运筹学方法总结
运筹学老师期末总结

运筹学老师期末总结本学期的运筹学课程主要分为三个部分:线性规划、整数规划和动态规划。
每个部分都是建立在上一个部分的基础上,逐步深入。
在教学过程中,我注重理论与实践相结合,通过案例分析和实际问题的求解,将抽象概念与实际应用相结合,使学生们能够更好地理解和应用所学知识。
在线性规划部分,我首先对线性规划的基本概念、模型和求解方法进行了介绍。
我让学生们通过实际案例,学习如何建立线性规划模型,并利用单纯形法进行求解。
同时,我还引入了运筹学软件,如MATLAB和LINGO,并指导学生们如何使用这些软件进行线性规划问题的求解。
通过这些实践,学生们对线性规划的理论和应用有了更深入的认识。
整数规划部分是线性规划的延伸,考虑了决策变量为整数的情况。
我首先讲解了整数规划的基本概念和模型,并给出了一些经典的整数规划问题。
然后,我介绍了整数规划的求解方法,包括分支定界法和割平面法。
对于分支定界法,我通过实例演示了具体的求解过程,并引导学生们进行实际计算。
对于割平面法,我则通过讲解原理和算法,引导学生们理解其求解思路。
通过这部分的学习,学生们对整数规划的原理和方法有了更加清晰的认识。
在动态规划部分,我对动态规划的思想和基本原理进行了讲解。
首先,我介绍了动态规划的三个基本特征:最优子结构、无后效性和重叠子问题,然后讲解了动态规划的实际应用。
我引入了一些经典的动态规划问题,如背包问题、最长公共子序列问题等,并通过实例演示了动态规划的求解过程。
通过这部分的学习,学生们掌握了动态规划的求解思路和方法,能够熟练应用于实际问题的求解。
在教学过程中,我注重培养学生的问题解决和团队合作能力。
我鼓励学生们在课程中积极提问,勇于探索未知领域。
我还组织了一些小组作业和项目,让学生们分组合作,通过讨论和合作,共同解决实际问题。
在实践中,学生们不仅锻炼了自己的分析和求解能力,还体验了团队合作的重要性。
通过本学期的教学实践,我发现学生们在运筹学方面的学习兴趣和能力得到了提升。
运筹学知识点总结

运筹学知识点总结运筹学是研究在有限资源条件下,如何最优化决策问题的学科。
它是应用数学的一部分,主要包括线性规划、整数规划、图论等方向。
运筹学在工业、交通、军事、金融等各个领域有广泛的应用。
一、线性规划线性规划是运筹学中应用最广泛的部分,也是最基础的部分。
线性规划是一种数学方法,用于确定线性函数的最大值或最小值。
它被用来优化各种决策问题,例如成本最小化、收益最大化等。
如果一个问题可以通过不等式和等式来表示,同时还满足线性条件,那么这个问题就可以用线性规划来解决。
二、整数规划整数规划是指在优化问题中,变量需要满足整数限制的问题。
它是一个复杂的优化问题,通常需要使用分支定界法等高级算法来解决。
整数规划在生产安排、设备选型等问题中有广泛应用。
例如,在工厂的生产调度中,每个任务的产量必须是整数,因此需要使用整数规划来制定生产计划。
三、图论图论是运筹学的一个重要分支,它是一种研究图形结构和它们的互相关系的数学理论。
在运筹学中,图论被用来解决一些最短路径、最小花费等问题。
图论在计算机科学中也有广泛的应用。
例如,它被用来分析互联网的连接模式,制定数据传输的路径等。
四、决策分析决策分析是指选择最优行动方案的过程,它使用决策分析方法来权衡各种可行方案的利弊。
这些方法包括概率分析、统计分析、风险分析等。
决策分析在金融、政府和企业管理等领域中有广泛的应用。
例如,在股票投资中,决策分析被用来估计利润和风险,从而选择最优的投资组合。
五、排队论排队论是研究排队系统行为的学科,它被用来分析服务过程中的等待时间、系统容量和服务能力等因素。
排队论可以用来优化人员调度、设备运营和客户满意度。
排队论在交通运输领域中有广泛应用。
例如,在快速公路上,排队论可以帮助确定最佳车道数量,从而减少塞车和等待时间。
六、模拟模拟是一种数学方法,用于模拟真实世界的行为和系统。
它可以用来预测系统行为,以优化决策。
模拟通常使用计算机程序来模拟系统,这些程序称为仿真器。
运筹学知识点总结

运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。
线性规划的三要素:变量或决策变量、目标函数、约束条件。
目标函数:是变量的线性函数。
约束条件:变量的线性等式或不等式。
可行解:满足所有约束条件的解称为该线性规划的可行解。
可行域:可行解的集合称为可行域。
最优解:使得目标函数值最大的可行解称为该线性规划的最优解。
唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。
凸集:要求集合中任意两点的连线段落在这个集合中。
等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。
松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。
剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。
2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。
4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。
5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。
当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。
第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。
2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。
4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。
运筹学常用的方法

运筹学常用的方法运筹学(Operations Research)是一门研究如何优化决策和资源分配的学科。
在实践中,运筹学常常使用一系列方法来解决问题。
以下是一些常用的运筹学方法:1. 线性规划(Linear Programming):线性规划是一种优化方法,用于求解线性约束条件下的最优解。
它的目标是最大化或最小化一个线性函数,同时满足一组线性等式或不等式约束条件。
2. 整数规划(Integer Programming):整数规划是线性规划的扩展,其中变量被限制为整数。
这种方法常用于需要作出离散决策的问题,如物流路线选择、生产安排等。
3. 优化理论(Optimization Theory):优化理论是研究最优化问题的数学理论。
它提供了一系列算法和技术,用于确定最优解的存在性、性质和求解方法。
4. 模拟(Simulation):模拟是通过构建模型来模拟实际系统的运行过程,以评估各种决策方案的效果。
它可以帮助决策者理解系统的行为和特性,并支持决策的制定。
5. 排队论(Queueing Theory):排队论研究等待行为和排队系统的性能。
它可以用于评估服务系统的效率、确定最优的服务策略,并优化资源的分配。
6. 博弈论(Game Theory):博弈论研究决策者在竞争或合作情境下的行为和策略选择。
它可以用于分析决策者之间的相互作用、制定最优策略,以及预测他们的行为。
7. 图论(Graph Theory):图论研究图和网络的性质和算法。
它可以应用于许多问题领域,如路径规划、资源分配、网络流等。
除了上述方法,运筹学还可以使用统计分析、模糊数学、决策树等技术来解决问题。
根据具体问题的特点和需求,运筹学方法可以相互组合和扩展,以提供更准确和有效的解决方案。
运筹学知识点总结

运筹学知识点总结一、线性规划线性规划是运筹学中最基础、最重要的一个分支。
它的基本形式可以表示为:Max cxs.t. Ax ≤ bx ≥ 0其中,c是一个n维的列向量,x是一个n维的列向量,A是一个m×n的矩阵,b是一个m维的列向量。
线性规划的目标是找到满足约束条件的x,使得目标函数cx取得最大值。
而当目标是最小化cx时,则是最小化问题。
线性规划问题有着很好的性质,它的最优解一定存在且一定在可行域边界上。
而且,很多非线性规划问题也可以通过线性化转化成线性规划问题,因此线性规划具有广泛的适用范围。
二、整数规划整数规划是线性规划的一个扩展,它在线性规划的基础上增加了对决策变量的整数取值限制。
这样的问题往往更加接近实际情况。
整数规划问题的一般形式可以表示为:Max cxs.t. Ax ≤ bx ∈ Zn整数规划问题的求解难度要比线性规划问题高很多。
因为整数规划问题是NP-hard问题,也就是说它没有多项式时间的算法可以解决。
但是对于特定结构的整数规划问题,可以设计专门的算法来求解。
比如分枝定界法、动态规划等。
整数规划问题在许多领域都有着广泛的应用,比如生产调度、设备配置、网络设计等。
三、动态规划动态规划是一种用来求解具有重叠子问题结构的最优化问题的方法。
它的核心思想是将原问题分解成一系列相互重叠的子问题,然后利用子问题的最优解来构造原问题的最优解。
动态规划问题的一般形式可以表示为:F(n) = max{F(n-1), F(n-2)+cn}其中,F(n)是问题的最优解,cn是问题的参数,n是问题的规模。
动态规划问题的求解是一个自底向上的过程,它依赖于子问题的最优解,然后通过递推关系来求解原问题的最优解。
动态规划在资源分配、路径优化、排程问题等方面有着广泛的应用。
四、决策分析决策分析是一种用来帮助人们做出最佳决策的方法。
它可以应用在各种风险决策、投资决策、生产决策等方面。
决策分析的一般形式可以表示为:Max E(u(x))其中,E(u(x))是对决策结果的期望效用,u(x)是决策结果的效用函数,x是决策变量。
运筹学解题方法技巧归纳pdf

30个运筹学的解题方法与技巧1. 线性规划:解决在一定约束条件下最大化或最小化线性目标函数的问题。
常用方法有单纯形法、对偶理论和分解算法等。
2. 整数规划:处理决策变量取整数值或只能取整点值的线性规划问题。
常用方法有分支定界法、割平面法等。
3. 动态规划:通过将原问题分解为相互重叠的子问题,解决具有重叠子问题和最优子结构性质的问题。
4. 图论方法:用于解决最短路、最小生成树、最小割、最大流等问题,常用算法有Dijkstra 算法、Prim算法、Ford-Fulkerson算法等。
5. 网络优化:解决运输、分配和布局等问题,常用方法有运输问题算法、分配问题算法等。
6. 排队论:研究等待队列的结构和特性,以及服务机构的工作规律。
主要模型有M/M/1、M/M/c等。
7. 存储论:研究如何科学地管理物资库存,以最低的费用保证生产和销售需要。
常用模型有不允许缺货模型、一次性订货模型等。
8. 决策分析:根据已知信息评估不同行动方案的效果,从而选择最优方案。
常用方法有期望值法、决策树法等。
9. 对策论:研究竞争、对抗和冲突问题的数学模型,常用方法有Nash均衡、优势策略和必胜策略等。
10. 随机规划:处理具有随机性的决策问题,常用的求解方法有期望值法、机会约束规划和贝叶斯决策等。
11. 多目标规划:解决具有多个冲突目标的优化问题,常用的求解方法有主要目标法、权衡法和分层序列法等。
12. 非线性规划:处理目标函数或约束条件非线性的优化问题,常用的求解方法有梯度法、牛顿法等。
13. 启发式方法:采用直观和经验的方法求解问题,如遗传算法、模拟退火算法等。
14. 数学仿真:通过建立数学模型并模拟实际情况,评估不同方案的性能和效果。
15. 多属性决策分析:处理具有多个评估属性的决策问题,常用的求解方法有多属性效用理论、层次分析法等。
16. 模拟退火算法:一种启发式优化算法,通过模拟固体退火过程来寻找全局最优解。
17. 遗传算法:模拟生物进化过程的优化算法,通过遗传、交叉和变异等操作寻找最优解。
运筹学原理与方法

运筹学原理与方法运筹学(Operations Research,简称OR)是一门研究如何有效地解决实际问题的学科,通过运用数学、统计学、计算机科学和管理学等相关知识,提供了一些原理与方法,以帮助决策者做出更好的决策。
本文将探讨运筹学的原理与方法,并且通过实例来说明其在实际问题中的应用。
一、线性规划线性规划是运筹学中最基础且最常用的方法之一。
它通过建立目标函数和约束条件之间的线性关系,寻找使目标函数达到最大或最小的决策变量的取值。
例如,某公司要在两个产品上投入资源,每个产品的利润率和资源消耗量不同,需要确定投入的数量才能最大化利润。
这样的问题可以用线性规划方法解决。
二、整数规划整数规划是线性规划的扩展,它要求决策变量的取值必须是整数。
在实际问题中,很多情况下需要做出离散的决策,比如确定投放广告的地点数量,或者选择装备的类型等。
整数规划方法可以帮助我们在求解这类问题时,找到最优的整数解。
三、动态规划动态规划是一种解决决策问题的重要方法,它基于最优子结构和重叠子问题的概念。
动态规划通过将问题划分为一系列的子问题,并保存子问题的解,然后通过组合子问题的解来求取原始问题的最优解。
例如,假设某人要从一座城市到另一座城市旅行,每个城市之间的交通费用和距离不同,需要确定最省钱或最短路径的路线。
动态规划方法可以帮助我们找到最优的路线。
四、网络流模型网络流模型是一种表示与问题相关的网络结构,通过节点和边来表示问题中的元素和关系。
在网络流模型中,问题的求解可以转化为在网络中求取最大流或最小费用流的问题。
例如,在某物流公司的配送中心要为多个客户分配货物,每个客户需求和配送成本不同,需要找到最优的配送方案。
网络流模型可以帮助我们找到最优的货物配送方案。
五、模拟方法模拟方法是通过构建数学或计算机模型来模拟实际问题的行为和变化。
通过对模型进行多次模拟实验,可以得到问题的统计特性和概率分布,从而用于决策。
例如,某公司要评估一种新产品的市场反应,可以通过模拟方法来预测不同市场环境下的销售情况,以帮助决策者做出合理的决策。
运筹学实验报告总结心得

运筹学实验报告总结心得1. 背景运筹学是以数学模型为基础,结合管理科学、经济学和计算机科学等方法,研究在有限资源的条件下优化决策问题的学科。
本次实验旨在通过运筹学方法解决一个实际的问题,并从中探索运筹学的实际应用价值。
2. 分析2.1 问题描述本次实验中,我们需要解决一个物流配送的问题。
具体问题是:给定一定数量的货物和一些配送车辆,如何确定最优的配送路线和配送顺序,以使得总体的运输成本最小。
2.2 求解思路为了解决这个问题,我们采用了TSP(Traveling Salesman Problem,旅行商问题)的算法。
TSP是一种经典的组合优化问题,通过寻找最短的闭合路径,将n个城市依次访问一遍。
我们将货物所在的位置作为城市,将物流中心作为起始点和终点,通过TSP算法确定最优的配送路线。
2.3 模型设计我们将问题抽象成图论问题,货物的位置和物流中心可以看作图的顶点,两个顶点之间的距离可以看作图的边。
我们首先计算出所有顶点之间的距离,并构建一个距离矩阵。
然后,通过TSP算法,求解最优的路径。
3. 结果通过我们的实验,我们成功地解决了物流配送问题,并得到了最优的配送路线和顺序。
我们以图的形式展示了最优路径,并计算出了最小的运输成本。
4. 建议在实验过程中,我们发现了一些可以改进的地方。
首先,我们可以考虑引入实时交通信息来调整路径,以避免拥堵和路况不佳的区域。
其次,我们可以进一步优化TSP算法,以提高求解效率和准确度。
最后,我们还可以考虑引入其他因素,如货物的紧急程度或优先级,来调整配送顺序,以更好地满足客户需求。
5. 总结通过本次实验,我们深入了解了运筹学的应用,特别是在物流配送方面的应用。
我们成功地解决了一个实际问题,并得到了有用的结果和结论。
我们还发现了一些可以改进的地方,为进一步研究和应用运筹学提供了方向。
运筹学作为一门跨学科的领域,具有广泛的应用前景。
通过运筹学方法,我们可以帮助企业和组织优化决策,提高效率,降低成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.线性规划1.问题背景:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题2.求解方法:a.单纯形法:适用的问题:约束条件全部为≤,右边常数全部为非负,对目标函数的系数没有要求。
min z=3x1-2x2s.t. x1+2x2≤122x1+ x2≤18x1,x2≥0求解步骤:STEP 0 将线性规划问题标准化STEP 1 是否有明显的初始基础可行解,如果有,转STEP 3,否则,转STEP 2。
STEP 2 构造辅助问题,用两阶段法求解辅助问题。
如果辅助问题最优解的目标函数值大于0,原问题无可行解,算法终止。
否则转STEP 3。
STEP 3 写出单纯形表,将基变量在约束条件中的系数消为单位矩阵,将基变量在目标函数中的系数消为0。
转STEP 4。
STEP 4 如果所有非基变量的检验数全为负数或0,则已获得最优解,算法终止。
否则,选择检验数为正数并且绝对值最大的非基变量为进基变量。
转STEP 5。
STEP 5 如果进基变量在约束条件中的系数全为负数或0,目标函数无界,算法终止。
否则根据右边常数和正的系数的最小比值,确定离基变量。
转STEP 6。
STEP 6 进基变量列和离基变量行交叉的元素称为主元。
对单纯形表进行行变换,将主元变为1,将主元所在列的其他元素变为0。
转STEP 4。
b.对偶单纯形法:适用的问题:约束条件中至少有一个是≥,相应的右边常数为非负,目标函数系数全部为非负。
min z=3x1+2x2s.t. x1+2x2≥122x1+ x2≤18x1,x2≥0求解步骤:步骤1 确定原问题(L)的初始基B,使所有检验数,即是对偶可行解,建立初始单纯形表。
步骤2 检查基变量的取值,若≥0,则已得最优解,计算停;否则求确定单纯形表第L行对应的基变量为旋出变量。
步骤3 若所有,则原问题无可行解,计算停;否则,计算确定对应的为旋入变量。
步骤4 以为主元作(L,K)旋转变换,得新的单纯形表,转步骤2。
可以证明,按上述方法进行迭代,所得解始终是对偶可行解。
二.运输问题1.问题背景:一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案。
2.求解方法:a.表上作业法:方法描述:表上作业法是一种求解运输问题的特殊的方法,其实质是单纯形法,它针对运输问题变量多,结构独特的情况,大大简化了计算过程的求解方法求解步骤:1.找出初始基本可行解2. 求各非基变量的检验数,即在表上计算除了上述的m+n-1个数字格以外的空格的检验数判别是否达到最优解,如已是最优解,则停止计算,否则转到下一步。
在运输问题中都存在最优解。
3. 确定入基变量与出基变量,找出新的基本可行解。
在表上用闭回路法调整。
4. 重复2、3直至得到最优解。
三.目标规划1.问题背景:目标规划(Goal programming)目标规划是线性规划的一种特殊应用,能够处理单个主目标与多个目标并存,以及多个主目标与多个次目标并存的问题。
2.求解方法:a.约束法:方法描述:在多个目标函数中选择一个主要目标作为基本思想:基本思想目标函数,其它目标处理为适当的约束。
目标函数,其它目标处理为适当的约束。
求解步骤:min f1 ( x) ~ ( P)s.t. g i ( x) ≥0, i = 1,2, L, m f j ( x) ≤ f j ( x ( 0 ) ), j = 2,3, L, p第一步:(1)对j = 1,2, L, p,min f j ( x) (VPj )s.t. x ∈S,求解单目标问题第二步:选择整数r>1,确定0 jt,f j0的r个不同阀值第三步:对t = 0,1,L, r − 1 ,分别求解问题:min f k ( x) ( Pt j )s.t. g i ( x) ≥0, i = 1,2, L, m f j ( x) − f jt j ≤0, j = 1, L, k − 1, k + 1,L, p) 各目标函数f ( j ≠k ) 可对应不同的t (t = 0,1,L, r − 1(共有r p −1 个约束问题)。
求解后可得到(VP)的一有效解集合,是(VP)有效解集合的一个子集。
为主目标。
b.分层序列法:求解步骤:1. 把(VP)中的p个目标f ( x ), L , f ( x ) 按其重要程度排一次序。
依次求单目标规划的最优解。
2.2. 过程:无妨设其次序为f1 , f 2 , L , f p 先求解四.整数规划问题背景:规划中的变量(部分或全部)限制为整数时,称为整数规划。
若在线性规划模型中,变量限制为整数,则称为整数线性规划求解方法:a.割平面法:方法描述:通过增加新的约束来切割可原问题伴随规划的可行域,使它在不断缩小的过程中,将原问题的整数最优解逐渐暴露且趋于可行域极点的位置,这样就有可能用单纯形法求出。
求解步骤:第一步:用单纯形法解松弛问题,得到最优单纯形表。
第二步:求一个割平面方程,加到最优单纯形表中,用对偶单纯形法继续求解。
第三步:若没有得到整数最优解,则继续作割平面方程,转第二步。
b.匈牙利法:方法描述:在现实生活中,有各种性质的指派问题(assignment problem)。
指派问题也是整数规划的一类重要问题。
例如:有n项工作需要分配给n个人(或部门)来完成;有n项合同需要选择n个投标者来承包;有n个班级需要安排在各教室上课等。
诸如此类问题,它们的基本要求是在满足特定的指派要求条件下,使指派方案的总体效果最佳。
求解步骤:第一步:变换效率矩阵,使指派问题的系数矩阵经过变换,在各行各列中都出现0元素。
具体作法是:先将效率矩阵的各行减去该行的最小非0元素,再从所得系数矩阵中减去该列的最小非0元素。
这样得到的新矩阵中,每行每列都必然出现零元素。
第二步:用圈0法求出矩阵C1中的独立零元素。
经第一步变换后,系数矩阵中每行每列都已有了独立零元素;但需要找出n个独立的0元素。
若能找出,就以这些独立0元素对应的决策变量矩阵中的元素为1,其余为0,就得到了最优解。
当n较小时,可用观察法、试探法去找出n个独立0元素;若n较大时,就必须按照一定的步骤去找,常用的步骤为:(1) 从只有一个0元素的行(或列)开始,给这个0元素加圈,记作◎。
这表示对这行所代表的人,只有一种任务可指派,然后划去◎所在列(行)的其他元素,记作ф,这表示这列所代表的任务已指派完,不必再考虑别人了。
(2) 给只有一个0元素列(行的) 0元素加圈,记作◎。
然后划去◎所在行(列)的其他元素,记作ф。
(3) 反复进行(1),(2)两步,直到每一列都没有未被标记的0元素或至少有两个未被标记的0元素时止。
第三步:进行试指派若情况(1)出现,则可进行指派:令圈0位置的决策变量取值为1,其它决策变量的取值均为0,得到一个最优指派方案,停止计算。
本例中得到C2后,出现了情况(1),可令x14=x22=x31=x43=1,其余xij=0。
即为最佳指派方案。
若情况(2)出现,则再对每行,每列中有两个未被标记过的0元素任选一个,加上标记,即圈上该0元素。
然后给同行、同列的其他未被标记的0元素加标记“×”。
然后再进行行、列检验,可能出现(1)或(3)。
若出现(3),则要转入下一步。
第四步:作最少直线覆盖当前所有的0元素(以例题说明)五.动态规划求解方法:a.分支定界法:方法描述:对有约束条件的最优化问题(其可行解为有限数)的可行解空间恰当地进行系统搜索,这就是分枝与定界内容。
通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。
在每次分枝后,凡是界限不优于已知可行解集目标值的那些子集不再进一步分枝,这样,许多子集可不予考虑,这称剪枝。
这就是分枝定界法的主要思路。
分枝定界法可用于解纯整数或混合的整数规划问题。
在二十世纪六十年代初由LandDoig和Dakin等人提出。
由于这方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。
目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。
求解步骤:(i)先不考虑整数限制,即解相应的线性规划(ii)记作z, 即0 ≤z * ≤356. (ii)因为x1 , x2 当前均为非整数,故不满足整数要求,任选一个进行分枝。
设选x1 进行分枝,把可行集分成2个子集(iii)对问题B1再进行分枝得问题B11和B12(iv)对问题B2再进行分枝得问题B21和B22,它们的最优解为(v)将B22 无可行解。
B21 , B22 剪枝。
于是可以断定原问题的最优解六.最短路径问题背景:最短路问题就是在一个网络图中,给定一个起点,要求其到另一顶点的权数最小的距离。
最短路问题在实际生活中具有广泛的应用,如管道铺设、线路选择等问题,还有些如设备更新、投资等问题也都可以归结为求最短路问题。
a.最短路的矩阵算法:方法描述:最短路的矩阵算法(适用于所有权非负的情况)最短路的矩阵算法是将图表示成是矩阵形式,然后利用矩阵表计算出最短路。
矩阵算法的原理与Dijkstra 算法标号算法完全相同,只是它采用了矩阵形式,显得更为简洁,有利于计算机计算。
下面先介绍图的矩阵表示。
(1)图的矩阵表示无权图矩阵表示:两顶点之间有边相连的记为“1”,无边相连的记为“0”,对角线上记为“0”。
所得到的矩阵一定是对阵矩阵。
赋权无向图矩阵表示:两顶点之间有边相连的,写上它们的权数,无边相连的记为“∞”,对角线上记为0。
所得到的矩阵也一定是对阵矩阵。
方法步骤:第一步:在已标号的第一行中找最小的元素a13=1,将其圈起来,将其所在的第三列划去,给第三行标号第二步:类似的第二步,第三步,第四步均可由算法的步骤③得矩阵B、C、D。
由于终点v4 已得到标号5,故知v1 到v4 的最短路是5。
第三步:下面再找出v1 到v4 的最短路走法。
用逆推的方法。
第四步:若迭代到某一步k 时,有d(k)(j)=d(k-1)(j) 则运算结束,且d(j)=d(k)(j) (j=1,2,3,…n)中v1 到其它各点的最短路b. Dijkstra算法(适用于所有权非负的情况)方法描述:Dijkstra 算法Dijkstra 算法是 E.W. Dijkstra 于1959 年提出的,是目前公认的对所有权非负的情况的最好算法。