×(-19) ;(6)(-37) ×(-12) ×(-815) .7.若a、b互为相反数,c、d互为倒数,求a2b+-23cd的值.8.若a、b是有理数,定义新运算⊗:a⊗b=2ab+1,例如(-3)⊗4=2×(-3)×4+1=-23.试计算:(1)3 ⊗(-5);(2)[2 ⊗ (-3)]⊗ (-6).【教学说明】学生自主完成,加深对新学知识的理解,检测对有理数乘法的掌握情况,为后一节的学习打下坚实的基础.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.A 2.D 3.24 4.±35.这些数的倒数分别是1,-12,45,-103.6.(1)-42(3)73(3)-56(4)0(5)16(6)-4357.因为a、b互为相反数,所以a+b=0,又c、d互为倒数,所以cd=1,所以原式=0 2-23×1=-.238.(1)3⊗ (-5)=2×3×(-5)+1=-30+1=-29(2)[2⊗ (-3)]⊗ (-6)=[2×2×(-3)+1]⊗ (-6)=(-11) ⊗ (-6)=2×(-11)×(-6)+1=133.四、师生互动,课堂小结1.师生共同回顾有理数乘法的计算法则.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对倒数概念的理解,熟练掌握有理数乘法法则.【板书设计】1.布置作业:从教材“习题2.10”中选取.2.完成练习册中本课时的相应作业.有理数乘法与有理数加法运算步骤类似,即第一步确定积的符号;第二步确定积的绝对值.应强化训练,使学生熟练掌握有理数的乘法运算,提升运算能力.用计算器进行计算一、学习目标确定的依据1、课程标准分析新课程标准要求学生了解计算器的板面结构和使用方法,会用计算器做有理数加减乘除和它们的混合运算,以及计算器在实际生活中的应用让学生体验实践操作的过程,培养认真细心的学习习惯2、教材分析计算器已经在各行各业中得到了广泛的使用,它给人们解决生活和生产中的具体计算问题带来了方便,同时为探索数学问题,揭示数学规律带来了便利。