球面三角形的面积与欧拉公式共40页

合集下载

欧拉公式

欧拉公式

欧拉公式欧拉公式是指以欧拉命名的诸多公式。

其中最著名的有,复变函数中的欧拉幅角公式,即将复数、指数函数与三角函数联系起来。

拓扑学中的欧拉多面体公式。

初等数论中的欧拉函数公式。

欧拉公式描述了简单多面体顶点数、面数、棱数特有的规律,它只适用于简单多面体。

常用的欧拉公式有复数函数e^ix=cosx+isinx,三角公式d^2=R^2-2Rr ,物理学公式F=fe^ka 等。

复变函数e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。

它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

欧拉公式e^ix=cosx+isinx的证明:因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……cos x=1-x^2/2!+x^4/4!-x^6/6!……sin x=x-x^3/3!+x^5/5!-x^7/7!……在e^x的展开式中把x换成±ix.(±i)^2=-1, (±i)^3=∓i, (±i)^4=1 ……e^±ix=1±ix/1!-x^2/2!∓ix^3/3!+x^4/4!……=(1-x^2/2!+……)±i(x-x^3/3!……)所以e^±ix=cosx±isinx将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。

将e^ix=cosx+isinx中的x 取作π就得到:恒等式e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。

数学家们评价它是“上帝创造的公式”那么这个公式的证明就很简单了,利用上面的e^±ix=cosx±isinx。

欧拉定理

欧拉定理

欧拉定理————————————————————————————————作者: ————————————————————————————————日期:欧拉定理认识欧拉欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。

彼得堡科学院为了整理他的著作,整整用了47年。

欧拉著作惊人的高产并不是偶然的。

他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。

即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。

当他写出了计算天王星轨道的计算要领后离开了人世。

欧拉永远是我们可敬的老师。

欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。

欧拉写的数学教材在当时一直被当作标准教程。

19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。

欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f(x)等等,至今沿用。

欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。

对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。

欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。

V+F-E即欧拉示性数,已成为“拓扑学”的基础概念。

那么什么是“拓扑学”? 欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式......初等数论中的欧拉定理定理内容在数论中,欧拉定理(也称费马-欧拉定理)是一个关于同余的性质。

球面三角形

球面三角形

球面三角形开放分类:数学数学术语编辑词条分享请用一段简单的话描述该词条,马上添加摘要。

spherical trianglespherical triangle球面上的三个点,每两点之间用大圆劣弧相连接,三弧所围成的球面部分称为球面三角形。

球面三角形的面积公式:S=(A+B+C-π)R^2(A、B、C分别为球面三角形ABC的三内角,单位为弧度,R为球半径)。

平面三角形可视为球面三角形的特殊形式(极限)。

球面三角形的内角和不为180°。

球面三角形余弦定律:在球面三角形中,任意一边所对应球心角的余弦等于其他两边各自对应球心角的余弦乘积加上这两边各自对应球心角的正弦及任意的那条边在球面三角形中对应角的余弦三项乘积。

             & nbsp;        cosa=cosbcosc+sinbsinccosA球面三角形正弦定律:在球面三角形中,任意一边所对应球心角的正弦与该边所在球面三角形中的对应角的正弦的比值相等。

sina/sinA=sinb/sinB=sinc/sinC§3球面三角形的全等在同球面或等球面上,两个球面三角形的对应边和对应角分别相等,则称这两个球面三角形全等。

判断两个平面三角形全等的条件有 SSS,SAS,ASA,AAS 等,在平面几何中,如果两个三角形的三对对应角对应相等,则这两个三角形相似,它们的对应边长度成比例。

类似地判断两个球面三角形全等的条件有 SSS,SAS,ASA,AAA 等(其中 AAA 是平面几何中不具有,而球面几何中特有的全等条件。

(完整word版)球面三角形的面积与欧拉公式

(完整word版)球面三角形的面积与欧拉公式

§6 球面三角形的面积与欧拉公式问题提出1.如何计算球面三角形的面积?球面三角形面积与平面三角形面积有什么区别?2.如何利用球面三角形面积公式证明球面多面体的欧拉公式?3.如何利用球面知识证明简单多面体的欧拉公式?6.1球面二角形与三角形的面积我们知道,若球面半径为R ,则球面面积为24S R π=,现在考虑球面上的一个小区域:球面上由两个大圆的半周所围成的较小部分叫做一个球面二角形。

如图所示,大圆半周PAP '和PBP '所围成的阴影部分就是一个球面二角形。

显然P 和P '是对径点,大圆半周'PAP 和'PBP 称为球面二角形的边。

球面角P P '∠=∠称为球面二角形的夹角。

如果大圆弧AB 以P 和P '为极点,AB 所对的球心角为α,则P P '∠=∠=α。

例1 计算地球上一个时区所占有的面积。

解 如图所示,设O 为地心,N 、S 为北极点和南极点,A 、B 为赤道上两点,且15AOB ∠=,地球半径为R=6400km ,根据地理知识,地球共分为24个时区,一个时区跨越地球表面15,所以由经线NAS 与经线NBS 围成的二角形就是一个时区,它所占面积为地球表面积的15136024=, 即 22241640021446605.85246R km ππ=⨯⨯≈ 如何计算一般球面二角形的面积?1. 二角形的夹角α,就是平面PA P '与PB P '所夹的二面角的平面角;2. 这个二角形可以看成半个大圆PAP '绕直径P P '旋转α角所生成;3. 球面二角形的面积与其夹角成比例。

设这个二角形得面积为U ,则42U αππ=即 2U α=抽象概括:球面上,夹角为α的二角形的面积为2U α=。

如何计算球面三角形的面积?设()S ABC 表示球面三角形ABC 的面积,1. 对球面三角形ABC ,分别画出三条边所在的大圆。

球面三角学

球面三角学
图1.球面三角
球面多边形
在球面上,由大圆的弧所包围的区域称为球面多边形,但要注意,不同于平面上的情形,在球面上’双角’ 是可能存在的。(两个弧夹出两个角的三角形类似物)(可由剥橘子时剥下来的橘子皮想像)
这些多边形的边长(弧长),可以利用球心角很方便的来测定,将弧的两端所对应的球心角乘上半径便是边长。 要注意的是,这些角都必须用径度量来量度。.
球面三角学
数学术语
目录
01 球面上的线
03 球面角超
02 球面三角形 04 球面公式
球面三角学是球面几何学的一部分,主要在处理、发现和解释多边形 (特别是三角形)在球面上的角与边的 和关联。在天文学上的重要性是用于计算天体轨道和地球表面与太空航行时的天文导航。
球面上的线
在球壳的表面,最短的距离是大圆上接近直线的弧线,也就是圆弧的圆心与球壳的球心是同一点。例如:地 球上的子午线和赤道都是大圆。所谓行星表面的直线,就是球面上两点之间最近距离的大圆弧线(如果你把自己拘 束在球面上的直线上)。(参看:大地测量学)
球面公式
球面三角形的基本公式 球面三角形的基本公式(又叫基本定理)有正弦公式、边的余弦公式、角的余弦公式、余切公式、五元素公式 等。除正弦公式外,每一类公式仅举一例如下。 如图1所示的球面三角形中,正弦公式有: 边的余弦公式有: 角的余弦公式有: 余切公式有: 五元素公式有: 解算球面直角三角形公式 球面三角形中只要有一个角等于,该球面三角形就是球面直角三角形。知道球面三角形中的部分元素求解另 一部分元素叫解球面直角三角形。解球面直角三角形的公式很多,仅举几例。 已知两直角边b、c,求斜边a:
谢谢观看
例如球面三角形三个角都是 (弧度)时,每个边长都是大圆弧的1/4,大圆弧对应的圆心角为,其1/4则 为。

欧拉公式的意义推论欧拉公式怎么用世界上最完美的公式

欧拉公式的意义推论欧拉公式怎么用世界上最完美的公式

欧拉公式:V+FE=2 (简单多面体的顶点数V、棱数E和面数F)(1)E=各面多边形边数和的一半,特别地,若每个面的边数为n的多边形,则面数F与棱数E的关系:;(2)若每个顶点引出的棱数为m,则顶点数V与棱数E的关系:。

欧拉公式又称为欧拉定理,也称为尤拉公式,是用在复分析领域的公式,欧拉公式将三角函数与复数指数函数相关联,之所以叫作欧拉公式,那是因为欧拉公式是由莱昂哈德·欧拉提出来的,所以用他的名字进行了命名。

尤拉公式提出,对任意实数 x,都存在其中 e是自然对数的底数, i是虚数单位,而 \cos和 \sin则是余弦、正弦对应的三角函数,参数 x则以弧度为单位。

这一复数指数函数有时还写作 {cis}(x)(英语:cosine plus i sine,余弦加i正弦)。

由于该公式在 x为复数时仍然成立,所以也有人将这一更通用的版本称为尤拉公式。

莱昂哈德·欧拉出生于1707年4月15日,死于公元1783年9月18日,莱昂哈德·欧拉是一位来自于瑞士的数学家和物理学家,是近代著名的数学家之一,此外,莱昂哈德·欧拉还有力学,光学和天文学上都作出了重大的贡献。

莱昂哈德·欧拉被认为是18世纪,世界上最杰出的数学家,也是史上最伟大的数学家之一,而且莱昂哈德·欧拉还有许多的著作,他的学术著作就多达6080册。

他对微分方程理论作出了重要贡献。

他还是欧拉近似法的创始人,这些计算法被用于计算力学中。

此中最有名的被称为欧拉方法。

在数论里他引入了欧拉函数。

自然数 n的欧拉函数被定义为小于n并且与 n互质的自然数的个数。

在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。

在分析领域,是欧拉综合了戈特弗里德·威廉·莱布尼茨的微分与艾萨克·牛顿的流数。

他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声:其中是黎曼函数。

欧拉公式

欧拉公式e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。

它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

e^ix=cosx+isinx的证明:因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…… cos x=1-x^2/2!+x^4/4!-x^6/6!…… sin x=x-x^3/3!+x^5/5!-x^7/7!…… 在e^x的展开式中把x换成±ix. (±i)^2=-1, (±i)^3=∓i, (±i)^4=1 …… e^±ix=1±ix/1!-x^2/2!∓x^3/3!+x^4/4!…… =(1-x^2/2!+……)±i(x-x^3/3!……) 所以e^±ix=cosx±isinx 将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。

将e^ix=cosx+isinx中的x 取作π就得到:e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。

数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

编辑本段(3)三角形中的欧拉公式设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr 编辑本段(4)拓扑学里的欧拉公式V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。

如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

欧拉定理

定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波) 做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。
4.提出多面体分类方法:
在欧拉公式中, f (p)=V+F-E叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。
除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的 表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面 体的欧拉示性数为0。
数论定理
内容
证明
应用
设,且,则我们有: 其中称为对模缩系的元素个数。 此外,对模的阶必整除。
欧拉定理的证明取模的缩系,则也是模的缩系. 故有 特别地,当时,该结论加强为费马小定理.
首先看一个基本的例子。令a = 3,n = 5,这两个数是互素的。比5小的正整数中与5互素的数有1、2、3和4, 所以φ(5)=4(详情见[欧拉函数])。计算:a^{φ(n)} = 3^4 =81,而81= 80 + 1 Ξ 1 (mod 5)。与定理结果相符。
证明应用
利用几何画板
公式应用
逐步减少多面体的棱数,分析V+F-E 先以简单的四面体ABCD为例分析证法。 去掉一个面,使它变为平面图形,四面体顶点数V、棱数E与剩下的面数F1变形后都没有变。因此,要研究V、 E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1 1.去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。 2.从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一个点。 以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。 对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。 计算多面体各面内角和 设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和Σα 一方面,在原图中利用各面求内角总和。

球面三角


B) B)
ctg
c 2
2
若已知两边及其夹角求另外两个角或已知两
角及其夹边求另外两个边时,可利用上面四个公 式。
求地球上两点的子午线收敛差就需要用到纳 比尔相似式。

子午线收敛差是指船舶沿着大圆
弧航行时,在起航点时的航向为A1,沿 着大圆弧航行到B点时则其航向为A2, 航向变动量γ=(A2-A1)就是A、B两 点的子午线收敛差。子午线收敛差产生
平面不通过球心的圆称为小圆(small circle), 它的一段圆周叫小圆弧。
推理:在同球或等球中,与球心 的距离相等的截面所截的圆也相 等,与球心的距离不等的两个截 面所截的圆不等,距球心较近的 截面所截的圆较大,反之较小。
三、大圆的性质
1.大圆的圆心与球 心重合。
2. 大圆的直径等于球直径,半径等于球半径。 3.大圆等分球面和球体。 4.同球上的两个大圆平面一定相交,交线是它
cosc=(cosbcosc+sinbsinccosA)cosb+sinas inbcosC
展开并整理,可得
sinacosC=sinbcosc-cosbsinccosA
上式称为边角正余弦公式(或五联公式),表示 三个边和两个角的关系。
读成:相邻边角正余弦的乘积等于邻边第三边正 余弦之积减去邻边第三边余正弦及其夹角余弦之 积。
2.正弦公式(sine formula) 记忆口诀:边的正弦与其对角的正弦成
比例。
Sina/sinA=sinb/sinB=sinc/sin C
3、正余弦公式(五联公式)
将cosa=cosbcosc+sinbsinccosA 代入 cosc=cosacosb+sinasinbcosC中,得

【精品推荐】球面几何-选修3-3-2.5球面多边形的内角和与欧拉公式PPT优秀课件

12
在平面几何中,我们知道平面多边形 的内角和为(n-2)π,单位球面上球面三角形
△ABC的面积S´=(A+B+C-π),因此得到 球面三角形的内角和为S´+π.
13
我们大胆猜想,单位球面上,球面n (n≥3)边形的内角和等于(n-2)π+S,其 中S为球面n边形的面积.事实上猜测是正 确的.
14
拉公式
从橡皮变换角度看,简单多面体与球 等价,简单多面体的表面与球面等价.这 时,我们大胆想象,橡皮膜变成球后,组 成简单多面体的每个面的各条边可以与球 面多边形建立一定的联系.
下面我们给出欧拉公式的证明.
22
欧拉公式 如果用V 表示简单多面体的 顶点数,E 表示简单多面体的棱数,F表 示简单多面体的面数,那么:
25
调整“网络”,使其上的每一条曲线都 变成 上的一段大圆弧,那么简单多面体 就变成整个球面 ,且 的一个面变成 上的 多边形 , 的顶点数、棱数、面数与 上的顶 点数、棱数、面数完全相同.这样就只研究 上的顶点数、棱数、面数的关系就行了.
26
把的各面编号:1,2,…,F, 的第一
个面变成 的第一个球面多边形,设此球面 多边形有 n 1 条边,它的内角的弧度数分别
与先学平面三角形再学平面多 边形一样,我们在球面三角形的基 础上,引进球面多边形的概念.
8
A1 A6
A2
A3
O
A4
A5
图 6-1
9
我们知道,在平面上,n(n≥3)条收尾相接且 互不相交的线段围成的封闭图形叫做n边 形.类似地,如图6-1中,在球面上有n个点: A1,A2,A3,. . . An,且任意三点不在同一个大圆 上,经过这n个点中任意两点做大圆,首尾顺 次相接劣弧A1A2,A2A3,. . .An-1An.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
60、人民的幸福是至高无个的法。— —西塞 罗
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
球面三角形的面积与欧拉公式
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。
相关文档
最新文档