【推荐】人教版九年级数学下册29.1 投影同步练习3附答案
人教版数学九年级下册 第29章 投影与视图 29.1 投影 复习练习及答案

人教版数学九年级下册第29章投影与视图 29.1 投影复习练习1. 圆形的物体在太阳光的投影下是( )A.圆形 B.椭圆形 C.线段 D.以上都有可能2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A.小明的影子比小强的影子长 B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长 D.无法判断谁的影子长3. 如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )4. 在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是( )A.两根都垂直于地面 B.两根平行斜插在地上C.两根竿子不平行 D.一根倒在地上5. 小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是( )A.三角形 B.线段 C.矩形 D.正方形6. 把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是( )7.当投影线从物体左方射到右方时,如图的几何体的正投影是( )8. 用________照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.________光线叫做投影线,________所在的平面叫做投影面.9.由__________形成的投影是平行投影,由________(点光源)发出的光线形成的投影叫做中心投影.10. 投影线________投影面产生的投影叫正投影.11. 物体与________的位置关系不同,其正投影也可能不同.12. 在一天中,从早晨到傍晚物体的影子由正西向________、________、_______和正东方向移动13. 如图是小明在学校时上午、下午看到的学校操场上的旗杆的影子的俯视图,将它们按时间顺序进行排列为________.14. 几何体在平面P的正投影,取决于__________(填序号)①几何体形状;②投影面与几何体的位置关系;③投影面P的大小.15. 如图,晚上小亮在路灯下散步,他从A处向着路灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子逐渐变_____16. 下列投影中,是正投影的有________.(填序号)17. 小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E,D,B在同一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB=__________米.18. 面两幅图表示两根标杆在同一时刻的投影,请在图中画出形成投影的光线.它们是平行投影还是中心投影?说明理由.19. 地面上直立一根标杆AB,如图,杆长为2m.(1)当阳光垂直照射地面时,标杆在地面上的投影是什么图形?(2)当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投影示意图.20. 画出下图中各木杆在灯光下的影子.21. 画出下面物体(正三棱柱)的正投影:(1)投影线由物体前方射到后方;(2)投影线由物体左方射到右方;(3)投影线由物体上方射到下方.参考答案:1---7 DDDCA AB8. 光线照射投影9. 平行光线同一点10. 垂直于11. 投影面12. 西北正北东北13. C,D,B,A14. ①②15. 短16. ③④⑤17. 4.518. 分别连接标杆的顶端与投影上的对应点,很明显,图(1)的投影线互相平行,是平行投影.图(2)的投影线相交于一点,是中心投影.19. (1)点(2)当阳光与地面的倾斜角为60°时,标杆在地面上的投影是一条线段,图略20. 如图21. 如图。
人教版九年级数学下册29.1投影同步练习含答案

29.1 投影同步练习一、填空题1.太阳光芒形成的投影是_________,灯光形成的投影是________ _.2.将一个三角板放在太阳光下,它所形成的投影是_________,也可能是 _________3.已知两个电线杆在太阳光下形成两条不同的线段,那么这两条线段可能_________ ,也可能 _________.4.矩形在光芒下的投影,可能是_________或_________也可能是________ _.5. 为了丈量水塔的高度,我们取一竹杆,放在阳光下,已知 2 米长的竹杆投影长为 1.5米,在同一时辰测得水塔的投影长为30 米,则水塔高为_________.6.身高同样的小明和小丽站在灯光下的不一样地点,已知小明的投影比小丽的投影长,我们能够判断小明离灯光较_________.7.一物体在光芒下的投影是椭圆形的,则该物体的形状是_________ 形,也可能是_________形 .二、选择题8.给出以下命题,命题正确的有()①太阳光芒能够当作平行光芒,这样的光芒形成的投影是平行投影②物体的投影的长短在任何光芒下,仅与物体的长短相关③物体的俯视图是光芒垂直照耀时,物体的投影④物体的左视图是灯光在物体的左边时所产生的投影⑤看书时人们之因此使用台灯是由于台灯发出的光芒是平行的光芒.A.1 个B.2 个C.3 个D.4 个9.为了丈量某一电线杆的高度,简单实质的方法是()A.爬上去用皮尺进行丈量B.利用测角仪与皮尺经过解三角形的方法求出C.测得电线杆及一较短木棍在同一时辰的投影,而后经过比率进行计算(电线杆和木棍能够在不一样的地点上)D. 答案 C 中的方法只合适于阳光等平行投影10.“皮影戏”作为我国一种民间艺术,对它的表达错误的选项是()A.它是用兽皮或纸板做成的人物剪影,来表演故事的戏曲B.表演时,要用灯光把剪影照在银幕上C.灯光下,做不一样的手势能够形成不一样的手影D. 表演时,也可用阳光把剪影照在银幕上11.给出以下结论正确的有()①物体在阳光照耀下,影子的方向是同样的②物体在任何光芒照耀下影子的方向都是同样的③物体在路灯照耀下,影子的方向与路灯的地点相关④物体在光芒照耀下,影子的长短仅与物体的长短相关.A.1 个B.2 个C.3 个D.4 个三、解答题12.如图 1,电杆上有一路灯:电杆双侧的两根木棍在路灯下的地点如下图,如何确立路灯的地点图 113.为何同一物体清晨的影子较长,正午的影子较短,点燃一只蜡烛,找一木棍变换蜡烛的地点能得出如何的结论?答案:一、 1.平行投影中心投影 2.三角形一条线段 3.平行在同向来线上 4.矩形平行四边形线段 5.40 米 6.远 7.圆椭圆二、 8.B9.D 10.D 11.B三、 12.略13.略。
人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。
人教版九年级下《第29章投影与视图》专项训练含答案

人教版九年级下《第29章投影与视图》专项训练含答案专训1平行投影、中心投影、正投影间的关系名师点金:1.平行投影的投影线是平行的,在同一时刻物体的影长与物高成正比;中心投影的投影线相交于一点,在同一时刻物体的影长与物高不一定成正比.2.平行投影在同一时刻的影子总在同一方向;中心投影在同一时刻的影子不一定在同一方向.3.正投影是投影线垂直于投影面的平行投影.利用平行投影与中心投影的定义判断投影1.如图,下列判断正确的是()(第1题)A.图①是在阳光下的影子,图②是在灯光下的影子B.图②是在阳光下的影子,图①是在灯光下的影子C.图①和图②都是在阳光下的影子D.图①和图②都是在灯光下的影子2.如图,下面是北半球一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序进行排列,正确的是()(第2题)A.③④②①B.②④③①C.③④①②D.③①②④利用平行投影与中心投影的特征作图3.如图,两棵树的影子是在太阳光下形成的还是在灯光下形成的?画出同一时刻旗杆的影子.(用线段表示)(第3题)4.图①②分别是两棵树及其影子的情形.(第4题)(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形?(2)你是用什么方法判断的?(3)请分别画出图中表示小丽影子的线段.正投影的识别与画法5.如图,若投影线的方向如箭头所示,则图中物体的正投影是()(第5题)6.一个正方体框架上面嵌有一根黑色的金属丝EF,如图所示.若正方体的面ABCD平行于投影面P,且垂直于投影面Q,画出这个物体在两个投影面上的正投影.(第6题)专训2投影规律在实际问题中的应用名师点金:用光线照射物体,在某个平面(地面、墙等)上得到的影子叫物体的投影.投影有两种类型:平行投影和中心投影.平行投影的特征是投影线平行,中心投影的特征是投影线相交于一点.在解答与投影有关的实际问题时,往往与相似三角形、直角三角形的性质密切相关,要注意构造相似三角形或直角三角形.平行投影的实际应用类型1:投影线不受限时的测量1.甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量,下面是他们通过测量得到的一些信息:甲组:如图①,测得一根直立于平地、长为80 cm的竹竿的影长为60 cm.乙组:如图②,测得学校旗杆的影长为900 cm.丙组:如图③,测得校园景灯(灯罩视为圆柱体,灯杆粗细忽略不计)的灯罩部分影长HQ为90 cm,灯杆被阳光照射到的部分PG长为50 cm,未被照射到的部分KP长为32 cm.(第1题)(1)请你根据甲、乙两组得到的信息计算出学校旗杆的高度.(2)请根据甲、丙两组得到的信息,解答下列问题:①求灯罩底面半径MK的长;②求从正面看灯罩得到的图形的面积和从上面看灯罩得到的图形的面积.类型2:投影线在特定条件时的测量2.如图,有甲、乙两座办公楼,两幢楼都为10层,由地面上依次为1层至10层,每层的高度均为3 m,两楼之间的距离为30 m.为了了解太阳光与水平线的夹角为30°时,甲楼对乙楼采光的影响情况,请你求出甲楼楼顶B的影子E 落在乙楼的第几层.(第2题)中心投影的实际应用3.如图,一位同学身高1.6 m,晚上站在路灯下A处,他在地面上的影长AB是2 m,若他沿着影长的方向移动2 m站在B处时,影长增加了0.5 m,求路灯的高度.(第3题)答案专训11.B点拨:图①中影子的方向不同,是在灯光下的影子;图②中影子的方向相同,且影长与树高成正比,是在阳光下的影子.2.C3.解:如图,过树和影子的顶端分别画两条光线AA1,BB1.观察可知,AA1∥BB1,故两棵树的影子是在太阳光下形成的.(第3题)过旗杆的顶端C画AA1(或BB1)的平行线CC1,交地面于点C1,连接旗杆底端O和点C1,则线段OC1即为同一时刻旗杆的影子.点拨:根据物体和投影之间的关系可以判断是平行投影,然后根据平行投影的特征即可完成题中的要求.4.解:(1)题图②反映了阳光下的情形,题图①反映了路灯下的情形.(2)题图①中过影子顶端与树顶端的直线相交于一点,符合中心投影的特点,因此题图①反映了路灯下的情形;题图②中过影子顶端与树顶端的直线平行,符合平行投影的特点,因此题图②反映了阳光下的情形.(3)路灯下小丽的影子如图①所示,表示影子的线段为AB;阳光下小丽的影子如图②所示,表示影子的线段为CD.(第4题)误区诊断:平行投影和中心投影对应的光线是不同的,形成平行投影的光源发出的光线是平行光线,而形成中心投影的光源发出的光线交于一点;同一时刻,平行投影下的影子的方向总是在同一方向,而中心投影下的影子可能在同一方向,也可能在不同方向.5.C点拨:观察图中的两个立体图形,圆柱的正投影为长方形,正方体的正投影为正方形,故选C.6.解:画出的正投影如图所示.正方体、金属丝在投影面P上的正投影是正方形A1B1C1D1及线段E1F1;在投影面Q上的正投影是正方形C2D2G2H2.(第6题)点拨:当物体的某个面(或某条边)与投影面平行时,这个面(或这条边)的正投影和这个面(或这条边)相同;当物体的某个面(或某条边)与投影面垂直时,这个面(或这条边)的正投影是一条线段(或一个点).专训21.解:(1)根据平行投影的性质,得Rt△ABC∽Rt△DEF.∴ABAC=DEDF,即8060=DE900.解得DE=1 200 cm=12 m.即学校旗杆的高度为12 m.(2)①根据题意可知,Rt△GPH∽Rt△KPM∽Rt△ABC,∴ABAC=GPGH=KPMK,即8060=50GH=32MK.解得GH=37.5 (cm),MK=24 (cm).即灯罩底面半径MK的长为24 cm.。
人教版九年级数学下册29.1 投影同步练习3附答案【新编辑】

29.1投影专题一太阳光下的投影1.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.②③①④D.④③②①2.兴趣小组的同学要测量某棵树的高度.在阳光下,一名同学测得一根长为1米的直立竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.3米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.8米,则树高为多少米?3.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C 的水平距离为8.8 m.在阳光下某一时刻测得1米的标杆影长为0.8 m,树影落在斜坡上的部分CD=3.2 m.已知斜坡CD的坡比i=1:3,求树高AB.(结果保留整数,参考数据:3 1.7)专题二灯光下的投影4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.5.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).6.如图所示,点P表示广场上的一盏照明灯.(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)专题三正投影7.如图,投影面上垂直立一线段AB,线段长为2 cm.(1)当投影线垂直照射投影面时,线段在地面上的投影是什么图形?请在左图中画出来.(2)当投影线与投影面的倾斜角为60°时,线段在投影面上的投影是什么图形?并画出投影示意图.(3)上面(1)、(2)问题中的投影都是正投影吗?为什么?8.在正投影中,正方形倾斜于投影面放置时,它的投影是什么图形?若正方形的面积为10,它的正投影的面积是5,你知道正方形与投影面的倾斜角是多少度吗?专题四 规律探究题9.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6 m 的小明(AB )的影子BC 的长是3 m ,而小颖(EH )刚好在路灯灯泡的正下方H 点,并测得HB =6 m .(1)请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 的中点B 1处时,求其影子B 1C 1的长;当小明继续走剩下路程的13到B 2处时,求其影子B 2C 2的长;当小明继续走剩下路程的14到B 3处时,……,按此规律继续走下去,当小明走剩下路程的11n 到B n 处时,其影子B n C n 的长为 m (用含n 的代数式表示).【知识要点】1.投影:一个物体放在阳光下或灯光前,就会在地面上或墙壁上留下它的影子,这个影子称为物体的投影.投影要有照射光线和形成影子的地方,这就是投影线和投影面. 2.平行投影:由平行光线形成的投影是平行投影.3.中心投影:由同一个点(点光源)发出的光线所形成的投影为中心投影.4.正投影的概念:在平行投影中,如果投射线垂直于投影面,那么这种投影称为正投影.几何体在一个平面上的正投影叫做这个几何体的视图.5.(1)当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段AB 与它的投影的大小关 系为AB =A 1B 1;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段AB 与它的投影的大小关系为AB >A 2B 2;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点. 6.(1)当纸板Q 平行于投影面P 时,Q 的正投影与Q 的形状、大小一样;(2)当纸板Q 倾斜于投影面P 时,Q 的正投影与Q 的形状、大小发生变化; (3)当纸板Q 垂直于投影面P 时,Q 的正投影成为一条线段.故当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.【温馨提示】1.平行投影与中心投影的区别与联系.2.在平行投影下,一个图形上的点被投影后,对应点的连线互相平行.同一时刻,平行投影的影子方向和大小不随物体位置的变化而变化.区别联系光线 物体与投影面平行时的投影平行投影 平行的投影线 全等都是物体在光线的照射下,在某个平面内形成的影子(即都是投影)中心投影从一点出发的投影线放大(位似变换)3.中心投影的投射光线相交于一点,同一时刻,中心投影的影子方向随物体位置的变化而发生变化. 4.正投影是平行投影的一种特例,正投影的特征是每条投影线都垂直于投影面.【方法技巧】1.因为一天之中,太阳东升西落,所以早晨物体的影子朝西,傍晚物体的影子朝东,但因为地处北半球,即使是夏天的正午,也由于太阳直射点的关系,物体的影子略微向北偏移,故一天之中影子方向的变化顺序为:正西→北偏西→正北→北偏东→正东;一天之中影子的长度的变化规律为:长→短→长.2.确定点光源的位置的方法:两个物体影子的顶端与物体的顶端的连线的交点为点光源的位置. 3.分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.参考答案1.C 【解析】太阳由东升起的过程中,物体的影子投向西侧,且由长到短,太阳偏西,物体的影子也转投向东侧,且由短到长. 故选C.2.解:画出示意图如图所示.从图中我们看到小树在一组平行光的照射下,影子分成了三部分AC 、CD 、DG .因为小树和竖直台阶是水平的,所以四边形CDEF 是平行四边形,EF =CD ,因为同一时刻,不同物体的物高与影长之比相等,所以6.01==AC AF DG BE . 即6.018.43.0==AF BE . 解得BE =0.5,AF =8.所以小树的高AB =AF +EF +BE =8+0.3+0.5=8.8(米).3.解:如图所示,延长BD 与AC 的延长线交于点E ,过点D 作DH ⊥AE 于点H .∵i =tan ∠DCH =CH DH =31=33, ∴∠DCH =30°. ∴DH =12CD =1.6 m ,CH =3DH ≈2.7 m.由题意可知10.8DH HE =, ∴HE =0.8DH =1.28 m.∴AE =AC +CH +HE ≈8.8+2.7+1.28=12.78(m). ∵8.01=AE AB ,所以168.078.128.0≈==AE AB (m).4.①③④ 【解析】当木杆绕点A 按逆时针方向旋转时,如图所示,m >AC ,①成立;①成立,那么②不成立;当旋转到达地面时,有最短影长,等于AB ,③成立;由上可知,影子的长度先增大后减小,④成立.5.解:如图所示.(1)点P 就是所求的点;(2)EF 就是小华此时在路灯下的影子.6.解:(1)如图,线段AC 是小敏的影子.(2)过点Q 作QE ⊥MO 于E ,过点P 作PF ⊥AB 于F ,交EQ 于点D ,则PF ⊥EQ . 在Rt △PDQ 中,∠PQD =55°,DQ =EQ -ED =4.5-1.5=3(米). ∵tan55°=错误!未找到引用源。
人教版九年级数学下册 29.1 投影同步测试及答案(最新推荐版)

投影与视图29.1__投影__第1课时投影[见B本P88]1.如图所示的物体的影子,不正确的是( B )【解析】太阳光线是平行的,故B错误.29点钟天安门广场上国旗的影子( D )图29-1A.(2) B.(3) C.(1) D.(4)【解析】早上太阳在正东,影子在正西,太阳向南移动,影子向北移动,故选D.3.某小区的健身广场上南北两端各有一棵水杉,下面哪一幅图可能是它们在灯光下的影子( A )图29-1-2A.(1) B.(2)C.(1)(2)都可能 D.无法判断【解析】连接树顶端和影子顶端的直线相交于一点即为灯光下的影子.4.如图29-1-3,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( A )图29-1-3A.南偏西60° B.南偏西30°C.北偏东60° D.北偏东30°【解析】由于人相对于太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向为北偏东60°方向,∴太阳相对于你的方向是南偏西60°方向.5.如图29-1-4,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远处移动时,圆形阴影的大小的变化情况是( A )图29-1-4A.越来越小 B.越来越大C.大小不变 D.不能确定6. 下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是( C )图29-1-5A.③①④② B.③②①④C.③④①② D.②④①③【解析】西为③,西北为④,东北为①,东为②,∴将它们按时间先后顺序排列为③④①②.7. 如图,一束平行太阳光线照射到正五边形上,则∠1=__30°__.图29-1-68. 太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是10 3 cm,则皮球的直径是( B )A.5 cm B.15 cm C.10 cm D.8 cm图29-1-7 第8题答图【解析】由题意得:DC=2R,DE=103,∠CED=60°,∴可得:DC=DE sin60°=15 cm.9.一天下午,秦老师参加了校运动会女子200 m比赛,然后又参加了女子400 m比赛,摄影师在同一位置拍摄了她参加这两项比赛的照片(如图29-1-8).你认为秦老师参加400 m比赛的照片是__(a)__.图29-1-8【解析】太阳东升西落,影子长度和方向都在变化,这两幅照片都是在下午拍摄的,则影子越长拍摄的时间越晚,影子越短的拍摄的时间越早.秦老师参加400 m比赛的照片是(a).图29-1-910. 如图29-1-9,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)(1)标出王琳站在P处在路灯B下的影子;(2)计算王琳站在Q处在路灯A下的影长;(3)计算路灯A的高度.解:(1)线段CP为王琳在路灯B下的影长;(2)由题意得Rt△CEP∽Rt△CBD,∴EPBD=CPCD,∴1.89=22+6.5+QD,解得:QD=1.5米;(3)∵Rt△DFQ∽Rt△DAC∴FQAC=QDCD,∴1.8AC=1.51.5+6.5+2解得:AC=12米.答:路灯A的高度为12米.11.某数学兴趣小组利用树影测量树高,如图29-1-10(1),已知测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(精确到1米,2≈1.4,3≈1.7)(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图29-1-10(2)解答)①求树与地面成45°角时的影长;解:(1)AB=AC·tan30°=12×33=43≈7(米);(2)①如图(2),B1N=AN=AB1·sin45°=43×22≈5(米),NC1=B1N·tan60°=26×3≈8(米),AC1=AN+NC1≈5+8=13(米).答:树与地面成45°角时影长约为13米.602最大(或树与光线垂直时影长最大),AC 2=2AB 2≈14(米).答:树的最大影长约为14米.第2课时正投影[见A本P90]1.如图,箭头表示投影的方向,则图中圆柱体的投影是( B )图29-1-11A.圆B.矩形C.梯形 D.圆柱【解析】根据投影的定义画出投影,此时圆柱体的投影为矩形.2.一根笔直小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是( D ) A.AB=CDB.AB≤CDC.AB>CDD.AB≥CD【解析】当投影线与木棒垂直时,AB=CD,当投影线与木棒不垂直时,AB>CD,故选D.3.下列关于正投影的说法正确的是( B )A.如果一个物体的正投影是圆,那么这个物体一定是球B.不同的物体正投影可以相同C.圆锥的正投影是等腰三角形D.圆纸片的正投影是圆【解析】球、圆柱、圆锥、圆纸片,后三者在圆面与投影面平行时正投影都是圆.A,C,D三个选项均错在没有考虑物体的正投影与物体相对于投影面的位置有关.4.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能是图中的( B )【解析】等边三角形在地面上形成的投影不可能是一个点.5.如图29-1-12,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中正确的结论的序号是__①③④__.图29-1-126.春蕾数学兴趣小组用一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影可能是__正方形、菱形(答案不唯一)__(写出符合题意的两个图形即可).7.如图29-1-13所示,正三棱柱的面EFDC∥平面R且AE=EF=AF=2,AB=6,正三棱柱在平面R的正投影是__矩形__,正投影面积为__12__.图29-1-13【解析】由正三棱柱的特征知面EFDC为矩形,当它与投影面平行时,它的正投影与它全等,其面积为2×6=12.8.如图29-1-14所示,在电视台的演播厅中,1,2,3,4号摄像机分别拍到a,b,c,d四个画面,按画面a,b,c,d的顺序排列摄像机的顺序依次是__2,3,4,1__.图29-1-149.画出如图29-1-15所示物体(正三棱柱)的正投影.(1)投影线由物体前方射到后方;(2)投影线由物体左方射到右方;(3)投影线由物体上方射到下方.图29-1-15【解析】仔细观察光线的方向是解本题的关键.(1)从前方射到后方的正投影为两个长方形.(2)从左方射到右方的正投影为一个长方形.(3)由上方射到下方的正投影是一个正三角形.解:如图所示.10.指出如图29-1-16所示的立体图各个面的正投影图形,并画出投影线的方向如箭头所示立体图的正投影.图29-1-16解:立体图形除正面和后面为五边形外,其他的正投影为矩形.。
九年级数学下第二十九章29.1投影同步作业(含答案)

29.1投影初三数学备课组一、自主学习1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的2.太阳光线可以看成___________.3.皮影戏中的皮影是由_________投影得到.4.图29-1是两棵小树在同一时刻的影子,请问图A的影子是在_________光线下形成的,图B的影子是在_________光线下形成的.(填“太阳”或“灯光”)图29-1二、基础巩固5.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( )A.相交B.平行C.垂直D.无法确定6.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( )A.与窗户全等的矩形;B.平行四边形;C.比窗户略小的矩形;D.比窗户略大的矩形7.在同一平面内的影子如图29-2所示,此时,第三根木棒的影子表示正确( )图29-28.有两根木棒AB、CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图29-3所示,请你在图中画出这时木棒CD的影子.图29-39.如图29-4所示,某校墙边有甲、乙两根木杆,如果乙木杆的影子刚好不落在墙上,那么你能在图中画出此时的太阳光线及甲木杆的影子吗?在你画的图形中有相似三角形吗?为什么?图29-410.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A.两根都垂直于地面;B.两根平行斜插在地上;C.两根竿子不平行;D.一根倒在地上11.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )A.路灯的左侧;B.路灯的右侧;C.路灯的下方;D.以上都可以12.不同长度的物体在同一时刻同一地点的太阳光下得到的投影是( )A.相等B.长的较长C.短的较长D.不能确定13.当你走向路灯时,你的影子在你的_________,并且影子越来越________.14.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A.上午12时B.上午10时C.上午9时30分D.上午8时15.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:“广场上的大灯泡一定位于两人_______________.16.如图29-5所示,试确定灯泡所在的位置.图29-5三、能力提高17.一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400 m比赛,图29-6是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是( )A.乙照片是参加100 m的B.甲照片是参加400 m的C.乙照片是参加400 m的D.无法判断甲、乙两张照片图29-618.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长19.图29-7是一球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会如何变化?图29-720.小强说:“同一时刻,阳光下影子越长的物体就越高”,你同意他的说法吗?小亮说:“同一时刻,灯光下影子越长的物体就越高”,你同意吗?说说你的理由.21.某一时刻甲木杆高2 m,它的影长是1.5m,小颖身高1.6m,那么此时她的影长为几米?22.如图29-8所示,小明从路灯下,向前走了5 m,发现自己在地面上的影子长DE是2 m,如果小明的身高为1.6 m,那么路灯距地面的高度AB是_________ m.图29-8 图29-923.晚上,小亮走在大街上,他发现当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3 m,左边的影子长为1.5 m.又知自己身高1.80 m,两盏路灯的高相同,两盏路灯之间的距离为12 m,则路灯的高为________ m.24.在太阳光下,转动一个正方体,观察正方体在地上投下的影子,那么这个影子最多可能是几边形( )A.四边形B.五边形C.六边形D.七边形25.图29-9是木杆、底边上有高的等腰三角形、正方形在同一时刻的影子,其中相似三角形有_____________.26.阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好被站在他后面的同学踩在脚下,而小宁的影子却没有被他后面的同学踩在脚下,你知道他们的队列是向哪个方向的吗?小宁和小勇哪个高?为什么?27.如图29-10所示,为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB)8.7m的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7 m,观察者目高CD=1.6 m,请你计算树(AB)的高度.(精确到0.1 m)图29-10四、模拟链接28.如图29-11所示,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠B PC为30°,窗户的一部分在教室地面所形成的影长PE为3.5 m,窗户的高度AF为2.5 m.求窗外遮阳篷外端一点D到窗户上椽的距离A D。
人教版-数学-九年级下册--29.1 投影(含答案) 课前+基础+综合

29.1投影一、课前小测:1、小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()A. 相交B. 平行C. 垂直D. 无法确定2、球的正投影是( )(A)圆面.(B)椭圆面. (C)点.(D)圆环.3、正方形在太阳光的投影下得到的几何图形一定是( )(A)正方形.(B)平行四边形或一条线段. (C)矩形.(D)菱形.4、将一个三角形放在太阳光下,它所形成的投影是;5、地面上直立一根标杆AB如图,杆长为2cm。
①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投影示意图;二、基础训练:1、平行投影中的光线是()A、平行的B、聚成一点的C、不平行的D、向四面八方发散的2、在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()A、16mB、18mC、20mD、22m3、下列图中是太阳光下形成的影子是( )(A) (B) (C) (D)4、人离窗子越远,向外眺望时此人的盲区是( )(A)变小. (B)变大.(C)不变.(D)以上都有可能.5、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A.先变长,后变短; B.先变短,后变长; C.方向改变,长短不变; D.以上都不正确三、综合训练:1、下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.2、下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是( )(A)A→B→C→D. (B)D→B→C→A.(C)C→D→A→B.(D)A→C→B→D.3、关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区;(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比它矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大A.1 个B.2个C.3个D.4个4、小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人”;5、确定图中路灯灯泡的位置,并画出小赵在灯光下的影子;参考答案一、 课前小测:1、B2、D3、B4、三角形或一条线段5、(1)点(2)线段;;二、基础训练:1、A2、C3、A4、B5、A三、综合训练:1、D2、C3、C4、中间的上方5、灯泡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29.1投影
专题一太阳光下的投影
1.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()
A.①②③④B.④①③②C.②③①④D.④③②①
2.兴趣小组的同学要测量某棵树的高度.在阳光下,一名同学测得一根长为1米的直立竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.3米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.8米,则树高为多少米?
3.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C 的水平距离为8.8 m.在阳光下某一时刻测得1米的标杆影长为0.8 m,树影落在斜坡上的部分CD=3.2 m.已知斜坡CD的坡比i=1:3,求树高AB.(结果保留整数,参考数据:3 1.7)
专题二灯光下的投影
4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;
③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.
5.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.
(1)请你在图中画出路灯灯泡所在的位置(用点P表示);
(2)画出小华此时在路灯下的影子(用线段EF表示).
6.如图所示,点P表示广场上的一盏照明灯.
(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);
(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)
专题三正投影
7.如图,投影面上垂直立一线段AB,线段长为2 cm.
(1)当投影线垂直照射投影面时,线段在地面上的投影是什么图形?请在左图中画出来.
(2)当投影线与投影面的倾斜角为60°时,线段在投影面上的投影是什么图形?并画出投影示意图.
(3)上面(1)、(2)问题中的投影都是正投影吗?为什么?
8.在正投影中,正方形倾斜于投影面放置时,它的投影是什么图形?若正方形的面积为10,它的正投影的面积是5,你知道正方形与投影面的倾斜角是多少度吗?
专题四 规律探究题
9.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6 m 的小明(AB )的影子BC 的长是3 m ,而小颖(EH )刚好在路灯灯泡的正下方H 点,并测得HB =6 m .
(1)请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;
(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 的中点B 1处时,求其影子B 1C 1的
长;当小明继续走剩下路程的1
3
到B 2处时,求其影子B 2C 2的长;当小明继续走剩下路程的1
4到
B 3处时,……,按此规律继续走下去,当小明走剩下路程的
1
1
n 到B n 处时,其影子B n C n 的长为 m (用含n 的代数式表示).
【知识要点】
1.投影:一个物体放在阳光下或灯光前,就会在地面上或墙壁上留下它的影子,这个影子称为物体的投影.投影要有照射光线和形成影子的地方,这就是投影线和投影面. 2.平行投影:由平行光线形成的投影是平行投影.
3.中心投影:由同一个点(点光源)发出的光线所形成的投影为中心投影.
4.正投影的概念:在平行投影中,如果投射线垂直于投影面,那么这种投影称为正投影.几何体在一个平面上的正投影叫做这个几何体的视图.
5.(1)当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段AB 与它的投影的大小关 系为AB =A 1B 1;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段AB 与它的投影的大小关系为AB >A 2B 2;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点. 6.(1)当纸板Q 平行于投影面P 时,Q 的正投影与Q 的形状、大小一样;
(2)当纸板Q 倾斜于投影面P 时,Q 的正投影与Q 的形状、大小发生变化; (3)当纸板Q 垂直于投影面P 时,Q 的正投影成为一条线段.
故当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.
【温馨提示】
1.平行投影与中心投影的区别与联系.
2.在平行投影下,一个图形上的点被投影后,对应点的连线互相平行.同一时刻,平行投影的影子方向和大小不随物体位置的变化而变化.
区别
联系
光线 物体与投影面平行时的投影
平行投影 平行的投影线 全等
都是物体在光线的照射下,在某个平面内形成
的影子(即都是投影)
中心投影
从一点出发的投影线
放大(位似变换)
3.中心投影的投射光线相交于一点,同一时刻,中心投影的影子方向随物体位置的变化而发生变化. 4.正投影是平行投影的一种特例,正投影的特征是每条投影线都垂直于投影面.
【方法技巧】
1.因为一天之中,太阳东升西落,所以早晨物体的影子朝西,傍晚物体的影子朝东,但因为地处北半球,即使是夏天的正午,也由于太阳直射点的关系,物体的影子略微向北偏移,故一天之中影子方向的变化顺序为:正西→北偏西→正北→北偏东→正东;一天之中影子的长度的变化规律为:长→短→长.
2.确定点光源的位置的方法:两个物体影子的顶端与物体的顶端的连线的交点为点光源的位置. 3.分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.
参考答案
1.C 【解析】太阳由东升起的过程中,物体的影子投向西侧,且由长到短,太阳偏西,物体的影子也转投向东侧,且由短到长. 故选C.
2.解:画出示意图如图所示.
从图中我们看到小树在一组平行光的照射下,影子分成了三部分AC 、CD 、DG .因为小树和竖直台阶是水平的,所以四边形CDEF 是平行四边形,EF =CD ,因为同一时刻,不同物体的物高与影长之比相等,所以
6
.01
==AC AF DG BE . 即
6
.01
8.43.0==AF BE . 解得BE =0.5,AF =8.
所以小树的高AB =AF +EF +BE =8+0.3+0.5=8.8(米).
3.解:如图所示,延长BD 与AC 的延长线交于点E ,过点
D 作
DH ⊥AE 于点H .
∵i =tan ∠DCH =CH DH =3
1=33, ∴∠DCH =30°. ∴DH =
1
2
CD =1.6 m ,CH =3DH ≈2.7 m.
由题意可知
1
0.8
DH HE =
, ∴HE =0.8DH =1.28 m.
∴AE =AC +CH +HE ≈8.8+2.7+1.28=12.78(m). ∵
8.01=AE AB ,所以168
.078
.128.0≈==AE AB (m).
4.①③④ 【解析】当木杆绕点A 按逆时针方向旋转时,如图所示,m >AC ,①成立;①成立,那么②不成立;当旋转到达地面时,有最短影长,等于AB ,③成立;由上可知,影子的长度先增大后减小,④成立.
5.解:如图所示.
(1)点P 就是所求的点;
(2)EF 就是小华此时在路灯下的影子.
6.解:(1)如图,线段AC 是小敏的影子.
(2)过点Q 作QE ⊥MO 于E ,过点P 作PF ⊥AB 于F ,交EQ 于点D ,则PF ⊥EQ . 在Rt △PDQ 中,∠PQD =55°,DQ =EQ -ED =4.5-1.5=3(米). ∵tan55°=错误!未找到引用源。
, ∴PD =3tan55°≈4.3(米). ∵DF =QB =1.6米,
∴PF =PD +DF ≈4.3+1.6=5.9(米). 答:照明灯P 到地面的距离为5.9米.
7.解:(1)点.(2)线段,这条线段BC
的长度为
3
3
2.(3)(1)问中的投影是正投影,(2)问中的投影不是正投影,是平行投影.只有投影线和投影面垂直的投影才是正投影.
8.是一个长方形,当正方形倾斜于投影面放置时,它与投影面平行的一边长等于原来的长度,而与投影面不平行的边长缩小.因为正方形的面积为10,它的正投影的面积是5,所以不平行的一边长的投影等于这边的一半,所以正方形与投影面的倾斜角是60度.
9.解:(1)如图,点G 即为所求. (2)由题意得△∽△ABC GHC ,
∴AB BC GH HC =
, ∴1.6363GH =
+, ∴ 4.8GH =m.
(3)1111△∽△A B C GHC ,
∴11111
A B B C
GH HC =,
设11B C 的长为x m ,则1.64.83x
x =
+, 解得3
2x =(m ),即1132
B C = m .
同理22221.64.82
B C B C =+, 解得221B C =(m ),3
1
n n B C n =+.。