贝叶斯分类器经典讲解

合集下载

朴素贝叶斯分类器详解及中文文本舆情分析(附代码实践)

朴素贝叶斯分类器详解及中文文本舆情分析(附代码实践)

朴素贝叶斯分类器详解及中⽂⽂本舆情分析(附代码实践)本⽂主要讲述朴素贝叶斯分类算法并实现中⽂数据集的舆情分析案例,希望这篇⽂章对⼤家有所帮助,提供些思路。

内容包括:1.朴素贝叶斯数学原理知识2.naive_bayes⽤法及简单案例3.中⽂⽂本数据集预处理4.朴素贝叶斯中⽂⽂本舆情分析本篇⽂章为基础性⽂章,希望对你有所帮助,如果⽂章中存在错误或不⾜之处,还请海涵。

同时,推荐⼤家阅读我以前的⽂章了解基础知识。

▌⼀. 朴素贝叶斯数学原理知识朴素贝叶斯(Naive Bayesian)是基于贝叶斯定理和特征条件独⽴假设的分类⽅法,它通过特征计算分类的概率,选取概率⼤的情况,是基于概率论的⼀种机器学习分类(监督学习)⽅法,被⼴泛应⽤于情感分类领域的分类器。

下⾯简单回顾下概率论知识:1.什么是基于概率论的⽅法?通过概率来衡量事件发⽣的可能性。

概率论和统计学是两个相反的概念,统计学是抽取部分样本统计来估算总体情况,⽽概率论是通过总体情况来估计单个事件或部分事情的发⽣情况。

概率论需要已知数据去预测未知的事件。

例如,我们看到天⽓乌云密布,电闪雷鸣并阵阵狂风,在这样的天⽓特征(F)下,我们推断下⾬的概率⽐不下⾬的概率⼤,也就是p(下⾬)>p(不下⾬),所以认为待会⼉会下⾬,这个从经验上看对概率进⾏判断。

⽽⽓象局通过多年长期积累的数据,经过计算,今天下⾬的概率p(下⾬)=85%、p(不下⾬)=15%,同样的 p(下⾬)>p(不下⾬),因此今天的天⽓预报肯定预报下⾬。

这是通过⼀定的⽅法计算概率从⽽对下⾬事件进⾏判断。

2.条件概率若Ω是全集,A、B是其中的事件(⼦集),P表⽰事件发⽣的概率,则条件概率表⽰某个事件发⽣时另⼀个事件发⽣的概率。

假设事件B发⽣后事件A发⽣的概率为:设P(A)>0,则有 P(AB) = P(B|A)P(A) = P(A|B)P(B)。

设A、B、C为事件,且P(AB)>0,则有 P(ABC) = P(A)P(B|A)P(C|AB)。

分类算法之朴素贝叶斯分类(NaiveBayesianClassification)

分类算法之朴素贝叶斯分类(NaiveBayesianClassification)

分类算法之朴素贝叶斯分类(NaiveBayesianClassification)1、什么是分类分类是⼀种重要的数据分析形式,它提取刻画重要数据类的模型。

这种模型称为分类器,预测分类的(离散的,⽆序的)类标号。

例如医⽣对病⼈进⾏诊断是⼀个典型的分类过程,医⽣不是⼀眼就看出病⼈得了哪种病,⽽是要根据病⼈的症状和化验单结果诊断病⼈得了哪种病,采⽤哪种治疗⽅案。

再⽐如,零售业中的销售经理需要分析客户数据,以便帮助他猜测具有某些特征的客户会购买某种商品。

2、如何进⾏分类数据分类是⼀个两阶段过程,包括学习阶段(构建分类模型)和分类阶段(使⽤模型预测给定数据的类标号)3、贝叶斯分类的基本概念贝叶斯分类法是统计学分类⽅法,它可以预测类⾪属关系的概率,如⼀个给定元组属于⼀个特定类的概率。

贝叶斯分类基于贝叶斯定理。

朴素贝叶斯分类法假定⼀个属性值在给定类上的概率独⽴于其他属性的值,这⼀假定称为类条件独⽴性。

4、贝叶斯定理贝叶斯定理特别好⽤,但并不复杂,它解决了⽣活中经常碰到的问题:已知某条件下的概率,如何得到两条件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)的概率。

P(A|B)是后验概率(posterior probability),也就是我们常说的条件概率,即在条件B下,事件A 发⽣的概率。

相反P(A)或P(B)称为先验概率(prior probability·)。

贝叶斯定理之所以有⽤,是因为我们在⽣活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关⼼P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。

下⾯不加证明地直接给出贝叶斯定理:5、朴素贝叶斯分类的思想和⼯作过程。

朴素贝叶斯分类的思想真的很朴素,它的思想基础是这样的:对于给出的待分类项,求解此项出现的条件下各个类别出现的概率,哪个最⼤,就认为此待分类属于哪个类别。

朴素贝叶斯分类课件

朴素贝叶斯分类课件

缺点:对异常值和离散特征处理不佳。
01
02
03
04
01
多项式分布假设:朴素贝叶斯分类器假设特征符合多项式分布。
02
数学模型:基于多项式分布的朴素贝叶斯分类器使用以下数学模型进行分类
03
特征概率密度函数为多项式分布。
通过贝叶斯定理计算样本属于每个类别的概率。
缺点:对连续数值特征处理不佳,参数估计困难。
特征编码
03
对特征进行标准化、归一化等预处理,以提高分类器的性能。
特征预处理
根据任务需求和数据特性,调整朴素贝叶斯分类器的超参数,如平滑参数、先验概率等。
通过交叉验证来评估不同超参数组合下的分类器性能,以选择最佳参数组合。
调整分类器参数
使用交叉验证
利用多核CPU或GPU进行并行计算,以提高分类器的训练速度。
对噪声数据敏感
如果数据集中存在噪声或者异常值,朴素贝叶斯分类器的性能可能会受到影响。
对连续特征的处理
朴素贝叶斯分类器通常只能处理离散特征,对于连续特征需要进行离散化或者采用其他方法进行处理。
05
CHAPTER
朴素贝叶斯分类器的应用场景与实例
朴素贝叶斯分类器在文本分类任务中表现出色,例如垃圾邮件、情感分析、新闻分类等。
01
02
高斯朴素贝叶斯假定特征符合高斯分布(正态分布),而多项式朴素贝叶斯则假定特征服从多项式分布。
朴素贝叶斯算法可以分为两类:高斯朴素贝叶斯和多项式朴素贝叶斯。
它是一种基于概率的分类方法,对于缺失数据和异常值具有较好的鲁棒性。
朴素贝叶斯算法在文本分类、情感分析、图像分类等自然语言处理和计算机视觉领域都有广泛的应用。
定义
03
CHAPTER

医学中的贝叶斯

医学中的贝叶斯
• 由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求: P(F1F2...Fn|C)P(C) 的最大值。
• 朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此: P(F1F2...Fn|C)P(C) = P(F1|C)P(F2|C) ... P(Fn|C)P(C)
P(感冒|打喷嚏x建筑工人) = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 = 0.66
朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基 础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很 少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模 型与其他分类方法相比具有最小的误差率。但是朴素贝叶斯分 类有一个限制条件,就是特征属性必须有条件独立或基本独立 (实际上在现实应用中几乎不可能做到完全独立)。
贝叶斯算法
1.2 贝叶斯分类概述
贝叶斯分类基于贝叶斯定理,贝叶斯定理 是由18世纪概率论和决策论的早起研究者 Thomas Bayes发明的,故用其名字命名为贝叶 斯定理。
分类算法的比较研究发现,一种称为朴素
贝叶斯分类法的简单贝叶斯分类法可以与决策 树和经过挑选的神经网络分类器相媲美。用于 大型数据库,贝叶斯分类法也已表现出高准确 率和高速度。
两者是有确定的关系,贝叶斯定理就是这种关系的 陈述。
贝叶斯公式
贝叶斯公式提供了从先验概率P(A)、P(B) 和P(B|A)计算后验概率P(A|B)的方法:
P(A|B)=P(B|A)*P(A)/P(B) ,P(A|B)随着P(A) 和P(B|A)的增长而增长,随着P(B)的增长而 减少,即如果B独立于A时被观察到的可能性 越大,那么B对A的支持度越小。
P(X )
P(X )

贝叶斯分类

贝叶斯分类

详解贝叶斯分类器1.贝叶斯决策论贝叶斯分类器是一类分类算法的总称,贝叶斯定理是这类算法的核心,因此统称为贝叶斯分类。

贝叶斯决策论通过相关概率已知的情况下利用误判损失来选择最优的类别分类。

“风险”(误判损失)= 原本为cj的样本误分类成ci产生的期望损失,期望损失可通过下式计算:为了最小化总体风险,只需在每个样本上选择能够使条件风险R(c|x)最小的类别标记。

最小化分类错误率的贝叶斯最优分类器为:即对每个样本x,选择能使后验概率P(c|x)最大的类别标记。

利用贝叶斯判定准则来最小化决策风险,首先要获得后验概率P(c|x),机器学习要实现的是基于有限的训练样本集尽可能准确的估计出后验概率P(c|x)。

主要有两种模型:一是“判别式模型”:通过直接建模P(c|x)来预测,其中决策树,BP神经网络,支持向量机都属于判别式模型。

另外一种是“生成式模型”:通过对联合概率模型P(x,c)进行建模,然后再获得P(c|x)。

对于生成模型来说:基于贝叶斯定理,可写为下式(1)通俗的理解:P(c)是类“先验”概率,P(x|c)是样本x相对于类标记c的类条件概率,或称似然。

p(x)是用于归一化的“证据”因子,对于给定样本x,证据因子p(x)与类标记无关。

于是,估计p(c|x)的问题变为基于训练数据来估计p(c)和p(x|c),对于条件概率p(x|c)来说,它涉及x所有属性的联合概率。

2.极大似然估计假设p(x|c))具有确定的形式并且被参数向量唯一确定,则我们的任务是利用训练集估计参数θc,将P(x|c)记为P(x|θc)。

令Dc表示训练集D第c类样本的集合,假设样本独立同分布,则参数θc对于数据集Dc的似然是对进行极大似然估计,就是去寻找能最大化P(Dc|θc)的参数值。

直观上看,极大似然估计是试图在θc所有可能的取值中,找到一个能使数据出现的“可能性”最大的值。

上式的连乘操作易造成下溢,通常使用对数似然:此时参数θc的极大似然估计为在连续属性情形下,假设概率密度函数,则参数和的极大似然估计为:也就是说,通过极大似然法得到的正态分布均值就是样本均值,方差就是的均值,在离散情况下,也可通过类似的方式估计类条件概率。

贝叶斯的原理和应用

贝叶斯的原理和应用

贝叶斯的原理和应用1. 贝叶斯原理介绍贝叶斯原理是基于概率论的一种推理方法,它被广泛地应用于统计学、人工智能和机器学习等领域。

其核心思想是通过已有的先验知识和新的观察数据来更新我们对于某个事件的信念。

2. 贝叶斯公式贝叶斯公式是贝叶斯原理的数学表达方式,它可以用来计算在观察到一些新的证据后,更新对于某个事件的概率。

贝叶斯公式的表达如下:P(A|B) = (P(B|A) * P(A)) / P(B)其中,P(A|B)表示在观察到事件B之后,事件A发生的概率;P(B|A)表示在事件A发生的前提下,事件B发生的概率;P(A)和P(B)分别是事件A和事件B的先验概率。

3. 贝叶斯分类器贝叶斯分类器是基于贝叶斯原理的一种分类算法。

它利用已有的训练数据来估计不同特征值条件下的类别概率,然后根据贝叶斯公式计算得到新样本属于不同类别的概率,从而进行分类。

贝叶斯分类器的主要步骤包括:•学习阶段:通过已有的训练数据计算得到类别的先验概率和特征条件概率。

•预测阶段:对于给定的新样本,计算得到其属于不同类别的概率,并选择概率最大的类别作为分类结果。

贝叶斯分类器的优点在于对于数据集的要求较低,并且能够处理高维特征数据。

但是,贝叶斯分类器的缺点是假设特征之间相互独立,这在实际应用中可能不符合实际情况。

4. 贝叶斯网络贝叶斯网络是一种用有向无环图来表示变量之间条件依赖关系的概率图模型。

它可以用来描述变量之间的因果关系,并通过贝叶斯推理来进行推断。

贝叶斯网络的节点表示随机变量,边表示变量之间的条件概率关系。

通过学习已有的数据,可以构建贝叶斯网络模型,然后利用贝叶斯推理来计算给定一些观察值的情况下,其他变量的概率分布。

贝叶斯网络在人工智能、决策分析和医学诊断等领域有广泛的应用。

它可以通过概率推断来进行决策支持,帮助人们进行风险评估和决策分析。

5. 贝叶斯优化贝叶斯优化是一种用来进行参数优化的方法。

在参数优化问题中,我们需要找到使得某个性能指标最好的参数组合。

常用的分类模型

常用的分类模型

常用的分类模型一、引言分类模型是机器学习中常用的一种模型,它用于将数据集中的样本分成不同的类别。

分类模型在各个领域有着广泛的应用,如垃圾邮件过滤、情感分析、疾病诊断等。

在本文中,我们将介绍一些常用的分类模型,包括朴素贝叶斯分类器、决策树、支持向量机和神经网络。

二、朴素贝叶斯分类器朴素贝叶斯分类器是一种基于贝叶斯定理的分类模型。

它假设所有的特征都是相互独立的,这在实际应用中并不一定成立,但朴素贝叶斯分类器仍然是一种简单而有效的分类算法。

2.1 贝叶斯定理贝叶斯定理是概率论中的一条基本公式,它描述了在已知一些先验概率的情况下,如何根据新的证据来更新概率的计算方法。

贝叶斯定理的公式如下:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A|B)表示在事件B已经发生的条件下事件A发生的概率,P(B|A)表示在事件A已经发生的条件下事件B发生的概率,P(A)和P(B)分别表示事件A和事件B独立发生的概率。

2.2 朴素贝叶斯分类器的工作原理朴素贝叶斯分类器假设所有特征之间相互独立,基于贝叶斯定理计算出后验概率最大的类别作为预测结果。

具体地,朴素贝叶斯分类器的工作原理如下:1.计算每个类别的先验概率,即在样本集中每个类别的概率。

2.对于给定的输入样本,计算每个类别的后验概率,即在样本集中每个类别下该样本出现的概率。

3.选择后验概率最大的类别作为预测结果。

2.3 朴素贝叶斯分类器的优缺点朴素贝叶斯分类器有以下优点:•算法简单,易于实现。

•在处理大规模数据集时速度较快。

•对缺失数据不敏感。

但朴素贝叶斯分类器也有一些缺点:•假设特征之间相互独立,这在实际应用中并不一定成立。

•对输入数据的分布假设较强。

三、决策树决策树是一种基于树结构的分类模型,它根据特征的取值以及样本的类别信息构建一个树状模型,并利用该模型进行分类预测。

3.1 决策树的构建决策树的构建过程可以分为三个步骤:1.特征选择:选择一个最佳的特征作为当前节点的划分特征。

7-Bayes分类器-第七章

7-Bayes分类器-第七章

最小风险Bayes决策规则:
若R(αk x) = min R(αi x), 则x ∈ωk
i =1, 2,...,M
例:已知正常细胞先验 概率为P (ω1 ) = 0.9, 异常为P (ω 2 ) = 0.1, 从类条件概率密度分布 曲线上查的P ( x ω i ) = 0.2, P ( x ω i ) = 0.4,
1 3 X11 = (1+1+ 0 −1−1) = 0, X12 = 5 5
X 1 = X 11 , X 12
(
)
T
X 2 = X 21 , X 22
(
)
3 T = (0, ) 5 T 7 = (0,− )T . 4

C 11 = C 21
C 12 ( 协方差矩阵计算方法) C 22
R2 R1
P ( x ω1 ) P ( ω1 ) P ( x ω 2 ) P ( ω 2 )
R1
R2
由此:错误率为为图中两个划线部分之和。BAYES公式表明每个 由此:错误率为为图中两个划线部分之和。 公式表明每个 最大,实际上使X错判的可能性达到最小 错判的可能性达到最小。 样本所属类别都使P(ω1 x) 最大,实际上使 错判的可能性达到最小。
最小风险Bayes分类器 最小风险Bayes分类器 Bayes
假定要判断某人是正常(ω1)还是肺病患者(ω2),于是在判 断中可能出现以下情况:
第一类,判对(正常→正常) λ11 ; 第二类,判错(正常→肺病) λ21 ; 第三类,判对(肺病→肺病) λ22; 第四类,判错(肺病→正常) λ12 。 ( → )
−1
1 T exp− ( x − µ ) ∑ −1 (x − µ ) 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
n
其中每个训练样本可用一个属性向量 X=(x1,x2,x3,„,xn)表示,各个属性之间条件独立。
朴素贝叶斯分类器
比如,对于一篇文章“Good good study,Day day up.”
用一个文本特征向量来表示: x=(Good, good, study, Day, day , up)。
一般各个词语之间肯定不是相互独立的,有一定 的上下文联系。但在朴素贝叶斯文本分类时,我 们假设个单词之间没有联系,可以用一个文本特 征向量来表示这篇文章,这就是“朴素”的来历。
Weak
Weak Strong Strong Weak Weak Weak Strong Strong Weak Strong
Yes
Yes No Yes No Yes Yes Yes Yes Yes No
p(y ye s ) 9 / 14
D7 D8 D9 D10 D11 D12 D13 D14
贝叶斯分类器举例
我们将使用此表的数据,并结合朴素贝叶斯分类器来分 类下面的新实例:
outlook overcast tem peratur e cool x hum dity normal wind strong
贝叶斯分类器举例
Day Outlo ok
大于
1 P( X | Y YES )P( P YES ) 189
所以该样本分类为No
朴素贝叶斯分类器的工作流程
条件概率的m估计
假设有来了一个新样本 x1= (Outlook = Cloudy,Temprature = Cool,Humidity = High,Wind = Strong) 要求对其分类。我们来开始计算 P(Outlook = Cloudy|Yes)=0/9=0 P(Outlook = Cloudy |No)=0/5=0 计算到这里,大家就会意识到,这里出现了一个新的属性值,在 训练样本中所没有的。如果有一个属性的类条件概率为0,则整 个类的后验概率就等于0,我们可以直接得到后验概率P(Yes | x1)= P(No | x1)=0,这时二者相等,无法分类。
朴素贝叶斯如何工作
有了条件独立假设,就不必计算X和Y的每 一种组合的类条件概率,只需对给定的Y, 计算每个Xi的条件概率。后一种方法更实 用,因为它不需要很大的训练集就能获 得较好的概率估计。
估计分类属性的条件概率
P(Xi|Y=y)怎么计算呢?它一般根据类别y下 包含属性Xi的实例的比例来估计。以文本 分类为例,Xi表示一个单词,P(Xi|Y=y)= 包含该类别下包含单词的xi的文章总数/ 该类别下的文章总数。
2 3 3 3 2 P( X | Y YES ) * * * 9 9 9 9 283
P(P ye s) 9 / 14
2 3 3 3 9 1 P( X | Y YES )P( P YES ) * * * * 9 9 9 9 14 189
贝叶斯分类器举例
由于
18 P( X | Y NO)P( Y NO) 8752yes来自3 4yes no
多项式模型举例
该文本用属性向量 表示为
d=(Chinese, Chinese, Chinese, Tokyo, Japan) 类别集合为Y={yes, no}。
id
doc
类别In c=China?
Outloo k Overca st Rain Rain Overca st Sunny Rain Sunny Overca st Overca st
Temper ature Hot Mild Cool Cool Cool Mild Mild Mild Hot
Humidi ty High High Normal Normal Normal Normal Normal High Normal
多项式模型
基本原理 在多项式模型中, 设某文档d=(t1,t2,…,tk),tk是该文档中出现过的单词,允许重复, 则:
类c下单词总数 先验概率p(c) 整个训练本的单词总数
条件概率P(tk | c) 类c下单词tk 在各个文档中出现的次 数 1 类c下单词总数 | v |
V是训练样本的单词表(即抽取单词,单词出现多次,只算一个),|V|则表 示训练样本包含多少种单词。在这里,m=|V|, p=1/|V|。 P( tk|c)可以看作是单词tk在证明d属于类c上提供了多大的证据,而P(c)则可 以认为是类别c在整体上占多大比例(有多大可能性)。
Wind Weak Weak Weak Strong Weak Weak Strong Strong Weak
PlayTe nnis Yes Yes Yes Yes Yes Yes Yes Yes Yes
D3 D4 D5 D7 D9 D10 D11 D12 D13
P(Temprature = Cool |Yes) =3/9
P(Outlook = Sunny|No)=3/5 P(Temperature = Cool |No) =1/5 P(Humidity = High |No) =4/5 P(Wind = Strong |No) =3/5
Tempe ratur e
Humid ity
Wind
PlayTennis
D1 D2
H:假设候选集
P(A|B)= P( Ai | B)
1
N
表示使P(B|A) 最大的B值
P(A)??_
朴素贝叶斯分类器
1、条件独立性
给定类标号y,朴素贝叶斯分类器在估计类条件概 U 率时假设属性之间条件独立。条件独立假设可以形 式化的表达如下:
P( X | Y y) P( xi | Y y)
这里先解释什么是条件概率
P( A B )
在事情B发生的条件下A发生的条件概率,其 求解公式为
P( AB) P A B P( B)
贝叶斯定理
贝叶斯定理的意义在于,我们在生 活中经常遇到这种情况:我们可以很容 易直接得出P(A|B),P(B|A)则很难直接 得出,但我们更关心P(B|A),贝叶斯定 理就为我们打通从P(A|B)获得P(B|A)的 道路。
问题:假定有一个新病人,化验 结果为正,是否应将病人断定为 有癌症?求后验概率P(cancer|+) 和P(cancer|+)
贝叶斯定理
解决上面的问题:已知某条件概率,如何得到 两个事件交换后的概率,也就是在已知P(A|B)的情 况下如何求得P(B|A)。
诊断正 确 诊断正 确 癌症
癌症
贝叶斯定理
贝叶斯分类器举例
假设给定了如下训 练样本数据,我们学习的 目标是根据给定的天气状 况判断你对PlayTennis这个 请求的回答是Yes还是No。
Day D1 D2 D3 Outlook Sunny Sunny Overcast Temperat ure Hot Hot Hot Humidity High High High Wind Weak Strong Weak PlayTenn is No No Yes
D4
D5 D6
Rain
Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast Rain
Mild
Cool Cool Cool Mild Cool Mild Mild Mild Hot Mild
High
Normal Normal Normal High Normal Normal Normal High Normal High
贝叶斯定理 下面不加证明给出贝叶斯定 理公式
P( B A) P( A B ) P( B ) P( A)
机器语言中的定义
P ( A) 表示在没有训练数据前假设A拥有的初
始概率。P(A)被称为A的先验概率.
P( B A)
P(A|B)表示假设B成立时A的概率 机器学习中我们关心的是P(B|A),即 给定A时B的成立的概率,称为B的 后验概率 ,
Sunn y Sunn y
Hot Hot
High High
Weak Stro ng
No No
D8
D14 D6
Sunn y
Rain Rain
Mild
Mild Cool
High
High Norm al
Weak
Stro ng Stro ng
No
No No
贝叶斯分类器举例
P(Outlook = Sunny|No)=3/5 P(Humidity = High |No) =4/5 P(Temperature = Cool |No) =1/5 P(Wind = Strong |No) =3/5
3 1 4 3 36 P( X | Y NO) * * * 5 5 5 5 625
p( Y no) 5 / 14
36 5 18 P( X | Y NO) * P( Y NO) * 625 14 875
贝叶斯分类器举例
Day
P(Outlook = Sunny|Yes)=2/9
贝叶斯定理的解释
P( B A) P( A B ) P( B ) P( A)
P(B|A)随着P(B)和P(A|B)的增长而增长,随 着P(A)的增长而减少,即如果A独立于B时被观 察到的可能性越大,那么B对A的支持度越小.
评分标准
BMAP P( A | B) P( B) arg max P( B | A) arg max arg max P( A | B) P( B) P( A) BH BH BH
条件概率的m估计
当训练样本不能覆盖那么多的属性值时,都会出现上述的窘 境。简单的使用样本比例来估计类条件概率的方法太脆弱了,尤 其是当训练样本少而属性数目又很大时。 解决方法是使用m估计(m-estimate)方法来估计条件概率:
相关文档
最新文档