渗氮及碳氮共渗常见问题与解决的方法
气体碳氮共渗零件形变分析和改进措施

气体碳氮共渗零件形变分析和改进措施史亚贝,邰 鑫(河南工业职业技术学院机电工程系,河南南阳473009)摘 要:气体碳氮共渗是在气体介质中,将碳和氮同时渗入工件表层,并以渗碳为主的化学热处理工艺。
相对于渗碳、渗氮,碳氮共渗具有一定的工艺优势,且易获得高的力学性能。
但生产中发现,此工艺在处理非均匀截面的套筒类零件时,易发生较大形变。
本文通过试验验证,着重分析零件变形原因,并提出相关改进意见。
关键词:气体碳氮共渗;套筒类零件;力学性能中图分类号:T G161 文献标志码:AAnalysis and Improvement Measure of G as C arbonitriding P arts DeformationSHI Yabei,TA I Xin(Department of Electrical&Mechanical Engineering,He’nan Polytechnic Institute,Nanyang473009,China) Abstract:Gas nitrocementation is a mechanical heat treatment process of mingling carbon with nitrogen in the surface of workpiece under the condition of gas medium,which had certain processing advantages and can obtain better mechanical property compared with carburization,nitriding and nitrocementation.But sleeve parts of non-uniform section often gener2 ated large deformation when gas carbonitriding process had been used in production.So its deformation reasons were ana2 lyzed in this paper,and the improvement measures were presented.K ey w ords:G as carbonitriding,Sleeve parts,Mechanical property 碳氮共渗是在一定温度下向钢的表层同时渗入碳和氮的过程,碳氮共渗习惯上又称作氰化。
碳氮共渗(3)

气体碳氮共渗(3)气体碳氮共渗,是把含碳、氮的气体或液体有机化合物通入炉内,使其在一定温度下析出碳和氮的活性原子并渗入工件表面的工艺。
气体碳氮共渗不用氰盐,只要把一般气体渗碳设备稍加改装,便可进行共渗处理。
(一)共渗介质和化学反应气体碳氮共渗使用的介质可分为两大类:一是渗碳剂加氨,另一类是含有碳氮元素的有机化合物。
1.渗碳剂加氨渗碳剂是供碳源,可用以丙烷富化的吸热式气体;氨气则是供氮源。
碳氮共渗时,将上述两种气体按比例同时通入炉罐,它们除各自发生渗碳反应和渗氮反应外,还相互作用:CH4+NH3→HCN+3H2CO+NH3→HCN+H2O新生的氰化氢(HCN)又在工件表面分解产生活性原子HCN→H2+2【C】+2【N】活性碳氮原子被工件表面吸收并向内部扩散,形成共渗表层。
调整和控制炉气的碳势与氮势,就能控制渗层质量。
2.直接滴注含有碳氮元素的有机液体,如三乙醇胺、尿素的甲醇溶液等。
三乙醇胺是一种暗黄色粘稠液体,在高温下的理论热分解反应为(C2H4OH)3N→3CO+NH3+3CH4实际反应是复杂的,热解后的气体成分随温度变化而变化。
三乙醇胺的主要缺点是粘度大、流动性差,管道容易堵塞。
为此,必须加大滴液管直径并增设冷却水套。
有的单位先将其裂化(840~860℃),再通入工作炉;也有些单位用乙醇稀释(三乙醇胺与乙醇1:1)后使用。
尿素(NH2)2CO的甲醇溶液(最大溶解度为20%)也可以作为共渗介质,直接滴入炉内。
尿素在高温下分解出CO、H2、和【N】(NH2)2CO→CO+2H2+2【N】甲醇在高温下分解产生CO和H2CH3OH→CO+2H2配置共渗溶液时,应该综合考虑液体的粘度和流动性、合理的碳氮配比等诸因素,确定溶液的混合比。
例如,某单位以三乙醇胺、甲醇及尿素的混合液为共渗剂,其成分为:三乙醇胺500ml+甲醇500 ml+尿素180g,取得了良好效果。
(二)气体碳氮共渗的工艺参数共渗层的碳氮浓度和深度主要取决于共渗温度、时间和介质成分与供应量等因素:1.共渗温度共渗温度直接影响到介质的活性和碳氮原子的扩散系数,共渗速度随温度的升高而加快。
齿轮渗氮、氮碳共渗工艺及质量控制

齿轮渗氮、氮碳共渗工艺及质量控制
齿轮渗氮是一种提高齿轮表面硬度和耐磨性的表面处理方法,可以通过在齿轮表面注入氮气,使其在表面形成氮化层。
齿轮渗氮的主要工艺包括气体渗氮和盐浴渗氮两种方法。
1. 气体渗氮工艺:气体渗氮是将齿轮置于渗氮炉中,通过加热至高温状态,然后通过氨气或氮气等气体进行渗透处理,使氮原子渗入齿轮表面形成氮化层。
这种工艺具有操作简单、渗透深度可控、成本较低等优点。
2. 盐浴渗氮工艺:盐浴渗氮是将齿轮浸入温度较高的盐浴溶液中进行处理,使盐浴溶液中的氮原子渗透到齿轮表面形成氮化层。
这种工艺渗透速度较快,渗透深度大,但操作复杂,成本较高。
质量控制是齿轮渗氮过程中非常重要的环节,主要包括以下几个方面:
1. 温度控制:温度是齿轮渗氮过程中的重要参数,需要控制在合适的范围内,以保证渗透效果和避免过热损坏齿轮。
2. 渗氮时间控制:渗氮时间是影响氮化层深度和均匀性的重要因素,需要根据齿轮的具体要求和设计要求来确定。
3. 渗氮介质控制:选择合适的渗氮介质对于渗透效果和氮化层质量都有重要影
响,需要根据具体情况进行选择。
4. 清洗和处理后的质量检验:渗氮后需要对齿轮进行清洗和处理,以去除表面的残留物,然后进行质量检验,包括硬度测试、金相分析、氮化层厚度测量等。
通过合理的工艺选择和质量控制,可以确保齿轮渗氮的效果和质量,提高齿轮的使用寿命和性能。
漫谈二关于气体氮碳共渗软氮化表面白亮层的控制问题〖化学热处理〗热

漫谈二关于气体氮碳共渗软氮化表面白亮层的控制问题〖化学热处理〗热000000000000001,如果说渗氮的目标是希望表面获得少无白亮层又有足够深度的扩散层,同时要求保持心部调质状态的高强韧性--见漫谈(一);那么,氮碳共渗(含短时氮化)则希望表面获得一定厚度、性能优良的白亮层,至于氮碳共渗时产生的扩散层有多厚,以及对心部机械性能的要求上,除特殊要求(比如某些模具、高耐磨零件等)以外,一般不作明文规定。
这是这两种工艺方法在技术目标层面上最基本的区别。
2,氮碳共渗工艺覆盖的钢种很宽,几乎所有的钢牌号到铸铁都可以用得上。
氮碳共渗之所以应用如此广泛,是因为那一层厚度不大的白亮层,具有高硬度、高耐磨和有一定抗蚀能力,同时在钢表面形成压应力可以提高一些疲劳性能;其二,在价廉的碳素钢和低合金钢上,可以很容易获得较好的白亮层。
良好的性价比,使这种工艺技术在轻负荷零件、精密的机械零件以及某些大路货的耐大气腐蚀上得到设计师和厂商们的普遍赞誉和认可。
然而,必须指出,它不可能替代重负荷零件所需要的渗氮,就像目前的渗氮不能完全替代渗碳一样。
3,白亮层的控制主要有两个方面,一是厚度,二是相结构。
厚度要求取决于零件的服役条件,也受钢牌号和相结构的限制,最常见的要求是5~25μm范围内选择。
白亮层的相结构与脆性直接关联,获得性能比较良好的白亮层,应当以单相ε或单相γ,组织为上等,而不是现在大都是那种ε+γ,双相组织。
(参见.ge%3D2page=230楼'孤鸿踏雪'的帖子)。
由于形成γ,化合物的含氮量范围很窄,韧性较好的纯γ,的厚度只能很浅薄(有其特定用途),获得一定厚度的单相ε组织就成了热处理工作者氮碳共渗当前追寻的一个课题(参见)。
由于技术方法对限制,目前相关标准中检测白亮层脆性等级的尺度较大,难以判别脆性程度上的细微差别,也就是说,同样都是1级水平,由于相结构上的差别在使用性能上将有所区分,然而,并没有引起工程界的特别注意。
渗氮 渗碳 碳氮共渗

渗氮渗碳碳氮共渗碳氮共渗是一种常见的表面处理技术,通过渗碳和渗氮来改善材料的硬度和耐磨性。
本文将对渗氮、渗碳和碳氮共渗的原理、应用和工艺进行详细介绍。
一、渗氮渗氮是将氮原子渗入材料表面形成氮化物层的过程。
氮原子通过高温处理和氮气氛的作用,渗透到材料表面并与材料中的元素反应,形成硬质氮化物层。
这一薄层氮化物层不仅能提高材料的硬度和抗磨损性能,还能改善材料的耐腐蚀性。
渗氮的主要应用领域包括机械制造、汽车工业、航空航天等。
在机械制造中,渗氮可以增加零件的硬度和耐磨性,延长使用寿命;在汽车工业中,渗氮可以提高引擎零件的耐磨性和抗腐蚀性能;在航空航天领域,渗氮可以增强航空发动机部件的耐高温和耐磨性能。
渗氮的工艺流程一般包括清洗件表面、装配件和炉内预处理、渗氮和回火处理等步骤。
渗氮一般采用封闭式和开放式两种方式进行,根据具体应用需求可以选择合适的渗氮工艺。
二、渗碳渗碳是将碳原子渗入材料表面形成碳化物层的过程。
碳原子通过高温处理和含有碳气体的氛围,渗透到材料表面并在表面与材料中的元素反应,形成硬质碳化物层。
渗碳技术不仅能提升材料的硬度和耐磨性,还可以改善材料的断裂韧性和抗腐蚀性。
渗碳广泛应用于机械零件、钢铁制品等领域。
渗碳后的材料表面硬度高、耐磨性好,适用于制作耐磨零件,如轴承、齿轮等;同时碳化层的外表面与空气隔绝,降低了材料的腐蚀速率,提高了零件的使用寿命。
渗碳的工艺流程包括预处理、渗碳、淬火和回火等。
渗碳一般采用气体渗碳和液体渗碳两种方式进行,具体工艺参数可以根据材料的要求进行选择。
三、碳氮共渗碳氮共渗是将碳原子和氮原子同时渗入材料表面形成碳氮共渗层的过程。
碳氮共渗通过碳氮共渗剂和高温处理,使碳原子和氮原子分别与材料中的元素发生反应,形成硬质碳氮化物层。
碳氮共渗能够同时获得渗碳和渗氮的特性,提高材料的硬度、耐磨性和抗腐蚀性。
碳氮共渗广泛应用于汽车工业、航空航天等领域。
在汽车工业中,碳氮共渗可以提高零部件的硬度和耐磨性,同时还可以提高零部件的抗磨损能力和抗腐蚀性;在航空航天领域,碳氮共渗可以增强发动机部件的抗高温性能和抗腐蚀能力。
碳氮共渗质量缺陷

碳氮共渗质量缺陷1 渗层不均:产生原因:炉温不均,工件表面局部有炭黑或结焦。
排气不充分,工件表面不清洁,气体炉内循环不畅。
危害:表面硬度低,性能不均匀,工件淬回火易变形和开裂。
防止办法:补渗2 渗层过浅:产生原因:炉温偏低,共渗时间不足。
渗剂供给量不足,炉气碳势低及排气不畅。
危害:硬度、强度、抗疲劳性下降。
防止办法:补渗3网状或堆积状碳化物:产生原因:炉气碳势过高,或预冷温度过低。
危害:表面应力大,脆性大,易开裂。
防止办法:减少渗剂供给量,延长扩散时间和提高预冷温度。
4渗层残余奥氏体过多:产生原因:炉气碳势过高,预冷温度高。
危害:降低表面硬度易变形和开裂。
防止办法:减少渗剂供给量,延长扩散时间和降低预冷温度。
重新加热淬火或深冷处理。
5 心部铁素体过多:产生原因:预冷温度过低,或一次淬火加热温度远低于心部的临界点。
危害:心部硬度不够,强度降低,使心部不能支持受力大的表面。
防止办法:提高预冷和淬火温度。
6 黑色组织:钢中的合金元素发生内氧化,而导致淬透性下降,且氧化物质点又可作为相变的核心,使过冷奥氏体不稳定而发生分解生成黑色组织屈氏体、贝氏体等。
危害:降低表面的硬度、耐磨性和疲劳强度。
防止办法:减少炉内氧化性气氛(O2、CO2、H2O)改善炉子的密封性,排气充分,提高淬火冷却速度,采用对内氧化敏感度小的钢(如含Mo、W、Ni的钢)喷丸处理。
7 黑色孔洞:(只在碳氮共渗和氮碳共渗中出现)产生原因:氮介质的供给量较高,共渗温度过低。
危害:降低表面硬度和耐磨性防止办法:控制共渗层的氮含量,使其小于0.5%.8 畸变:产生原因:热应力。
变形随表面碳氮浓度的增加和渗层深度的增加而变严重。
危害:增加校正工序,畸变严重时,工件报废。
防止办法:装料方法要合理。
所用的渗碳吊具、料盘的形状、结构等应避免工件因加热和冷却不均而引起畸变;重新加热淬火的渗碳件应降低淬火加热温度;采用热油淬火;金属锻造流线要与渗碳工件外轮廓相似,严格控制正火后的带状组织和魏氏组织;采用压床淬火(大型盘状齿轮和齿圈).9 屈氏体网:产生原因:合金元素内氧化导致合金元素贫化,而降低淬透性;碳氮共渗时形成的碳氮化物降低了奥氏体中的碳氮含量,使奥氏体的稳定性降低,易形成屈氏体;碳氮化物和氧化物起到了非自发形核的作用,加速了奥氏体的分解;共渗温度偏低(低于钢材的A C3),炉气不足或活性差;某些淬透性低的钢会出现屈氏体。
气体碳氮共渗零件形变分析和改进措施

优 质碳 素结 构 钢 、 金 结 构 钢 等 。经 碳 氮 共 渗 处 理 合
后 , 件 的硬度 、 零 耐磨 性 和疲 劳强 度 等力学 性 能都 有
所 提高 。 目前 , 中温 气体 碳 氮 共 渗 和低 温 气 体 碳 氮
共 渗在 生产 中应 用 较广 。 在 零 件加 工 过 程 中 , 现 以 氮 、 、 氧 化 碳 为 发 氨 二
囱一
一
. 、
介 质 的气 体碳 氮共 渗工 艺 在 处 理 变 截 面 、 阶梯 状 的
薄壁零 件 时 , 形很 大 。 变 生产 过程 中常常会 遇 到如 图 1 a和 图 1 b所示 的
气体碳 氮共 渗 零 件形 变 分析 和 改进 措施
史 亚 贝 , 鑫 邰
( 南工业职业技术 学院 机 电工程 系, 南 南阳 430 ) 河 河 7 0 9
摘 要 : 气体碳 氮共 渗 是在 气体 介质 中 , 将碳 和 氮 同时渗 入 工件 表 层 , 以渗 碳 为 主 的化 学 热 处理 工 并 艺 。相对 于渗 碳 、 氮 , 氮共 渗具 有 一 定 的 工 艺优 势 , 易获得 高 的力 学性 能 。但 生产 中发 现 , 工 艺 渗 碳 且 此 在 处 理非 均 匀截 面的套 筒类零件 时 , 易发 生较 大形 变 。本文 通过 试 验 验证 , 重分析 零 件 变形原 因 , 着 并提
十分不 均 , 中 O 其 1号 零 件 薄 处 16 mm, 处 9 9 . 厚 .2 Im; 2号零 件 薄处 2 2mi , 处 1 . 2rm。气体 T 0 l . l 厚 l 4 5 l f 碳 氮共 渗 工艺 为 5 0℃ × 1 2 h油 冷 , 理 后 检查 6 . 处
碳氮共渗热处理标准

碳氮共渗热处理的标准包括温度、时间、气氛和冷却方式等几个方面。
1. 温度:碳氮共渗的温度通常在820~880℃范围内。
具体温度的选择取决于钢种和零件的使用性能。
2. 时间:共渗时间根据渗层深度要求而定。
层深与时间呈抛物线规律,可以通过公式计算得到。
3. 气氛:碳氮共渗的气氛通常使用尿素作为渗剂,也可以使用其他含碳、氮的物质作为渗剂。
气氛的控制对于共渗层的组织和性能有重要影响。
4. 冷却方式:共渗后的冷却方式可以根据需要选择不同的方法,如直接淬火、分级淬火、再次加热淬火等。
冷却方式的选择会影响共渗层的组织和硬度分布。
除了以上标准外,碳氮共渗热处理还需要注意以下几点:
1. 共渗前的表面准备:在进行碳氮共渗前,需要对零件表面进行清洗、除油、除锈等处理,以保证渗剂能够均匀地渗透到表面。
2. 渗剂的选择和配比:渗剂的选择和配比会影响共渗层的组织和性能,需要根据具体要求进行选择。
3. 炉温和气氛的控制:炉温和气氛的控制是共渗过程中的关键因素,需要严格控制以保证共渗层的质量和性能。
4. 后处理:共渗后需要进行适当的后处理,如淬火、回火等,以获得所需的组织和性能。
总之,碳氮共渗热处理的标准是多方面的,需要综合考虑温度、时间、气氛、冷却方式等因素,并注意共渗前的表面准备和后处理等步骤,以获得高质量的共渗层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗氮及碳氮共渗常见问题与解决的方法
氮化工件表面硬度或深度不够
(1)可能是所选材料不适合作氮化处理。
(2)可能是氮化处理前的组织状态较差。
(3)可能是氮化温度选择不当。
(4)炉中之温度或流气不均匀。
(5)氨量不恰当。
(6)渗氮的时间不够。
(7)氮化前工件表面有脏物。
氮化工件弯曲变形
(1)氮化前的弛力退火处理没有做好。
(2)工件几何曲线设计不良,例如不对称、厚薄变化太大等因素。
(3)氮化中被处理的工件放置方法不对。
(4)被处理工件表面性质不均匀,例如清洗不均或表面温度不均等因素。
氮化工件发生龟裂现象
(1)氨的分解率不正常。
(2)渗氮处理前工件表面存在脱碳层。
(3)工件设计有明显的锐角存在。
(4)白亮层太厚时。
氮化工件的白层过厚
(1)渗氮处理的温度不当。
(2)氨的分解率低,可能发生此现象。
氮化处理时氨分解率不稳定
(1)分解率测定器管路漏气。
(2)渗氮处理时装入炉内的工件太少。
(3)炉中压力变化导致氨气流量改变。
(4)触媒作用不当
机械加工件前处理如何防止渗碳?
(1)镀铜法,镀上厚度0.20mm左右。
(2)涂敷涂剂后乾燥。
(3)涂敷防渗碳涂敷剂后乾燥,如硼砂和有机溶剂為主。
(4)氧化铁和黏土混合物涂敷法。
(5)利用套筒或套螺丝。
渗碳(碳氮共渗)后工件硬度不足
(1)冷却速度不足,可利用喷水冷却或盐水冷却。
(2)渗碳不足,可使用强力渗碳剂。
(3)淬火温度不足。
(4)淬火时加热发生脱碳,可使用盐浴炉直接淬火
渗层剥离现象
(1)含碳量的浓度坡度太大,应进行一次退火。
(2)不存在过度层,应缓和渗速。
(3)过渗现象,可考虑研磨前次之渗层
(4)反覆渗碳(碳氮共渗)亦可能產生渗层剥离的现象。