(完整版)学习运筹学的体会与心得

合集下载

运筹学学习心得

运筹学学习心得

运筹学学习心得一、引言运筹学是一门研究如何进行决策和优化的学科,它在现代管理和工程领域具有重要的应用价值。

在学习运筹学的过程中,我深刻体会到了它的理论基础和实践应用,下面将就我的学习心得进行总结。

二、运筹学的基本概念运筹学是一门综合性学科,它涵盖了数学、统计学、计算机科学等多个学科的知识。

在学习运筹学的过程中,我了解到了运筹学的基本概念,包括决策分析、线性规划、整数规划、动态规划等。

这些概念对于解决实际问题具有重要的指导意义。

三、运筹学的理论基础在学习运筹学的过程中,我深入学习了运筹学的理论基础,包括数学规划理论、随机过程理论、图论等。

这些理论为解决实际问题提供了强大的工具和方法。

例如,线性规划可以用于求解最优化问题,动态规划可以用于求解最短路径问题,图论可以用于求解网络流问题等。

四、运筹学的实践应用运筹学在现代管理和工程领域具有广泛的应用。

在学习运筹学的过程中,我了解到了一些实践应用案例。

例如,运筹学可以应用于生产调度问题,通过优化生产计划和资源分配,提高生产效率和利润;运筹学可以应用于物流配送问题,通过优化配送路线和货物分配,降低物流成本和配送时间;运筹学可以应用于金融投资问题,通过优化投资组合和风险控制,提高投资收益和降低风险等。

五、运筹学的挑战与思考在学习运筹学的过程中,我也面临了一些挑战。

首先,运筹学的理论知识较为抽象和复杂,需要具备扎实的数学基础和逻辑思维能力。

其次,实际问题往往具有多个约束条件和目标函数,需要综合考虑各种因素进行决策。

最后,运筹学的应用需要结合实际情况进行具体分析和实施,需要具备良好的沟通和协调能力。

在面对这些挑战时,我思考了如何提高自己的能力。

首先,我加强了数学和统计学的学习,提高了自己的数学建模和分析能力。

其次,我积极参与实践项目,通过实际操作和解决问题,提升了自己的实践能力。

最后,我与同学们进行交流和讨论,共同解决问题,提高了自己的团队合作和沟通能力。

六、结语通过学习运筹学,我深刻理解了它的理论基础和实践应用,认识到了它在现代管理和工程领域的重要性。

运筹学学习的心得体会5则范文

运筹学学习的心得体会5则范文

运筹学学习的心得体会5则范文第一篇:运筹学学习的心得体会浅谈我对运筹学的认识《史记·高祖本纪》有云:“夫运筹帷幄之中,决胜于千里之外”。

先从运筹学的名字谈起。

运筹学的英文原名叫做Operations Research,从名字就可以看出,运筹学主要就是“研究(Research)”,就是研究在经营管理活动中如何行动,如何以尽可能小的代价,获取尽可能好的结果,即所谓“最优化”问题。

中国学者把这门学科意译为“运筹学”,就是取自古语“运筹于帷幄之中,决胜于千里之外”,其意为运算筹划,出谋献策,以最佳策略取胜。

这就极为恰当地概括了这门学科的精髓。

当我首次听说这门课程时,心里充满了畏惧与神圣感,畏惧是因为我对这门课还未收悉,看名字就觉得很难很高深;神圣感则是因为自己可以学习这门高深的课程。

粗略的翻过课本与听了老师的简介之后,我觉得自己大致明白了这门课的方向,主要还是将数学运用到生活中,运用到管理活动中。

所以我就将这门课定义为了数学与管理的一个综合。

慢慢的经过一学期的学习,我认识到运筹学不仅是数学与管理活动的结合,还是数学和经济活动、生态、技术,甚至于政治的结合。

下面引用一段资料我国运筹学的应用是在1957年始于建筑业和纺织业。

1958年开始在交通运输、工业、农业、水利建设、邮电等方面都有应用,尤其是运输方面,提出了“图上作业法”并从理论上证明了其科学性。

在解决邮递员合理投递路线问题时,管梅谷教授提出了国外称之为“中国邮路问题”解法。

从60年代起,运筹学在我国的钢铁和石油部门得到了全面和深入的应用。

1965年起统筹法的应用在建筑业、大型设备维修计划等方面取得了可喜进展。

从70年代起,在全国大部分省市推广优选法。

70年代中期最优化方法在工程设计界得到广泛的重视。

在光学设计、船舶设计、飞机设计、变压器设计、电子线路设计、建筑结构设计和化工过程设计等方面都有成果。

70年代中期的排队论开始应用于研究港口、矿山、电讯和计算机设计等方面。

运筹学学习心得

运筹学学习心得

运筹学学习心得引言概述:运筹学是一门研究如何进行最佳决策的学科,它通过数学模型和优化方法来解决现实生活中的问题。

在学习运筹学的过程中,我深刻体味到了它的重要性和应用价值。

本文将从五个方面详细阐述我在运筹学学习中的心得体味。

一、理论基础的学习1.1 学习运筹学的第一步是掌握其理论基础。

我通过阅读相关教材和参加课堂讲解,深入了解了线性规划、整数规划、动态规划等基本概念和方法。

1.2 在学习理论基础时,我发现了运筹学与其他学科的密切联系。

例如,线性规划可以应用于经济学、管理学等领域,动态规划可以解决最短路径问题、背包问题等。

这些联系使我更加坚定了学习运筹学的决心。

1.3 理论基础的学习需要进行大量的练习和实践。

我通过完成习题和参预实践项目,提高了对运筹学理论的理解和应用能力。

二、数学建模的实践2.1 运筹学的核心是数学建模。

在学习过程中,我通过实践项目,学会了如何将实际问题转化为数学模型,并运用相应的优化方法进行求解。

2.2 在进行数学建模时,我学会了分析问题的关键因素和约束条件,合理地选择决策变量,并建立适当的目标函数。

这些步骤对于解决实际问题至关重要。

2.3 数学建模的实践过程中,我也意识到了模型的局限性。

模型只是对实际问题的简化和抽象,因此在应用时需要考虑到模型的假设和前提条件,以及可能的误差和风险。

三、优化方法的应用3.1 运筹学的核心任务是寻觅最佳解决方案。

在学习过程中,我学会了使用不同的优化方法,如单纯形法、分支定界法等,来求解各种类型的优化问题。

3.2 在应用优化方法时,我发现了不同方法的适合范围和特点。

有些方法适合于线性规划问题,而有些方法则适合于非线性规划问题。

了解这些方法的特点有助于选择合适的方法来解决实际问题。

3.3 在应用优化方法时,我也注意到了算法的效率和精确度。

有些问题可能存在多个最优解,而有些问题可能需要耗费较长的计算时间。

因此,在实际应用中,需要综合考虑算法的效率和解的质量。

运筹学学习心得

运筹学学习心得

运筹学学习心得引言概述:运筹学是一门研究如何通过数学模型和优化方法来解决实际问题的学科。

在学习运筹学的过程中,我深刻体会到了其重要性和应用价值。

下面我将结合自己的学习经验,从理论学习、实践应用、团队合作和思维拓展四个方面,分享一下我的运筹学学习心得。

一、理论学习1.1 掌握基本概念和方法:学习运筹学首先需要掌握其基本概念和方法,如线性规划、整数规划、动态规划等。

通过深入学习这些基本理论,我们能够了解到运筹学的基本原理和解题思路。

1.2 学习数学模型的建立:在运筹学中,数学模型的建立是解决问题的关键。

学习如何建立合理的数学模型,包括目标函数的设定、约束条件的确定等,能够帮助我们更好地解决实际问题。

1.3 熟悉常用的优化方法:掌握常用的优化方法,如单纯形法、分支定界法等,能够帮助我们在实际问题中找到最优解。

通过理论学习,我们能够了解这些方法的原理和应用范围,为实践应用打下基础。

二、实践应用2.1 运用运筹学方法解决实际问题:通过实践应用,我们能够将运筹学理论知识与实际问题相结合,找到解决问题的最佳方案。

例如,在生产调度中,可以运用整数规划模型来优化生产计划,提高生产效率。

2.2 分析问题的复杂性和可行性:实践应用过程中,我们会遇到各种复杂的实际问题,需要通过分析问题的复杂性和可行性,选择合适的运筹学方法。

这需要我们具备较强的问题分析和解决能力。

2.3 进行模型验证和优化:在实践应用中,我们需要对建立的数学模型进行验证和优化。

通过与实际数据的对比和模型的调整,我们能够不断提高模型的准确性和可靠性,为决策提供科学依据。

三、团队合作3.1 分工合作,共同解决问题:在运筹学的学习中,我们常常需要与他人合作,共同解决问题。

团队合作能够充分发挥每个人的优势,提高问题解决的效率和质量。

3.2 沟通协作,促进思想交流:团队合作中,良好的沟通协作能够促进思想交流,帮助我们更好地理解问题和解决问题。

通过与他人的交流,我们能够拓宽思路,发现问题的更多解决方法。

运筹学学习心得

运筹学学习心得

运筹学学习心得运筹学是一门研究如何做出最优决策的学科,它主要涉及数学、统计学和计算机科学等领域。

通过学习运筹学,我深刻认识到它在解决实际问题中的重要性和应用广泛性。

以下是我对运筹学学习的心得体会。

一、运筹学的基本概念和原理运筹学的核心概念是最优化,即在给定的约束条件下,找到使目标函数取得最优值的决策变量。

它涉及到线性规划、整数规划、动态规划、网络优化等方法和技术。

通过学习这些方法,我了解到如何建立数学模型,并运用相应的算法求解最优解。

二、线性规划的应用线性规划是运筹学中最基础和最常用的方法之一。

它适用于许多实际问题,如生产计划、资源分配、物流运输等。

通过学习线性规划,我学会了如何将实际问题转化为数学模型,并运用单纯形法、对偶理论等方法求解最优解。

例如,在生产计划中,通过线性规划可以确定每个产品的生产数量,以最大化利润或最小化成本。

三、整数规划的求解在一些实际问题中,决策变量需要取整数值,这就涉及到整数规划。

整数规划的求解相对复杂,需要运用分支定界法、割平面法等高级算法。

通过学习整数规划,我了解到如何处理这类问题,并掌握了相应的求解技巧。

例如,在物流配送中,整数规划可以帮助确定最佳的配送路线和车辆调度方案。

四、动态规划的思想和应用动态规划是一种通过递推关系求解最优化问题的方法。

它适用于具有重叠子问题和最优子结构性质的问题。

通过学习动态规划,我了解到如何分析问题的结构,并构造递推方程求解最优解。

例如,在投资决策中,动态规划可以帮助确定最佳的投资策略,以最大化收益或最小化风险。

五、网络优化的应用网络优化是运筹学中的一个重要分支,它主要研究网络流问题和图论相关的优化问题。

通过学习网络优化,我了解到如何建立网络模型,并运用最小生成树算法、最短路径算法等方法求解最优解。

例如,在交通规划中,网络优化可以帮助确定最佳的交通流分配方案,以提高交通效率和减少拥堵。

六、运筹学在实际问题中的应用运筹学作为一门应用学科,广泛应用于各个领域。

运筹学学习心得

运筹学学习心得

运筹学学习心得运筹学是一门研究如何在有限资源下做出最优决策的学科,它涉及到数学、统计学、经济学等多个领域的知识。

通过学习运筹学,我深刻认识到了它在实际生活和工作中的广泛应用,以及它对决策的重要性。

以下是我对运筹学学习的心得体会。

首先,运筹学的核心思想是优化。

它通过建立数学模型,利用数学方法来求解最优解。

在学习过程中,我了解到了各种常用的优化方法,如线性规划、整数规划、动态规划等。

这些方法可以帮助我们在决策过程中找到最优解,提高效率,降低成本。

例如,在生产调度中,我们可以利用线性规划来确定最佳的生产计划,以最大程度地利用资源,提高生产效率。

其次,运筹学还包括决策分析和风险管理。

在学习中,我了解到了多种决策分析方法,如决策树、灰色关联分析等。

这些方法可以帮助我们在面对多种选择时做出明智的决策。

同时,风险管理也是运筹学的重要内容之一。

通过学习风险管理,我了解到了如何通过评估和控制风险来降低决策的不确定性。

在实际工作中,我们可以利用风险管理的方法来制定风险应对策略,保证项目的顺利进行。

此外,运筹学还涉及到排队论、库存管理、供应链管理等内容。

通过学习这些内容,我了解到了如何通过合理的排队策略来提高服务效率,如何通过库存管理来平衡成本和服务水平,以及如何通过供应链管理来优化整个供应链的运作。

这些知识对于企业的运营和管理具有重要意义。

在学习运筹学的过程中,我也进行了一些实践应用。

例如,我利用线性规划方法解决了一个生产调度问题,通过优化生产计划,实现了资源的最大利用和生产效率的提高。

我还利用决策树方法对一个投资项目进行了评估,通过分析各种可能的结果和概率,帮助决策者做出了正确的决策。

这些实践应用让我更加深入地理解了运筹学的应用和意义。

在学习运筹学的过程中,我也遇到了一些困难和挑战。

例如,运筹学涉及到较多的数学和统计知识,需要一定的数学基础。

在遇到复杂的问题时,需要耐心和细心地分析和求解。

此外,运筹学的应用也需要一定的实践经验和业务理解。

学习运筹学体会与心得

学习运筹学体会与心得

学习运筹学体会与心得运筹学是一种理论和实践相结合的学科,它涵盖了统计学、数学优化、系统分析和决策理论等多个领域,其主要目标是帮助人们在复杂的决策问题中寻找最优解决方案。

在学习运筹学的过程中,我领悟了以下几点体会与心得。

首先,运筹学教会了我如何系统地分析和解决问题。

在现实生活中,我们经常面临各种各样的问题,而且这些问题往往非常复杂,难以一下子找到最佳的解决方案。

运筹学的学习让我明白了,一个好的问题解决过程必须是系统化的,需要有一定的方法和步骤。

例如,我们可以先对问题进行建模,明确问题的关键因素和数据,然后运用优化方法进行计算,最终得到最佳的解决方案。

这样的思维方式不仅能够帮助我们更好地解决问题,也能够提升我们的分析和决策能力。

其次,运筹学教会了我如何从不同的角度看待问题。

在学习运筹学时,我对于同一个问题可能会有多种不同的解决方法,这些方法可能是基于不同的数学模型或者算法,也可能是基于不同的假设和前提条件。

这让我认识到,一个问题并不是非黑即白,可能有多种答案和解决方法。

因此,当我们面对问题时,应当从多个角度去理解和分析,以便找到最佳的解决方案。

最后,运筹学教会我如何有效地与他人合作。

在运筹学的学习过程中,我参与了一些小组作业和课程项目,需要和其他同学紧密合作,共同完成任务。

这些合作经历让我意识到,合作需要大家有清晰的目标和分工,需要有高效的沟通和协作,以及需要有信任和尊重。

此外,在合作过程中,我们还需要学会听取其他人的意见和建议,尊重不同的观点和思维方式,从而实现更好的团队协作与创新。

总之,学习运筹学不仅让我掌握了一些重要的数学和计算方法,更让我形成了一种系统化和全局化的思维方式,能够更加有效地分析和解决各种问题。

同时,运筹学还培养了我与他人合作的能力,提高了我的团队意识和领导力水平。

在今后的学习和工作中,我将继续秉持这些思维和能力,为实现更好的结果和效益而努力。

《学习运筹学的心得[5篇范文]》

《学习运筹学的心得[5篇范文]》

《学习运筹学的心得[5篇范文]》第一篇:学习运筹学的心得学习运筹学的心得一直以来就对经济类很感兴趣,但是被分配到机械专业,不过我也一直都在关注有关经济,所以这次选修课,我毫不犹豫的选了运筹学,对于运筹学,我还是有一些了解的,知道他同我这机械专业的联系,运筹学在生活中的应用非常广泛,工程,物流,人事安排等很多方面都牵扯到运筹。

基本上需要资源优化配置的都有运筹学的影响。

你在家里面做个简单的事情安排都由运筹学的影响。

比如家务安排,怎么安排最节省人力时间,就运用到了运筹学。

运筹学是从生活实践中总结发展出来的学科,影响很广泛,很多人没有接触过运筹学,不知道什么是运筹学,但是在处理问题的时候都用到了运筹学。

刚开始学运筹学对我来说也许有点难度,但我还是会拿起那本厚厚的书静静的看下去,不知不觉就喜欢上它了,觉得它是我学习的课程最有用的一门学科。

也许不光是课程本身的实用性吧。

每次看完一点我都要慢慢去体会,原来如此复杂的问题这样就解决了,有点不可思议。

晚上休息的时候也会不知不觉就想起,以至与舍友说我是运筹学学疯了,也许吧。

最近发觉自己有个毛病,总会把运筹学和人生联系到一起,不知不觉就会想到它学习理论的目的就是为了解决实际问题,下面就谈谈我对运筹学的理解及我学习运筹学的心得。

其实,运筹思想和方法,早在我国上古就曾闪烁过光辉。

《孙子兵法》十分强调决策信息作用,“知己知彼,百战不殆”。

我国历史上运筹思想及其应用,在军事上和工程上都有过不少光辉范例。

“赤壁鏖兵”、“火烧连营”、“淝水之战”,都因运筹有方,结果以寡胜众。

“都江堰水利工程”和北宋修复皇宫“一举三济”的故事,至今仍广为传颂。

运筹学是研究各种广义资源的运用、筹划以及相关决策等问题的,其目的是根据问题的需求,通过数学的分析和运算,做出综合性的、合理的优化安排,以便更有效地发展有限资源的效益。

在学习运筹学前我们必须理解这么学科到底是做什么的,并且学习时我们要知道如何运用它达到所需的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习运筹学的总结与心得体会古人云“夫运筹帷幄之中,决胜千里之外”,怀着对运筹学的憧憬与崇拜之情,这学期我选择了运筹学这门课程。

通过学习,我知道了运筹学是一门具有多科学交叉特点的边缘科学,是一门以数学为主要工具,寻求各种问题最优方案的优化学科。

经过一个学期的学习,我们应该熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题,即:应用分析、试验、量化的方法,对实际生活中的人力、财力、物力等有限资源进行合理的统筹安排。

本着这样的心态,在本学期运筹学课程将结束之际,我对本学期所学知识作出如下总结。

一、线性规划
线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

而线性规划问题指的是在一组线性等式或不等式的约束下,求解一个线性函数的最大或最小值的问题。

其数学模型有目标函数和约束条件组成。

解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。

解决线性规划问题的主要方法有:图解法、单纯型法、两阶段法、对偶单纯型法、计算机软件求解等方法。

简单的设计2个变量的线性规划问题可以直接运用图解法得到。

但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。

单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。

将所得的量的值代入目标函数,得出最优值。

利用单纯形表我们可以(1)直接找出基本可行解与对应的目标函数值;(2)通过检验数判断原问题解的性质以及是否为最优解。

每一个线性规划问题都有和它伴随的另一个问题,若一个问题称为原问题,则另一个称为其对偶问题,原问题和对偶问题有着非常密切的关系,以至于可以根据一个问题的最优解,得出另一个问题的最优解的全部信息。

对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。

非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标准形式的对偶问题。

因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。

在解决线性规划问题时,我们往往会在求出最优解后,对问题进行灵敏度分
析,即分析在线性规划问题中,一个或几个参数的变化对最优解产生的影响。

具体可以分析目标函数中变俩个系数、约束条件的右端项,增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。

下面我将通过实例分析来阐述线性规划问题在实际生活中的应用。

套裁下料问题:
某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m的圆钢各一根。

已知原料每根长7.4 m,问:应如何下料,可使所用原料最省?
通过问题的分析我们共可设计下列5 种下料方案,见下表
设 x1,x2,x3,x4,x5 分别为上面 5 种方案下料的原材料根数。

这样我们建立如下的数学模型。

目标函数: min z=7.4x1+7.3x2+7.2x3+7.1x4+6.6x5
约束条件: s. t. X1+2x2+ x4=100
LP(Ⅰ): 2x3+2x4+x5=100
3x1+x2+2x3+3x5=100
xi≧0 (i=1,2,3,4,5)
运用MATLAB软件计算得出最优下料方案:按方案1下料30根;按方案2下料10根;按方案4下料50根。

通过灵敏度的分析,我们可以得出影子价格分析情况:
每增加一根2.9m的圆钢,原材料总用料需要增加3根
每增加一根2.1m的圆钢,原材料总用料需要增加2根
每增加一根1.5m的圆钢,原材料总用料需要增加1根
像这一类的线性规划问题在我们的生活中常见的还有投资问题、人力资源分配的
问题;生产计划的问题;配料问题等等。

因此,学好线性规划在我们生活中是十分有用的。

线性规划是这门课程初期的教学内容,因此对于这个知识点的学习还是比较认真的。

但是在学习过程中一些定理的证明较为繁琐复杂,比较难以理解。

对此,需要在课后好好复习,认真消化课程内容,才能真正理解,熟练应用。

二、整数规划
整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定界法。

整数规划中的0-1规划整数问题是一个非常有用的方法。

在实际问题中,该方法能够解决很多问题,其中指派问题是0-1整数规划问题的一个特例。

0-1整数规划的解决方法有枚举法和隐枚举法。

这方面的知识,在建模课上老师已经讲授。

要注意的是,MATLAB软件的应用与如何合理地将现实问题转化为0-1规划这一关键点。

三、非线性规划
非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

对实际规划问题作定量分析,必须建立数学模型。

建立数学模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,称之为目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,称之为约束条件。

在解决非线性规划问题的方法时,我们主要学习了:凸函数与凸规划求解法、一维搜索法、Newton法、无约束最优化法、最速下降法、共轭梯度法、惩罚函数法等等。

在这个阶段的学习过程中,需要反思的是,由于课时安排紧张,对于课程的内容并没有很深入地了解,只是了解了非线性规划的解决方法。

在解决实际问题的应用中,还需要加强对给种方法的理解与掌握。

四、图论与网络分析
这一章我们主要学习了图论有关知识,学习了如何利用图来解决最小数问题、最短有向路问题、最大流问题与最小费用流问题。

在这章的学习中,通过直观的图,我们将生活中的运输问题、网络规划问题化成简单的图,体会回到了数学的神奇与强大应用性。

五、网络计划图、排序问题与统筹规划问题
在这三章的中,我们主要学习了如何利用图来解决生产生活中的人力、物力、财力等资源以及工作时间限制下的生产加工流程的统筹规划。

通过做网络图,我们可以清晰地求解出每个问题的合理安排法方法与解决问题的最少时间,最优计划。

使我们深入解了了运筹学在实际生活中的应用。

经过一个学期的学习,我更加确定当初选择运筹学这门课程是个正确的选择。

运筹学不是单纯的一门数学课程,而是各种生活生产实际问题的结合。

它让我知道了数学不仅仅是理论的学术问题,更是具体的生活问题。

而对于个人,我应该更好地学习如何将学过的知识与实际生活相结合,将运筹学运用到实际问题上去,学以致用,这样才是真正地学到知识,掌握知识。

以上就是我对本学期学习运筹学的总结与心得体会。

数学091 陈峥
学号:09101107。

相关文档
最新文档