高考数学一轮复习《圆锥曲线》练习题(含答案)
高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。
2021版北师大版数学(文)大一轮复习文档:高考中的圆锥曲线问题 Word版含答案

1.若双曲线x 2a 2-y 23=1的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则该双曲线的实轴长为( )A .1B .2C .3D .6答案 B解析 双曲线x 2a 2-y 23=1的渐近线方程为y =±3a x ,即3x ±ay =0,圆(x -2)2+y 2=4的圆心为C (2,0),半径为r =2,如图,由圆的弦长公式得弦心距|CD |=22-12=3,另一方面,圆心C (2,0)到双曲线x 2a 2-y 23=1的渐近线3x -ay =0的距离为d =|3×2-a ×0|3+a 2=233+a 2,所以233+a 2=3,解得a 2=1,即a =1,该双曲线的实轴长为2a=2.2.设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB →等于( ) A.34 B .-34C .3D .-3答案 B解析 方法一 (特殊值法)抛物线的焦点为F ⎝⎛⎭⎫12,0,过F 且垂直于x 轴的直线交抛物线于A (12,1),B (12,-1), ∴OA →·OB →=⎝⎛⎭⎫12,1·⎝⎛⎭⎫12,-1=14-1=-34. 方法二 设A (x 1,y 1),B (x 2,y 2),则OA →·OB →=x 1x 2+y 1y 2.由抛物线的过焦点的弦的性质知:x 1x 2=p 24=14,y 1y 2=-p 2=-1.∴OA →·OB →=14-1=-34.3.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点P 在双曲线上,则双曲线的离心率是( ) A .4+2 3 B.3-1 C.3+12D.3+1答案 D解析 由于MF 1的中点P 在双曲线上,|PF 2|-|PF 1|=2a , △MF 1F 2为正三角形,边长都是2c ,所以3c -c =2a , 所以e =c a =23-1=3+1,故选D.4.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________. 答案 x 24-y 23=1解析 由题意得,双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的焦点坐标为(7,0),(-7,0),c =7;且双曲线的离心率为2×74=72=ca⇒a =2,b 2=c 2-a 2=3, 双曲线的方程为x 24-y 23=1.5.已知椭圆x 2a 2+y 2b 2=1 (a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若PQ经过焦点F ,则椭圆x 2a 2+y 2b 2=1 (a >b >0)的离心率为____________.答案 2-1解析由于抛物线y 2=2px (p >0)的焦点F 为⎝⎛⎭⎫p 2,0,设椭圆另一焦点为E . 当x =p2时代入抛物线方程得y =±p ,又由于PQ 经过焦点F ,所以P ⎝⎛⎭⎫p 2,p 且PF ⊥OF . 所以|PE |=(p 2+p2)2+p 2=2p , |PF |=p ,|EF |=p .故2a = 2p +p,2c =p ,e =2c2a=2-1.题型一 求圆锥曲线的标准方程例1 (2021·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0 )的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1 D .x 2-y 23=1 答案 D解析 双曲线x 2a 2-y 2b 2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±ba x ,由题意得2b a 2+b 2=3,②联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y 23=1,选D. 思维升华 求圆锥曲线的标准方程是高考的必考题型,主要利用圆锥曲线的定义、几何性质,解得标准方程中的参数,从而求得方程.(2022·课标全国Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 解 (1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2),将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d |PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.由于t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0,所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2.题型二 圆锥曲线的几何性质例2 (1)(2021·湖南)若双曲线x 2a 2-y 2b 2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73B.54C.43D.53(2)(2022·重庆)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D .3答案 (1)D (2)B解析 (1)由条件知y =-b a x 过点(3,-4),∴3ba =4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2, ∴25a 2=9c 2,∴e =53.故选D.(2)不妨设P 为双曲线右支上一点,|PF 1|=r 1,|PF 2|=r 2.依据双曲线的定义,得r 1-r 2=2a , 又r 1+r 2=3b ,故r 1=3b +2a 2,r 2=3b -2a2.又r 1·r 2=94ab ,所以3b +2a 2·3b -2a 2=94ab ,解得b a =43(负值舍去),故e =ca =a 2+b 2a 2=(ba)2+1(43)2+1=53,故选B. 思维升华 圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线渐近线,是常考题型,解决这类问题的关键是娴熟把握各性质的定义,及相关参数间的联系.把握一些常用的结论及变形技巧,有助于提高运算力量.(2022·北京)已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试推断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t,2),其中x 0≠0. 由于OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =±2, 圆心O 到直线AB 的距离d = 2. 此时直线AB 与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t (x -t ).即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离d =|2x 0-ty 0|(y 0-2)2+[-(x 0-t )]2.又x 20+2y 20=4,t =-2y 0x 0, 故d =⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4= ⎪⎪⎪⎪⎪⎪4+x 20x 0x 40+8x 20+162x 20= 2.此时直线AB 与圆x 2+y 2=2相切. 题型三 最值问题例3 (2022·山东)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C截得的线段长为4105.(1)求椭圆C 的方程;(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.①设直线BD ,AM 的斜率分别为k 1,k 2,证明:存在常数λ使得k 1=λk 2,并求出λ的值; ②求△OMN 面积的最大值. 解 (1)由题意知a 2-b 2a =32,可得a 2=4b 2. 椭圆C 的方程可简化为x 2+4y 2=a 2. 将y =x 代入可得x =±5a5,因此2×25a 5=4105,可得a =2. 因此b =1,所以椭圆C 的方程为x 24+y 2=1.(2)①设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2), 则B (-x 1,-y 1).由于直线AB 的斜率k AB =y 1x 1,又AB ⊥AD ,所以直线AD 的斜率k =-x 1y 1.设直线AD 的方程为y =kx +m ,由题意知k ≠0,m ≠0.由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1可得(1+4k 2)x 2+8mkx +4m 2-4=0.所以x 1+x 2=-8mk 1+4k 2,因此y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2.由题意知x 1≠-x 2,所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0), 可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12.因此存在常数λ=-12使得结论成立.②直线BD 的方程为y +y 1=y 14x 1(x +x 1), 令x =0,得y =-34y 1,即N ⎝⎛⎭⎫0,-34y 1. 由①知M (3x 1,0),可得△OMN 的面积 S =12×3|x 1|×34|y 1|=98|x 1||y 1|. 由于|x 1||y 1|≤x 214+y 21=1, 当且仅当|x 1|2=|y 1|=22时等号成立,此时S 取得最大值98.所以△OMN 面积的最大值为98.思维升华 圆锥曲线中的最值问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,依据圆锥曲线几何意义求最值.(2021·课标全国Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________. 答案 126解析 设左焦点为F 1,|PF |-|PF 1|=2a =2,∴|PF |=2+|PF 1|,△APF 的周长为|AF |+|AP |+|PF |=|AF |+|AP |+2+|PF 1|,△APF 周长最小即为|AP |+|PF 1|最小,当A 、P 、F 1三点共线时最小,过AF 1的直线方程为x -3+y 66=1.与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S =S △AF 1F -S △F 1PF =12 6. 题型四 定值、定点问题例4 (2021·课标全国 Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝⎛⎭⎫m 3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.(1)证明 设直线l :y =kx +b (k ≠0,b ≠0), A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.于是直线OM 的斜率k OM =y M x M =-9k ,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.由于直线l 过点⎝⎛⎭⎫m3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3. 由(1)得OM 的方程为y =-9k x .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9.将点⎝⎛⎭⎫m3,m 代入l 的方程得b =m (3-k )3, 因此x M =k (k -3)m3(k 2+9).四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 相互平分,即x P =2x M . 于是±km3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.由于k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.思维升华 求定点及定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e = 32,a +b =3.(1)求椭圆C 的方程;(2)如图所示,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值.(1)解 由于e =32=c a, 所以a =23c ,b =13c . 代入a +b =3得,c =3,a =2,b =1. 故椭圆C 的方程为x 24+y 2=1.(2)证明 由于B (2,0),点P 不为椭圆顶点,则可设直线BP 的方程为y =k (x -2)(k ≠0,k ≠±12),①①代入x 24+y 2=1,解得P ⎝⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1. 直线AD 的方程为y =12x +1.②①与②联立解得M ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1. 由D (0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝ ⎛⎭⎪⎫4k -22k +1,0.所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14. 则2m -k =2k +12-k =12(定值).题型五 探究性问题例5 (2021·广东)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解 (1)圆C 1:x 2+y 2-6x +5=0化为(x -3)2+y 2=4,∴圆C 1的圆心坐标为(3,0). (2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知:MC 1⊥MO , ∴MC 1→·MO →=0.又∵MC 1→=(3-x ,-y ),MO →=(-x ,-y ), ∴由向量的数量积公式得x 2-3x +y 2=0. 易知直线l 的斜率存在, ∴设直线l 的方程为y =mx , 当直线l 与圆C 1相切时,d =|3m -0|m 2+1=2,解得m =±255.把相切时直线l 的方程代入圆C 1的方程, 化简得9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3.(3)由题意知直线L 表示过定点(4,0),斜率为k 的直线,把直线L 的方程代入轨迹C 的方程x 2-3x +y 2=0,其中53<x ≤3,化简得(k 2+1)x 2-(3+8k 2)x +16k 2=0,其中53<x ≤3, 记f (x )=(k 2+1)x 2-(3+8k 2)x +16k 2,其中53<x ≤3.若直线L 与曲线C 只有一个交点,令f (x )=0.当Δ=0时,解得k 2=916,即k =±34,此时方程可化为25x 2-120x +144=0,即(5x -12)2=0,解得x =125∈⎝⎛⎦⎤53,3, ∴k =±34满足条件.当Δ>0时,①若x =3是方程的解,则f (3)=0⇒k =0⇒另一根为x =0<53,故在区间⎝⎛⎦⎤53,3上有且仅有一个根,满足题意. ②若x =53是方程的解,则f ⎝⎛⎭⎫53=0⇒k =±257⇒另外一根为x =6423,53<6423≤3,故在区间⎝⎛⎦⎤53,3上有且仅有一根,满足题意.③若x =3和x =53均不是方程的解,则方程在区间⎝⎛⎭⎫53,3上有且仅有一个根,只需f ⎝⎛⎭⎫53·f (3)<0⇒-257<k <257.故在区间⎝⎛⎦⎤53,3上有且仅有一个根,满足题意.综上所述,k 的取值范围是-257≤k ≤257或k =±34.思维升华 (1)探究性问题通常接受“确定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在. (2)反证法与验证法也是求解探究性问题常用的方法.(2022·湖南)如图,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P (233,1),且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形. (1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB →|?证明你的结论. 解 (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2. 从而a 1=1,c 2=1.由于点P (233,1)在双曲线x 2-y 2b 21=1上,所以(233)2-1b 21=1.故b 21=3. 由椭圆的定义知 2a 2=(233)2+(1-1)2+ (233)2+(1+1)2=2 3. 于是a 2=3,b 22=a 22-c 22=2.故C 1,C 2的方程分别为 x 2-y 23=1,y 23+x 22=1. (2)不存在符合题设条件的直线.①若直线l 垂直于x 轴,由于l 与C 2只有一个公共点, 所以直线l 的方程为x =2或x =- 2. 当x =2时,易知A (2,3),B (2,-3), 所以|OA →+OB →|=22,|AB →|=2 3. 此时,|OA →+OB →|≠|AB →|.当x =-2时,同理可知,|OA →+OB →|≠|AB →|.②若直线l 不垂直于x 轴,设l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是上述方程的两个实根, 从而x 1+x 2=2km3-k 2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3.由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx +2m 2-6=0. 由于直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0. 化简,得2k 2=m 2-3, 因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0, 于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →, 即|OA →+OB →|2≠|OA →-OB →|2, 故|OA →+OB →|≠|AB →|.综合①②可知,不存在符合题设条件的直线.(时间:80分钟)1.若直线l :y =3x 3-233过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 在y 轴上的截距的取值范围. 解 (1)由题意,可得c =2,b a =33,所以a 2=3b 2,且a 2+b 2=c 2=4, 解得a =3,b =1.故双曲线的方程为x 23-y 2=1.(2)由(1)知B (0,1),依题意可设过点B 的直线方程为 y =kx +1(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +1,x 23-y 2=1,得(1-3k 2)x 2-6kx -6=0,所以x 1+x 2=6k 1-3k 2,Δ=36k 2+24(1-3k 2)=12(2-3k 2)>0⇒0<k 2<23,且1-3k 2≠0⇒k 2≠13.设MN 的中点为Q (x 0,y 0),则x 0=x 1+x 22=3k 1-3k 2,y 0=kx 0+1=11-3k 2, 故直线m 的方程为y -11-3k2=-1k ⎝ ⎛⎭⎪⎫x -3k 1-3k 2, 即y =-1k x +41-3k 2.所以直线m 在y 轴上的截距为41-3k 2,由0<k 2<23,且k 2≠13, 得1-3k 2∈(-1,0)∪(0,1),所以41-3k2∈(-∞,-4)∪(4,+∞). 故直线m 在y 轴上的截距的取值范围为(-∞,-4)∪(4,+∞).2.在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A ,B 两点.(1)假如直线l 过抛物线的焦点,求OA →·OB →的值;(2)假如OA →·OB →=-4,证明:直线l 必过肯定点,并求出该定点. 解 (1)由题意:抛物线焦点为(1,0), 设l :x =ty +1,代入抛物线y 2=4x ,消去x 得y 2-4ty -4=0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4,∴OA →·OB →=x 1x 2+y 1y 2=(ty 1+1)(ty 2+1)+y 1y 2 =t 2y 1y 2+t (y 1+y 2)+1+y 1y 2 =-4t 2+4t 2+1-4=-3.(2)设l :x =ty +b ,代入抛物线y 2=4x ,消去x 得y 2-4ty -4b =0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4b .∴OA →·OB →=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2 =t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2 =-4bt 2+4bt 2+b 2-4b =b 2-4b .令b 2-4b =-4,∴b 2-4b +4=0,∴b =2, ∴直线l 过定点(2,0).∴若OA →·OB →=-4,则直线l 必过肯定点(2,0).3.已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)与双曲线x 24-v +y 21-v =1 (1<v <4)有公共焦点,过椭圆C 的右顶点B 任意作直线l ,设直线l 交抛物线y 2=2x 于P 、Q 两点,且OP ⊥OQ . (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点R (m ,n )使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点M 、N ,且△OMN 的面积最大?若存在,求出点R 的坐标及对应的△OMN 的面积;若不存在,请说明理由. 解 (1)∵1<v <4,∴双曲线的焦点在x 轴上, 设F (±c,0),则c 2=4-v +v -1=3, 由椭圆C 与双曲线共焦点,知a 2-b 2=3,设直线l 的方程为x =ty +a , 代入y 2=2x ,可得y 2-2ty -2a =0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a , ∵OP ⊥OQ ,∴x 1x 2+y 1y 2=a 2-2a =0, ∴a =2,b =1,∴椭圆C 的方程为x 24+y 2=1.(2)在△MON 中,S △OMN =12|OM ||ON |sin ∠MON =12sin ∠MON .当∠MON =90°时,12sin ∠MON 有最大值12,此时点O 到直线l 的距离为d =1m 2+n 2=22, ∴m 2+n 2=2.又∵m 2+4n 2=4,联立⎩⎪⎨⎪⎧m 2+n 2=2,m 2+4n 2=4,解得m 2=43,n 2=23,此时点R 的坐标为⎝⎛⎭⎫233,±63或⎝⎛⎭⎫-233,±63,△MON 的面积为12. 4.已知椭圆C 的中心为坐标原点O ,一个长轴顶点为(0,2),它的两个短轴顶点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于异于椭圆顶点的两点A ,B ,且AP →=2PB →. (1)求椭圆的方程; (2)求m 的取值范围.解 (1)由题意,知椭圆的焦点在y 轴上, 设椭圆方程为y 2a 2+x 2b2=1(a >b >0),由题意,知a =2,b =c ,又a 2=b 2+c 2,则b =2, 所以椭圆方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意,知直线l 的斜率存在, 设其方程为y =kx +m ,与椭圆方程联立,即⎩⎪⎨⎪⎧y 2+2x 2=4,y =kx +m ,消去y ,得 (2+k 2)x 2+2mkx +m 2-4=0, Δ=(2mk )2-4(2+k 2)(m 2-4)>0,由根与系数的关系,知⎩⎪⎨⎪⎧x 1+x 2=-2mk2+k 2,x 1·x 2=m 2-42+k 2,又AP →=2PB →,即有(-x 1,m -y 1)=2(x 2,y 2-m ), 所以-x 1=2x 2.则⎩⎪⎨⎪⎧x 1+x 2=-x 2,x 1x 2=-2x 22,所以m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22. 整理,得(9m 2-4)k 2=8-2m 2, 又9m 2-4=0时等式不成立, 所以k 2=8-2m 29m 2-4>0,得49<m 2<4,此时Δ>0. 所以m 的取值范围为⎝⎛⎭⎫-2,-23∪⎝⎛⎭⎫23,2. 5.如图,已知M (x 1,y 1)是椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点,F 为椭圆的右焦点.(1)若椭圆的离心率为e ,试用e ,a ,x 1表示|MF |,并求|MF |的最值;(2)已知直线m 与圆x 2+y 2=b 2相切,并与椭圆交于A ,B 两点,且直线m 与圆的切点Q 在y 轴右侧,若a =2,求△ABF 的周长. 解 (1)设F (c,0),则|MF |=(x 1-c )2+y 21,又x 21a 2+y 21b2=1,则y 21=⎝⎛⎭⎫1-x 21a 2b 2, 所以|MF |= ⎝⎛⎭⎫1-b 2a 2x 21-2cx 1+a 2=c 2a2x 21-2cx 1+a 2=(ex 1-a )2,又-a ≤x 1≤a 且0<e <1,所以|MF |=a -ex 1,且|MF |max =a +ae ,|MF |min =a -ae . (2)设A (x 0,y 0),B (x 2,y 2)(x 0,x 2>0),连接OQ ,OA ,在Rt △OQA 中,|AQ |2=x 20+y 20-b 2, 又y 20=⎝⎛⎭⎫1-x 20a 2b 2,所以|AQ |2=c 2x 20a2,则|AQ |=cx 0a ,同理|BQ |=cx 2a, 所以|AB |+|AF |+|BF |=2a -⎝⎛⎭⎫c a x 0+c a x 2+c a x 0+ca x 2=2a , 又a =2,所以所求周长为4.6.已知以C 为圆心的动圆过定点A (-3,0),且与圆B :(x -3)2+y 2=64(B 为圆心)相切,点C 轨迹为曲线T .设Q 为曲线T 上(不在x 轴上)的动点,过点A 作OQ (O 为坐标原点)的平行线交曲线T 于M ,N 两点. (1)求曲线T 的方程;(2)是否存在常数λ,使AM →·AN →=λOQ →2总成立?若存在,求λ;若不存在,请说明理由. 解 (1)∵A (-3,0)在圆B 的内部,∴两圆相内切, ∴|BC |=8-|AC |,即|BC |+|AC |=8>|AB |.∴C 点的轨迹是以A ,B 为焦点的椭圆,且长轴长2a =8,a =4,c =3. ∴b 2=16-9=7,∴曲线T 的方程为:x 216+y 27=1.(2)当直线MN 斜率不存在时,AN →=AM →=74,OQ →2=7.∴AM →·AN →=|AM →|·|AN →|·cos π=7λ,则λ=-716;当直线MN 斜率存在时,设M (x 1,y 1),N (x 2,y 2), MN :y =k (x +3),则OQ :y =kx ,由⎩⎪⎨⎪⎧7x 2+16y 2=112,y =k (x +3),得(7+16k 2)x 2+96k 2x +144k 2-112=0, 则x 1+x 2=-96k 27+16k 2,x 1·x 2=144k 2-1127+16k 2,∴y 1y 2=k 2[(x 1+3)(x 2+3)] =k 2[x1x 2+3(x 1+x 2)+9]=-49k 27+16k 2.AM →·AN →=(x 1+3)(x 2+3)+y 1y 2=-49(k 2+1)7+16k 2.由⎩⎪⎨⎪⎧7x 2+16y 2=112,y =kx ,得7x 2+16k 2x 2=112, 则x 2=1127+16k 2,∴OQ →2=x 2+y 2=(1+k 2)x 2=112(1+k 2)7+16k 2,由AM →·AN →=λOQ →2,可解得λ=-716.综上,存在常数λ=-716,使AM →·AN →=λOQ →2总成立.。
2023年新高考数学大一轮复习专题六解析几何第6讲圆锥曲线的定点问题(含答案)

新高考数学大一轮复习专题:第6讲 定点问题 母题 已知椭圆C :x 24+y 2=1,点P (0,1),设直线l 不经过P 点且与C 相交于A ,B 两点,若直线PA 与直线PB 的斜率的和为-1,求证:l 过定点.思路分析❶l 斜率k 存在时写出l 的方程↓❷联立l ,C 的方程,设而不求↓❸计算k PA ,k PB 并代入k PA +k PB =-1↓❹分析直线方程,找出定点证明 设直线PA 与直线PB 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22, 则k 1+k 2=4-t 2-22t -4-t 2+22t=-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1. 而k 1+k 2=y 1-1x 1+y 2-1x 2 =kx 1+m -1x 1+kx 2+m -1x 2 =2kx 1x 2+m -1x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0,即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0, 解得k =-m +12. 当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m , 即y +1=-m +12(x -2),所以l 过定点(2,-1).[子题1] 已知抛物线C :y 2=4x 的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点.若点E (-2,0),直线l 不与坐标轴垂直,且∠AEO =∠BEO ,求证:直线l 过定点. 证明 设A (x 1,y 1),B (x 2,y 2),由题意可设直线l 的方程为x =ny +b (n ≠0),由⎩⎪⎨⎪⎧ x =ny +b ,y 2=4x ,得y 2-4ny -4b =0, 则y 1+y 2=4n ,y 1y 2=-4b .由∠AEO =∠BEO ,得k EA =-k EB ,即y 1x 1+2=-y 2x 2+2, 整理得y 1x 2+2y 1+x 1y 2+2y 2=0,即y 1(ny 2+b )+2y 1+(ny 1+b )y 2+2y 2=0,整理得2ny 1y 2+(b +2)(y 1+y 2)=0,即-8bn +4(b +2)n =0,得b =2,故直线l 的方程为x =ny +2(n ≠0),所以直线l 过定点(2,0).[子题2] (2020·湖南四校联考)已知抛物线C :y 2=4x 与过点(2,0)的直线l 交于M ,N 两点,若MP →=12MN →,PQ ⊥y 轴,垂足为Q ,求证:以PQ 为直径的圆过定点. 证明 由题意可知,直线l 的斜率不为0,设其方程为x =my +2(m ∈R ),将x =my +2代入y 2=4x ,消去x 可得y 2-4my -8=0,显然Δ=16m 2+32>0,设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-8,因为MP →=12MN →,所以P 是线段MN 的中点, 设P (x P ,y P ),则x P =x 1+x 22=m y 1+y 2+42=2m 2+2, y P =y 1+y 22=2m ,所以P (2m 2+2,2m ),又PQ ⊥y 轴,垂足为Q ,所以Q (0,2m ),设以PQ 为直径的圆经过点A (x 0,y 0),则AP →=(2m 2+2-x 0,2m -y 0),AQ →=(-x 0,2m -y 0),所以AP →·AQ →=0,即-x 0(2m 2+2-x 0)+(2m -y 0)2=0,化简可得(4-2x 0)m 2-4y 0m +x 20+y 20-2x 0=0,①令⎩⎪⎨⎪⎧ 4-2x 0=0,4y 0=0,x 20+y 20-2x 0=0,可得⎩⎪⎨⎪⎧ x 0=2,y 0=0,所以当x 0=2,y 0=0时,对任意的m ∈R ,①式恒成立,所以以PQ 为直径的圆过定点,该定点的坐标为(2,0).规律方法 动线过定点问题的两大类型及解法(1)动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点. 跟踪演练1.(2020·北京东城区模拟)已知椭圆C :x 26+y 22=1的右焦点为F ,直线l :y =kx +m (k ≠0)过点F ,且与椭圆C 交于P ,Q 两点,如果点P 关于x 轴的对称点为P ′,求证:直线P ′Q 过x 轴上的定点.证明 ∵c =6-2=2,∴F (2,0),直线l :y =kx +m (k ≠0)过点F ,∴m =-2k ,∴l :y =k (x -2).由⎩⎪⎨⎪⎧ x 2+3y 2=6,y =k x -2,得(3k 2+1)x 2-12k 2x +12k 2-6=0. 依题意Δ>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=12k 23k 2+1,x 1x 2=12k 2-63k 2+1. ∵点P 关于x 轴的对称点为P ′,则P ′(x 1,-y 1).∴直线P ′Q 的方程可以设为y +y 1=y 2+y 1x 2-x 1(x -x 1),令y =0,x =x 2y 1-x 1y 1y 1+y 2+x 1=x 2y 1+x 1y 2y 1+y 2 =kx 2x 1-2+kx 1x 2-2k x 1+x 2-4=2x 1x 2-2x 1+x 2x 1+x 2-4=2×12k 2-63k 2+1-2×12k 23k 2+112k 23k 2+1-4=3. ∴直线P ′Q 过x 轴上的定点(3,0).2.已知P (0,2)是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 的离心率e =33. (1)求椭圆的方程;(2)过点P 的两条直线l 1,l 2分别与C 相交于不同于点P 的A ,B 两点,若l 1与l 2的斜率之和为-4,则直线AB 是否经过定点?若是,求出定点坐标;若不过定点,请说明理由.解 (1)由题意可得⎩⎪⎨⎪⎧ b =2,c a =33,a 2=b 2+c 2,解得a =6,b =2,c =2,∴椭圆的方程为x 26+y 24=1. (2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +t (t ≠2),A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧ y =kx +t ,x 26+y 24=1,消去y 并整理, 可得(3k 2+2)x 2+6ktx +3t 2-12=0,∴Δ=36(kt )2-4×(3k 2+2)(3t 2-12)>0,即24(6k 2-t 2+4)>0,则x 1+x 2=-6kt 3k 2+2,x 1x 2=3t 2-123k 2+2, 由l 1与l 2的斜率之和为-4,可得y 1-2x 1+y 2-2x 2=-4, 又y 1=kx 1+t ,y 2=kx 2+t ,∴y 1-2x 1+y 2-2x 2=kx 1+t -2x 1+kx 2+t -2x 2=2k +t -2x 1+x 2x 1x 2=2k +t -2·-6kt 3k 2+23t 2-123k 2+2=-4, ∵t ≠2,化简可得t =-k -2,∴y =kx -k -2=k (x -1)-2,∴直线AB 经过定点(1,-2).当直线AB 的斜率不存在时,设直线AB 的方程为x =m ,A (m ,y 1),B (m ,y 2),∴y 1-2m +y 2-2m =y 1+y 2-4m=-4, 又点A ,B 均在椭圆上,∴A ,B 关于x 轴对称,∴y 1+y 2=0,∴m =1,故直线AB 的方程为x =1,也过点(1,-2),综上直线AB 经过定点,定点为(1,-2).专题强化练1.已知椭圆C :x 22+y 2=1,设直线l 与椭圆C 相交于A ,B 两点,D (0,-1),若直线AD 与直线BD 的斜率之积为16.证明:直线l 恒过定点. 证明 ①当直线l 斜率不存在时,设l :x =m ,A (m ,y A ),B (m ,-y A ),因为点A (m ,y A )在椭圆x 22+y 2=1上, 所以m 22+y 2A =1,即y 2A =1-m 22, 所以k AD ·k BD =y A +1m ·-y A +1m =1-y 2A m 2=m 22m 2=12≠16,不满足题意. ②当直线l 斜率存在时,设l :y =kx +b (b ≠-1),A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧ y =kx +b ,x 2+2y 2-2=0,整理得 (1+2k 2)x 2+4kbx +2b 2-2=0,依题意得,Δ>0,所以x 1+x 2=-4kb 1+2k 2,x 1x 2=2b 2-21+2k 2,则k AD ·k BD =y 1+1x 1·y 2+1x 2 =kx 1+b kx 2+b +[k x 2+x 1+2b ]+1x 1x 2 =k 2x 1x 2+kb +k x 1+x 2+b 2+2b +1x 1x 2. 将x 1+x 2=-4kb 1+2k 2,x 1x 2=2b 2-21+2k2, 代入上式化简得,k AD ·k BD =y 1+1x 1·y 2+1x 2=b +122b +1b -1=16,即b +1b -1=13,解得b =-2.所以直线l 恒过定点(0,-2).2.已知点H 为抛物线C :x 2=4y 的准线上任一点,过H 作抛物线C 的两条切线HA ,HB ,切点为A ,B ,证明直线AB 过定点,并求△HAB 面积的最小值.解 设点A (x 1,y 1),B (x 2,y 2),H (t ,-1),由C :x 2=4y ,即y =14x 2,得y ′=12x , 所以抛物线C :x 2=4y 在点A (x 1,y 1)处的切线HA 的方程为y -y 1=x 12(x -x 1),即y =x 12x -12x 21+y 1,因为y 1=14x 21,所以y =x 12x -y 1, 因为H (t ,-1)在切线HA 上,所以-1=x 12t -y 1,① 同理-1=x 22t -y 2,② 综合①②得,点A (x 1,y 1),B (x 2,y 2)的坐标满足方程-1=x 2t -y ,即直线AB 恒过抛物线的焦点F (0,1), 当t =0时,此时H (0,-1),可知HF ⊥AB ,|HF |=2,|AB |=4,S △HAB =12×2×4=4, 当t ≠0时,此时直线HF 的斜率为-2t,得HF ⊥AB , 于是S △HAB =12×|HF |×|AB |, 而|HF |=t -02+-1-12=t 2+4,把直线y =t 2x +1代入C :x 2=4y 中,消去x 得 y 2-(2+t 2)y +1=0,|AB |=y 1+y 2+2=t 2+4, 即S △HAB =12(t 2+4)t 2+4=()322142t +>4,综上所述,当t =0时,S △HAB 最小,且最小值为4.。
2025高考数学一轮复习-圆锥曲线中的最值、范围问题-专项训练【含解析】

课时过关检测(五十四)圆锥曲线中的最值、范围问题【原卷版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.2.已知抛物线C :y 2=4x ,点F 是C 的焦点,O 为坐标原点,过点F 的直线l 与C 相交于A ,B 两点.(1)求向量OA ―→与OB ―→的数量积;(2)设FB ―→=λAF ―→,若λ∈[9,16],求l 在y 轴上的截距的取值范围.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,E 的左顶点为A ,上顶点为B ,点P 在椭圆上,且△PF 1F 2的周长为4+23.(1)求椭圆E 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M ,N ,且线段MN 的垂直平分线过定点G (1,0),求k 的取值范围.4.已知椭圆E :x 2a 2+y 2b 21(a >b >0)的左、右焦点分别为F 1,F 2,椭圆E 的离心率为32,且通径长为1.(1)求E 的方程;(2)直线l 与E 交于M ,N 两点(M ,N 在x 轴的同侧),当F 1M ∥F 2N 时,求四边形F 1F 2NM 面积的最大值.课时过关检测(五十四)圆锥曲线中的最值、范围问题【解析版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.解:(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E的标准方程为x2a2+y2b2=1(a>b>0),焦距为2c,则b=c,∴a2=b2+c2=2b2,∴椭圆E的标准方程为x22b2+y2b2=1.又椭圆E,∴12b2+12b2=1,解得b2=1.∴椭圆E的标准方程为x22+y2=1.(2)由于点(-2,0)在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).k(x+2),y2=1,消去y得,(1+2k2)x2+8k2x+8k2-2=0.由Δ>0得0≤k2<12,从而x1+x2=-8k21+2k2,x1x2=8k2-21+2k2,∴|MN|=1+k2|x1-x2|=21+k22-4k2(1+2k2)2.∵点F2(1,0)到直线l的距离d=3|k|1+k2,∴△F2MN的面积为S=12|MN|·d=3k2(2-4k2)(1+2k2)2.令1+2k2=t,则t∈[1,2),∴S=3(t-1)(2-t)t2=3-t2+3t-2t2=3-1+3t-2t2=3当1t=34即t[1,S有最大值,S max=324,此时k=±66.∴当直线l的斜率为±66时,可使△F2MN的面积最大,其最大值324.2.已知抛物线C:y2=4x,点F是C的焦点,O为坐标原点,过点F的直线l与C相交于A,B两点.(1)求向量OA―→与OB―→的数量积;(2)设FB―→=λAF―→,若λ∈[9,16],求l在y轴上的截距的取值范围.解:(1)设A,B两点的坐标分别为(x1,y1),(x2,y2).由题意知直线l的斜率不可能为0,F(1,0),设直线l的方程为x=my+1.=my+1,2=4x,得y2-4my-4=0,Δ=16m2+16>0,1+y2=4m,1y2=-4.∴OA―→·OB―→=x1x2+y1y2=y21y2216+y1y2=1616-4=-3.∴向量OA―→与OB―→的数量积为-3.(2)由(1)1+y2=4m,1y2=-4.∵FB―→=λAF―→,∴y2=-λy1.将y2=-λy11+y2=4m,1y2=-4,1-λ)y1=4m,λy21=-4,-λ)2y21=16m2,λy21=-4,∴(1-λ)2-λ=-4m2,∴4m2=(1-λ)2λ=λ+1λ-2.令f(λ)=λ+1λ-2,易知f(λ)在[9,16]上单调递增,∴4m2∈649,22516,∴m2∈169,22564,∴m∈-158,-43∪43,158.∴l在y轴上的截距-1m的取值范围为-34,-815∪815,34.3.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,E的左顶点为A,上顶点为B,点P在椭圆上,且△PF1F2的周长为4+23.(1)求椭圆E的方程;(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,且线段MN的垂直平分线过定点G(1,0),求k的取值范围.解:(1)a+2c=4+23,=ca=32,=2,=3,则b2=a2-c2=1,∴椭圆E的方程为x24+y2=1.(2)设M(x1,y1),N(x2,y2),弦MN的中点D(x0,y0),kx+m,y2=1,消去y整理得,(1+4k2)x2+8kmx+4m2-4=0,∵直线l:y=kx+m(k≠0)与椭圆交于不同的两点,∴Δ=64k2m2-4(1+4k2)(4m2-4)>0,即m2<1+4k2,1+x2=-8km1+4k2,1·x2=4m2-41+4k2,则x0=x1+x22=-4km1+4k2,y0=kx0+m=m1+4k2,所以直线DG的斜率为k DG=y0x0-1=-m4km+1+4k2,又由直线DG和直线MN垂直可得-m4km+1+4k2·k=-1,则m=-1+4k23k,代入m2<1+4k2可得<1+4k2,即k2>15,解得k>55或k<-55.故所求k∞4.已知椭圆E:x2a2+y2b21(a>b>0)的左、右焦点分别为F1,F2,椭圆E的离心率为32,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM 面积的最大值.解:(1)c2,=2,=1,=3,故椭圆的方程为x24+y2=1.(2)假设M,N两点在x轴上侧,如图所示,延长MF1交E于点M0,由F1M∥F2N知M0与N关于原点对称,从而有|F1M0|=|F2N|,由(1)可知F1(-3,0),F2(3,0),设M(x1,y1),M0(x2,y2),设MF1的方程为x=my-3,由my-3,y2=1得(m2+4)y2-23my-1=0,Δ=12m2+4(m2+4)>0,故1+y2=23mm2+4,1y2=-1m2+4.设F1M与F2N的距离为d,四边形F1F2NM的面积为S,则S=12(|F1M|+|F2N|)d=12(|F1M|+|F1M0|)d=12|MM0|d=S△MF2M0,又因为S△MF2M0=12·|F1F2|·|y1-y2|=12×23×|y1-y2|=3(y1+y2)2-4y1y2=3·12m2(m2+4)2+4m2+4=43m2+1m2+4=43m2+1+3m2+1≤4323=2,当且仅当m2+1=3m2+1,即m=±2时,等号成立,故四边形F1F2NM面积的最大值为2.。
高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
中职高考数学一轮复习讲练测第八章 圆锥曲线(测)(含详解)

第八章 圆锥曲线检测题1.已知直线经过点A (0,3)和点B (-1,2),则直线AB 的斜率为( )A .-1B .1C .-12D .122.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( ) A .1或3B .1或5C .3或5D .1或23.圆x 2+y 2+x -3y -32=0的半径是( )A .1B .2C .2D .224.以(-2,1)为圆心且与直线x +y =3相切的圆的方程为( ) A .(x -2)2+(y +1)2=2 B .(x +2)2+(y -1)2=4 C .(x -2)2+(y +1)2=8D .(x +2)2+(y -1)2=85. 直线(m +2)x +my +1=0与直线(m -1)x +(m -4)y +2=0互相垂直,则m 的值为( ) A .12B .-2C .-12或2D .-2或126.椭圆x 29+y 24=1的离心率是( )A .133 B .53C .23D .597. 抛物线y 2=8x 的焦点到直线x -3y =0的距离是( ) A .23 B .2 C .3D .18. 设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =±2xB .y =±2xC .y =±22x D .y =±12x9.在方程mx 2-my 2=n 中,若mn <0,则方程的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线10.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 的值为( )A .k =3B .k =4C .k =2D .k =1二、填空题1.直线l 过点M (1,-2),倾斜角为30°.则直线l 的方程为 . 2.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =__ __.3.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为__ __.4.双曲线的一个焦点坐标是(0,-6),经过点A (-5,6),则双曲线的标准方程为__ __. 5.方程x 2+y 2+ax +2ay +54a 2+a -1=0表示圆,则a 的取值范围是6.直线l :2x -y +2=0过椭圆左焦点F 和一个顶点B ,则该椭圆的离心率为 7.若k ∈R ,方程x 2k +3+y 2k +2=1表示焦点在x 轴上的双曲线,则k 的取值范围是__ __.8.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为 三、解答题1.直线l 经过两点(2,1)、(6,3). (1)求直线l 的方程;(2)圆C 的圆心在直线l 上,并且与x 轴相切于(2,0)点,求圆C 的方程. 2.求焦点在直线x -y +2=0上的抛物线的标准方程.3.椭圆的中心在原点,焦点在坐标轴上,焦距为213.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7:3,求椭圆和双曲线的方程.4.已知椭圆C的两焦点分别为F1(-22,0)、F2(22,0),长轴长为6.(1)求椭圆C的标准方程;(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长.5.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点F2作倾斜角为30°的直线l,直线l与双曲线交于不同的A,B两点,求AB的长.第八章 圆锥曲线检测题1.已知直线经过点A (0,3)和点B (-1,2),则直线AB 的斜率为( B )A .-1B .1C .-12D .12[解析] 由斜率公式,得k AB =2-3-1-0=1. 2.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( C ) A .1或3B .1或5C .3或5D .1或2[解析] 当k =3时,两直线显然平行;当k ≠3时,由两直线平行,斜率相等,得-k -34-k =2(k -3)2.解得k =5,故选C .3.圆x 2+y 2+x -3y -32=0的半径是( C )A .1B .2C .2D .22[解析] 圆x 2+y 2+x -3y -32=0化为标准方程为(x +12)2+(y -32)2=4,∴r =2.4.以(-2,1)为圆心且与直线x +y =3相切的圆的方程为( D ) A .(x -2)2+(y +1)2=2 B .(x +2)2+(y -1)2=4 C .(x -2)2+(y +1)2=8D .(x +2)2+(y -1)2=8[解析] 由所求的圆与直线x +y -3=0相切,∴圆心(-2,1)到直线x +y -3=0的距离d =|-2+1-3|2=22,∴所求圆的方程为(x +2)2+(y -1)2=8.5. 直线(m +2)x +my +1=0与直线(m -1)x +(m -4)y +2=0互相垂直,则m 的值为( C )A .12B .-2C .-12或2D .-2或12[解析] 由题意,得(m +2)(m -1)+m (m -4)=0,解得m =-12或2.6.椭圆x 29+y 24=1的离心率是( B )A .133B .53C .23D .59[解析] ∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4= 5. ∴e =c a =53.故选B .7. 抛物线y 2=8x 的焦点到直线x -3y =0的距离是( D ) A .23 B .2 C .3D .1[解析] 由y 2=8x 可得其焦点坐标(2,0),根据点到直线的距离公式可得d =|2-3×0|12+(-3)2=1.8. 设双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( C )A .y =±2xB .y =±2xC .y =±22x D .y =±12x[解析] ∵2b =2,2c =23,∴b =1,c =3,∴a 2=c 2-b 2=3-1=2,∴a =2,故渐近线方程为y =±22x .9.在方程mx 2-my 2=n 中,若mn <0,则方程的曲线是( D ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在y 轴上的双曲线[解析] 方程mx 2-my 2=n可化为:y 2-n m -x 2-n m=1,∵mn <0,∴-nm>0,∴方程的曲线是焦点在y 轴上的双曲线.10.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 的值为( C )A .k =3B .k =4C .k =2D .k =1[解析] 双曲线x 2k -y 23=1的焦点(±3+k ,0),椭圆的焦点坐标(±9-k 2,0),椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,可得:3+k =9-k 2,k >0,解得k =2.故选C . 二、填空题1.直线l 过点M (1,-2),倾斜角为30°.则直线l 的方程为 . [解析] ∵直线l 的倾斜角为30°,∴直线l 的斜率k =tan30°=33,∴直线方程x -3y -23-1=02.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =[解析] 由题意可知,抛物线的准线方程为x =-p2,因为p >0,所以该准线过双曲线的左焦点,由双曲线的方程可知,左焦点坐标为(-2,0);故由-2=-p2可解得p =2 2.3.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为__y 216+x 2=1__.[解析] 由已知,2a =8,2c =215,∴a =4,c =15, ∴b 2=a 2-c 2=16-15=1, ∴椭圆的标准方程为y 216+x 2=1.4.双曲线的一个焦点坐标是(0,-6),经过点A (-5,6),则双曲线的标准方程为__y 216-x 220=1__.[解析] 解法一:由已知得,c =6,且焦点在y 轴上,则另一焦点坐标是(0,6).因为点A (-5,6)在双曲线上,所以点A 与两焦点的距离的差的绝对值是常数2a ,即 2a =|(-5)2+(6+6)2-(-5)2+(6-6)2| =|13-5|=8,得a =4,b 2=c 2-a 2=62-42=20. 因此,所求的双曲线标准方程是y 216-x 220=1.5.方程x 2+y 2+ax +2ay +54a 2+a -1=0表示圆,则a 的取值范围是[解析] 由题意知,a 2+(2a )2-4⎝⎛⎭⎫54a 2+a -1=-4a +4>0.∴a <1.6.直线l :2x -y +2=0过椭圆左焦点F 和一个顶点B ,则该椭圆的离心率为[解析] ∵直线l :2x -y +2=0中,令x =0,得y =2;令y =0,得x =-1. 直线l :2x -y +2=0过椭圆左焦点F 1和一个顶点B , ∴椭圆左焦点F 1(-1,0),顶点B (0,2). ∴c =1,b =2,a =1+4=5, ∴该椭圆的离心率为e =c a =15=55.7.若k ∈R ,方程x 2k +3+y 2k +2=1表示焦点在x 轴上的双曲线,则k 的取值范围是__ -3<k <-2 __.[解析] 由题意可知,⎩⎪⎨⎪⎧k +3>0k +2<0,解得-3<k <-2.8.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为 [解析] ∵点P 到y 轴的距离为6,∴点P 到抛物线y 2=8x 的准线x =-2的距离d =6+2=8, 根据抛物线的定义知点P 到抛物线焦点的距离为8. 三、解答题1.直线l 经过两点(2,1)、(6,3). (1)求直线l 的方程;(2)圆C 的圆心在直线l 上,并且与x 轴相切于(2,0)点,求圆C 的方程. [解析] (1)直线l 的斜率k =3-16-2=12,∴直线l 的方程为y -1=(x -2),即x -2y =0.(2)由题意可设圆心坐标为(2a ,a ),∵圆C 与x 轴相切于(2,0)点,∴圆心在直线x =2上, ∴a =1.∴圆心坐标为(2,1),半径r =1.∴圆C 的方程为(x -2)2+(y -1)2=1. 2.求焦点在直线x -y +2=0上的抛物线的标准方程. [解析] 因为是标准方程,所以其焦点应该在坐标轴上, 所以其焦点坐标即为直线x -y +2=0与坐标轴的交点, 所以其焦点坐标为(-2,0)和(0,2)当焦点为(-2,0)时,可知其方程中的p =4,所以其方程为y 2=-8x , 当焦点为(0,2)时,可知其方程中的p =4, 所以其方程为x 2=8y ,故所求方程为y 2=-8x 或x 2=8y .3.椭圆的中心在原点,焦点在坐标轴上,焦距为213.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7:3,求椭圆和双曲线的方程.[解析] ①焦点在x 轴上,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),且c =13.设双曲线为x 2m 2-y 2n 2=1(m >0,n >0),m =a -4.因为e 双e 椭=73,所以a m =73,解得a =7,m =3.因为椭圆和双曲线的半焦距为13, 所以b 2=36,n 2=4. 所以椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.②焦点在y 轴上,椭圆方程为x 236+y 249=1,双曲线方程为y 29-x 24=1.4. 已知椭圆C 的两焦点分别为F 1(-22,0)、F 2(22,0),长轴长为6.(1)求椭圆C 的标准方程;(2)已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长.[解析] (1)由F 1(-22,0)、F 2(22,0),长轴长为6,得:c =22,a =3,所以b =1. ∴椭圆方程为x 29+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2), 由(1)可知椭圆方程为x 29+y 2=1①,∵直线AB 的方程为y =x +2②把②代入①得化简并整理得10x 2+36x +27=0 ∴x 1+x 2=-185,x 1x 2=2710,又|AB |=(1+12)(18252-4×2710)=635. 5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点F 2作倾斜角为30°的直线l ,直线l 与双曲线交于不同的A ,B 两点,求AB 的长. [解析] (1)∵双曲线C :x 2a 2-y 2b 2=1的离心率为3,点(3,0)是双曲线的一个顶点,∴ca =3,a =3,解得c =3,又c 2=a 2+b 2,b =6, ∴双曲线的方程为x 23-y 26=1.(2)双曲线x 23-y 26=1的右焦点为F 2(3,0),∴直线l 的方程为y =33(x -3), 联立⎩⎨⎧x 23-y 26=1,y =33(x -3),得5x 2+6x -27=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-65,x 1x 2=-275,所以|AB |=1+13·(-65)2-4×(-275)=1635.。
圆锥曲线—最值、范围问题-高考数学复习

第八章 平面解析几何
高考一轮总复习 • 数学
返回导航
2.(2023·广东佛山市二模)双曲线 C:xa22-by22=1(a>0,b>0)的左顶点 为 A,焦距为 4,过右焦点 F 作垂直于实轴的直线交 C 于 B、D 两点, 且△ABD 是直角三角形.
(1)求双曲线 C 的方程; (2)M、N 是 C 右支上的两动点,设直线 AM、AN 的斜率分别为 k1、 k2,若 k1k2=-2,求点 A 到直线 MN 的距离 d 的取值范围.
第八章 平面解析几何
高考一轮总复习 • 数学
圆锥曲线最值问题答题模板.
返回导航
第八章 平面解析几何
高考一轮总复习 • 数学
返回导航
【变式训练】 (2024·湖南三湘创新发展联合体联考)在直角坐标系xOy中,动点P到 直线x=4的距离是它到点M(1,0)的距离的2倍,设动点P的轨迹为曲线
C.
(1)求曲线C的方程; (2)直线l:x=my-1与曲线C交于A,B两点,求△MAB面积的最大 值.
则 y1+y2=-3m6m2-n 1,y1y2=33mn22--11(*)
第八章 平面解析几何
高考一轮总复习 • 数学
返回导航
由 k1k2=-2,得 y1y2+2(x1+1)(x2+1)=0, 即 y1y2+2(my1+n+1)(my2+n+1)=0, 整理得(2m2+1)y1y2+2m(n+1)(y1+y2)+2(n+1)2=0, 将(*)式代入得 3(n2-1)(2m2+1)-12m2n(n+1)+2(n+1)2(3m2-1)= 0. 化简可消去所有的含 m 项,解得 n=5 或 n=-1(舍去). 则直线 MN 的方程为 x-my-5=0,则 d= m62+1,
高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)

高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =−+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求||CD 的最小值.【解析】(1)设,sin )H θθ是椭圆上任意一点,(0,1)P ,222221144144||12cos (1sin )1311sin 2sin 11sin 111111PH θθθθθ⎛⎫=+−=−−=−+≤⎭+ ⎪⎝,当且仅当1sin 11θ=−时取等号,故PH(2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++−= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=−⎪+⎪⎪⎨⎪=−⎛⎫⎪+ ⎪⎪⎝⎭⎩, 因为直线111:1y PA y x x −=+与直线132y x =−+交于C , 则111114422(21)1C x x x x y k x ==+−+−,同理可得,222224422(21)1D x x x x y k x ==+−+−.则224||(21)1C D x CD x k x −=+−====≥=当且仅当316k=时取等号,故CD2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x yC a ba b−=>>的右焦点为(2,0)F,渐近线方程为y=.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点()()1122,,,P x y Q x y在C上,且1210,0x x y>>>.过P且斜率为Q M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ AB∥;③||||MA MB=.注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)右焦点为(2,0)F,∴2c=,∵渐近线方程为y=,∴ba=∴b=,∴222244c a b a=+==,∴1a=,∴b=∴C的方程为:2213yx−=;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而12x x=,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为()2y k x=−,则条件①M在AB上,等价于()()2000022y k x ky k x=−⇔=−;两渐近线的方程合并为2230x y−=,联立消去y 并化简整理得:()22223440k x k x k −−+=设()()3344,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===−=−−, 设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y −+−=−+−, 移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤−−++−−+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x −⎡⎤⎡⎤−++−+=⎣⎦⎣⎦−,即()000N N x x k y y −+−=,即200283k x ky k +=−;由题意知直线PM的斜率为直线QM∴由))10102020,y y x x y y x x −=−−=−,∴)121202y y x x x −=+−, 所以直线PQ的斜率)1201212122x x x y y m x x x x +−−==−−,直线)00:PM y x x y =−+,即00y y =, 代入双曲线的方程22330x y −−=,即)3yy +−=中,得:()()00003y y ⎡⎤−=⎣⎦, 解得P的横坐标:100x y ⎛⎫+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎫−=++−=−−⎪−−⎭∴03x m y =, ∴条件②//PQ AB 等价于003m k ky x =⇔=, 综上所述:条件①M 在AB 上,等价于()2002ky k x =−;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=−;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==−−,∴③成立; 选①③推②:由①③解得:20223k x k =−,20263k ky k =−,∴003ky x =,∴②成立; 选②③推①:由②③解得:20223k x k =−,20263k ky k =−,∴02623x k −=−,∴()2002ky k x =−,∴①成立.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ−取得最大值时,求直线AB 的方程.【解析】(1)抛物线的准线为2px =−,当MD 与x 轴垂直时,点M 的横坐标为p , 此时=32pMF p +=,所以2p =, 所以抛物线C 的方程为24y x =;(2)[方法一]:【最优解】直线方程横截式设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my −−=,120,4y y ∆>=−,由斜率公式可得12221212444MN y y k y y y y −==+−,34223434444AB y y k y y y y −==+−, 直线112:2x MD x y y −=⋅+,代入抛物线方程可得()1214280x y y y −−⋅−=, 130,8y y ∆>=−,所以322y y =,同理可得412y y =,所以()34124422MN AB k k y y y y ===++ 又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===, 若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++, 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=, 34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x +. [方法二]:直线方程点斜式 由题可知,直线MN 的斜率存在.设()()()()11223344,,,,,,,M x y N x y A x y B x y ,直线():1MN y k x =− 由 2(1)4y k x y x=−⎧⎨=⎩得:()2222240k x k x k −++=,121x x =,同理,124y y =−.直线MD :11(2)2y y x x =−−,代入抛物线方程可得:134x x =,同理,244x x =. 代入抛物线方程可得:138y y =−,所以322y y =,同理可得412y y =,由斜率公式可得:()()21432143212121.22114AB MN y y y y y y k k x x x x x x −−−====−−⎛⎫− ⎪⎝⎭(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=,34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x =+. [方法三]:三点共线设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设(),0P t ,若 P 、M 、N 三点共线,由221212,,44y y t y t PM PN y ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭,所以22122144y y t y t y ⎛⎫⎛⎫−=− ⎪ ⎪⎝⎭⎝⎭,化简得124y y t =-, 反之,若124y y t =-,可得MN 过定点(),0t 因此,由M 、N 、F 三点共线,得124y y =−,由M 、D 、A 三点共线,得138y y =−, 由N 、D 、B 三点共线,得248y y =−,则3412416y y y y ==−,AB 过定点(4,0)(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即2k =时,等号成立,所以当αβ−最大时,AB k =:4AB x =+. 【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线,MN AB的斜率关系,由基本不等式即可求出直线AB 的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;法二:常规设直线方程点斜式,解题过程同解法一;法三:通过设点由三点共线寻找纵坐标关系,快速找到直线AB 过定点,省去联立过程,也不失为一种简化运算的好方法.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛−−⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P −的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛−−⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B −−,所以2:23+=AB y x ,①若过点(1,2)P −的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,N ,代入AB 方程223y x =−,可得(3,T ,由MT TH =得到(5,H −.求得HN 方程:(22y x =−,过点(0,2)−. ②若过点(1,2)P −的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y −−+=. 联立22(2)0,134kx y k x y −−+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +−+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧−++=⎪+⎪⎨+−⎪=⎪+⎩,且1221224(*)34kx y x y k −+=+联立1,223y y y x =⎧⎪⎨=−⎪⎩可得111113(3,),(36,).2y T y H y x y ++− 可求得此时1222112:()36y y HN y y x x y x x −−=−+−−, 将(0,2)−,代入整理得12121221122()6()3120x x y y x y x y y y +−+++−−=, 将(*)代入,得222241296482448482436480,k k k k k k k +++−−−+−−= 显然成立,综上,可得直线HN 过定点(0,2).−5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,直线l 交C于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【解析】(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,所以224111a a −=−,解得22a =,即双曲线22:12x C y −=.易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y , 联立2212y kx m x y =+⎧⎪⎨−=⎪⎩可得,()222124220k x mkx m −−−−=, 所以,2121222422,2121mk m x x x x k k ++=−=−−,()()222222Δ16422210120m k m k m k =−+−>⇒−+>且≠k .所以由0AP AQk k +=可得,212111022y y x x −−+=−−, 即()()()()122121210x kx m x kx m −+−+−+−=, 即()()()1212212410kx x m k x x m +−−+−−=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+−−−−−= ⎪−−⎝⎭, 化简得,()2844410k k m k +−++=,即()()1210k k m +−+=,所以1k =−或12m k =−,当12m k =−时,直线():21l y kx m k x =+=−+过点()2,1A ,与题意不符,舍去, 故1k =−.(2)[方法一]:【最优解】常规转化不妨设直线,PA AQ 的倾斜角为π,2αβαβ⎛⎫<< ⎪⎝⎭,因为0AP AQ k k +=,所以παβ+=,由(1)知,212220x x m =+>,当,A B 均在双曲线左支时,2PAQ α∠=,所以tan 2α=2tan 0αα+,解得tan α=(负值舍去) 此时P A 与双曲线的渐近线平行,与双曲线左支无交点,舍去; 当,A B 均在双曲线右支时,因为tan PAQ ∠=()tan βα−=tan 2α=−2tan 0αα−,解得tan α,于是,直线):21PA y x =−+,直线):21QA y x =−+,联立)222112y x x y ⎧=−+⎪⎨−=⎪⎩可得,)23241002x x ++−,因为方程有一个根为2,所以P x =,P y=,同理可得,103Q x +=,Q y=53−. 所以5:03PQ x y +−=,163PQ =,点A 到直线PQ的距离d = 故PAQ △的面积为11623⨯=. [方法二]:设直线AP 的倾斜角为α,π02α⎛⎫<< ⎪⎝⎭,由tan PAQ ∠=tan 2PAQ ∠由2PAQ απ+∠=,得tan AP k α=1112y x −−,联立1112y x −=−221112x y −=得1x1y ,同理,2x 2y =12203x x +=,12689x x =而1||2|AP x −,2||2|AQ x −,由tan PAQ ∠=sin PAQ ∠故12121||||sin 2()4|2PAQSAP AQ PAQ x x x x =∠=−++= 【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线,PA PB 的斜率,从而联立求出点,P Q 坐标,进而求出三角形面积,思路清晰直接,是该题的通性通法,也是最优解;法二:前面解答与法一求解点,P Q 坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学一轮复习《圆锥曲线》练习题(含答案)一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .2y x =±D .22y x =±2.已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为( ) A .5B .2C .21+D .21-3.如图,在体积为3的三棱锥P-ABC 中,P A ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ⊥,则点M 的轨迹长度的最大值为( )A .3B .6C .23D .324.抛物线22y x =的焦点坐标为( ).A .1,02⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .10,8⎛⎫- ⎪⎝⎭5.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A .32B .2C .3D .46.已知抛物线M :24y x =的焦点为F ,O 是坐标原点,斜率为()0k k >的直线l 交抛物线M 于A ,B 两点,且点A ,B 分别位于第一、四象限,交抛物线的准线l '于点C .若2ACFABFSS=,2BF =,则AOBS=( )A .33-B .33+C .2D .231+7.若双曲线的中心为坐标原点,焦点在y 轴上,其离心率为2,则该双曲线的渐近线方程为( ) A .3y x =±B .33y x =±C .4y x =±D .14y x =±8.已知双曲线E 的左、右焦点分别为12,F F ,O 为坐标原点.若点P 在E 上,2OP OQ =-,22PF OF =,1132QF OF =,则E 的离心率为A .2B .2C .5D .31+9.设1F ,2F 是离心率为5的双曲线222124x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于A .42B .83C .24D .4810.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,直线20l :x y '-+=,动点M 在C 上运动,记点M 到直线l 与l ′的距离分别为d 1,d 2,O 为坐标原点,则当d 1+d 2最小时,cos ∠MFO =( ) A .22B .23C .24D .2611.如图,已知正方体1111ABCD A B C D -的棱长为1,,M N 分别是棱1,AA BC 上的动点,若2MN =,则线段MN 的中点P 的轨迹是( )A .一条线段B .一段圆弧C .一部分球面D .两条平行线段12.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C与2C 的公共弦经过F ,则椭圆的离心率为( )A 1B C D二、填空题13.已知点(3,2)在椭圆221(0,0)x y m n m n+=>>上,则点(-3,3)与椭圆的位置关系是__________.14.过点且渐近线与双曲线22:12x C y -=的渐近线相同的双曲线方程为______.15.焦点在y 轴上的双曲线221y mx -=,则m 的值为___________.16.已知过抛物线C :y 2=8x 焦点的直线交抛物线于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,AB BM =,则A 点的横坐标为___.三、解答题17.求经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的标准方程.18.已知椭圆C :22143x y +=,过椭圆右焦点的直线l 与椭圆交于M ,N 两点,求MN 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且椭圆C 经过点31,2P ⎛⎫-- ⎪⎝⎭.(1)求椭圆C 的方程.(2)不过点P 的直线:2l y kx =+与椭圆C 交于A ,B 两点,记直线P A ,PB 的斜率分别为1k ,2k ,试判断12k k +是否为定值.若是,求出该定值;若不是,请说明理由.20.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y b C b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程;(2)若ABO 10,求直线AB 的方程; (3)若2AF BF =,求证:四边形AOCD 是平行四边形.21.已知(0,2),(3,1)A B 是椭圆2222:1(0)x y G a b a b+=>>上的两点.(1)求椭圆G 的离心率;(2)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.22.已知椭圆C 的离心率2e =()10,1B -,()20,1B . (1)求椭圆C 的方程;(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N 点坐标;若不存在,说明理由.23.已知点P 在圆22:4O x y +=上运动,PQ x ⊥轴,垂足为Q ,点A 满足12AQ PQ =. (1)求点A 的轨迹E 的方程;(2)过点30,2⎛⎫⎪⎝⎭的直线l 与曲线E 交于,M N 两点,记OMN ∆的面积为S ,求S 的最大值.24.已知抛物线1C :()220x py p =>的焦点为F ,圆2C :()()22284x y +++=,过y 轴上点G 且与y 轴不垂直的直线l 与抛物线1C 交于A 、B 两点,B 关于y 轴的对称点为D ,O 为坐标原点,连接2GC 交x 轴于点E ,且点E 、F 分别是2GC 、OG 的中点. (1)求抛物线1C 的方程; (2)证明:直线AD 与圆2C 相交参考答案1.C2.C3.A4.C5.B6.B7.B8.D9.C10.A11.B12.A 13.点在椭圆外 14.22163x y -=15.4 16.417.设所求的等轴双曲线的方程为:()220x y λλ-=≠,将(3,1)A -代入得:()2231λ--=,即=8λ, 所以等轴双曲线的标准方程:22188x y -=18.解:由椭圆C :22143x y +=知,2a =,b =1c =,所以椭圆C 的右焦点为()1,0F .当直线l 的斜率不存在时,223b MN a==. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,将其代入椭圆C 的方程得()22223484120kxk x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+, 所以=MN ()222121333434+==+++k k k因为20k ≥,所以(]3,4MN ∈. 综上,MN 的取值范围是[]3,4. 19.(1)因为12c e a ==,所以2a c =,所以222234b a c a =-=.因为椭圆C 过31,2P ⎛⎫-- ⎪⎝⎭,所以221914a b +=,所以24a =,23b =,故椭圆C 的标准方程为22143x y +=. (2)因为直线l 不过31,2P ⎛⎫-- ⎪⎝⎭,且直线P A ,PB 的斜率存在,所以72k ≠且12k ≠.设()11,A x y ,()22,B x y ,联立方程组222143y kx x y =+⎧⎪⎨+=⎪⎩,得()22341640k x kx +++=, 则1221634k x x k +=-+,122434x x k =+. 由()()221616340k k ∆=-+>,得214k >且72k ≠.因为()()12121212121212121273377272222211111kx x k x x y y kx kx k k x x x x x x x x ⎛⎫++++++++ ⎪⎝⎭+=+=+=+++++++, 所以2221222271682712482134343416416713434k k k k k k k k k k k k k k ⎛⎫+ ⎪⎝⎭-+-++++===-+-+++, 即12k k +为定值,且123k k +=.20.(1)由题意知,椭圆1C 的长轴长126a =,短轴长12b =124c ==, 椭圆2C 的长轴长2212a =,短轴长2b ,焦距22c =.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即23= 因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=.(2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线, 设直线AB 的方程为2x my =+,联立22195x y +=,消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>,所以1,2y ==, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABOAOFBOFSS SOF y OFy O y y y F y =+=+=-=-==, 化简得4259m=,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上, 所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =从而得,113,4x y ==即321,,48A B ⎛⎛ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =.由题知0x >,所以21,4x y ==21,4C ⎛ ⎝⎭.又(6,0)D,所以OA CD k k ==又因为,OA CD 不共线,所以//OA CD ,又AD OC k k ==,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形. 21.解:(1)由已知2b =, 由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==所以2228,c a b c =-== 所以椭圆G的离心率是c e a ==; (2)当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件; 设直线BC 的方程为1(3)y k x -=-),点(),C C C x y ,由22131124y kx kx y =+-⎧⎪⎨+=⎪⎩可得()222316(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B 和点C 的横坐标, 所以223(13)12331C k x k --=+,即22(13)431C k x k --=+,所以2236131C k k y k --+=+,因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=,2222963961(3,1),3131k k k k AB AC k k ⎛⎫-----⋅=-⋅ ⎪++⎝⎭2236128031k k k --==+, 即(32)(31)0k k -+=, 123k ,213k =-, 当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以123BC k k ==, 所以直线BC 的方程为213y x =-. 22.(1)由题意可设椭圆为22221x y a b+=由题意可得c e a ==1b =,可得a =所以椭圆的方程为:2212x y +=.(2)联立2222y kx m x y =+⎧⎨+=⎩,整理可得:()222124220k x kmx m +++-=, 由题意可得()()222216412220k m k m ∆=-+-=,可得2212m k =+;可得()242212P km k x m k -==-+,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭. 联立2y kx mx =+⎧⎨=⎩,可得2Q x =,2Q y k m =+,即()2,2Q k m +,设在x 轴上存在()0,0N x .由0PN QN ⋅=,可得()0021,2,20k x x k m m m ⎛⎫+-⋅---= ⎪⎝⎭,可得200242210k k k x x m m m ⎛⎫+--++= ⎪⎝⎭, 即()200022110kx x x m-++-=, 可得20002101x x x ⎧-+=⎨=⎩,可得01x =,即定点()1,0N .23.(1)设(,)A x y ,11(,)P x y , ∵12AQ PQ =,∴A 为PQ 的中点, ∴11,2,x x y y =⎧⎨=⎩∴22(2)4x y +=,即2214x y +=.∴点A 的轨迹E 的方程2214x y +=.(2)显然直线l 的斜率存在,设直线l 的方程为32y kx =+,将直线方程代入椭圆方程中得22(14)1250k x kx +++=, ∴222251444(14)56420016k k k k ∆=-⨯+=->⇒>. 设1122(,),(,)M x y N x y ,∴12133||224OMN POM PON S S S x x ∆∆∆=-=⨯⨯-=令2914()4t k t =+>,则214k t -=,∴3344OMN S S ∆====∵914049t t >⇒<<,∴129t =时,34143OMN S ∆≤⨯=,∴S 的最大值1.24.(1)设点()0,0E x ,()00,G y ,因为圆2C :()()22284x y +++=,所以圆心()22,8C --,因为点E 是2GC 的中点,所以00202820x y -+=⎧⎨-+=⨯⎩,解得0018x y =-⎧⎨=⎩,则点()0,8G ,因为点F 是OG 的中点, 所以()0,4F ,则42p=,解得8p =, 故抛物线的方程为216x y =.(2)因为B 关于y 轴的对称点为D , 所以设()11,B x y ,()22,A x y ,()11,D x y -,设直线AB 的方程为8y kx -=,即80kx y -+=,联立28016kx y x y-+=⎧⎨=⎩,消去x 得()22161640y k y -++=,则1264y y =, 设直线AD 的方程为y mx n =+,联立216y mx n x y=+⎧⎨=⎩,消去x 得()2221620y m n y n -++=,则212y y n =, 故264n =,易知0n <,则8n =-,直线AD 的方程为8y mx =-,必过定点()0,8-, 而圆2C :()()22284x y +++=正好与y 轴交于定点()0,8-, 且过点()0,8-的所有直线中,只有与y 轴重合的直线才能与圆2C :()()22284x y +++=相切,直线AD 显然不可能是y 轴,因此,直线AD 与圆2C 相交.。