[高二数学]排列组合概率练习题含答案

[高二数学]排列组合概率练习题含答案
[高二数学]排列组合概率练习题含答案

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

高考排列组合常见题型及解题策略

可重复的排列求幂法 相邻问题捆绑法 相离问题插空法 元素分析法(位置分析法) 多排问题单排法 定序问题缩倍法(等几率法) 标号排位问题(不配对问题) 不同元素的分配问题(先分堆再分配) 相同元素的分配问题隔板法: 多面手问题(分类法---选定标准) 走楼梯问题(分类法与插空法相结合) 排数问题(注意数字“0”) 染色问题 “至多”“至少”问题用间接法或分类: 十三.几何中的排列组合问题: 排列组合常见题型及解题策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重 复,把不能重复的元素看作“客”,能重复的元素看作“店”, 则通过“住店法”可顺利解题,在这类问题使用住店处理的策 略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法?

【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有6 7种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、3 8 B 、8 3 C 、3 8A D 、 38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠 军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有3 8种 不同的结果。所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4 424A =种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有, 22223242C A A A =432 种 其中男生甲站两端的有1 2 2 2 2 23232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排 列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有2 6A 种,不同的排法 种数是52 563600A A =种 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答) 【解析】: 111 789A A A =504 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的

排列组合测试题(含答案)

一、选择题: 1. 将3个不同的小球放入 4个盒子中,则不同放法种数有 A . 81 B . 64 C . 12 D . 14 2. 5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 3 . a,b,c,d,e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法 总数是 A. 20 B . 16 C . 10 D . 6 4.现有男、女学生共 8人,从男生中选 2人,从女生中选1人分别参加数学、物理、化 学三科竞赛,共有 90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5 . 6 . .180 B . 90 C . 45 D . 360 6 . 由数字1、 2、3、4、5组成没有重复数字的五位数,其中小于 50000的偶数共有 A . 60个 B . 48 个 C . 36 个 D . 24个 7 . 3张不同的电影票全部分给 10个人,每人至多一张 ,则有不同分法的种数是 A . .1260 B . 120 C . 240 D . 720 & n N 且n 55,则乘积(55 n)(56 n)L (69 n )等于 A . 55 n A 69 n B . A 59 n C . A 55 n D . A 14 n 9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A . 120 B . 240 C . 280 D . 60 10 .不共面的四个定点到面 的距离都相等,这样的面 共有几个 15 . 4名男生,4名女生排成一排,女生不排两端,则有 ___________ 种不同排法? (8640 ) 17 .在1,2,3,…,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数, 这样的四位数有 ___________________ 个? ( 840) C . A 5 2 3 D . A>A 3 A 1 A 1 A 3 A 2 A 3 A 3 A . 3 B . 4 C . 6 11.设含有10个元素的集合的全部子集数为 的值为 20 15 16 A.- B . C .- 128 128 128 D . 7 S ,其中由3个元素组成的子集数为 T ,则T S 21 D . 128

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合高考专项练习题

例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,C(2,10)*2*P(2,2),因而本题为180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。 (二)每一步是向上还是向右,决定了不同的走法。 (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,∴本题答案为:=56。 2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合 例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有____ __种。 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换,共12种。 例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有_______ _。 (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。 (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法。 (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。 例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。

排列组合测试题(含答案)

排列组合 2016.11.16 一、选择题: 1. 将3个不同的小球放入4个盒子中,则不同放法种数有 A .81 B .64 C .12 D .14 2.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 A .33A B .334A C .523533A A A - D .23113 23233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是 A.20 B .16 C .10 D .6 4.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5. 6. A .180 B .90 C .45 D .360 6.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 A .60个 B .48个 C .36个 D . 24个 7.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是 A .1260 B .120 C .240 D .720 8.n N ∈且55n <,则乘积(55)(56) (69)n n n ---等于 A .5569n n A -- B .15 69n A - C .15 55n A - D .14 69n A - 9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A .120 B .240 C .280 D .60 10.不共面的四个定点到面α的距离都相等,这样的面α共有几个 A .3 B .4 C .6 D .7 11.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则T S 的值为 A. 20128 B .15128 C .16128 D .21128 15.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法. (8640 )

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

历年高考数学真题精选45 排列组合

历年高考数学真题精选(按考点分类) 专题45 排列组合(学生版) 一.选择题(共20小题) 1.(2009?全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种B.180种C.300种D.345种2.(2010?广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是() A.1205秒B.1200秒C.1195秒D.1190秒3.(2007?全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有() A.10种B.20种C.25种D.32种4.(2006?湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是() A.6B.12C.24D.18 5.(2009?陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为() A.432B.288C.216D.108 6.(2014?辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144B.120C.72D.24 7.(2012?浙江)若从1,2,3,?,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有() A.60种B.63种C.65种D.66种8.(2012?北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位

(完整版)排列组合练习题___(含答案)

排列组合练习题 1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种 不同的选法。 2、8名同学争夺3项冠军,获得冠军的可能性有种。 3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安 排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。 4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天, 要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。 5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人) 得2本,其它每人一本,则共有种不同的奖法。 6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。 7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成 一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。 8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有 种陈列方法。 9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。 10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是 11、6名男生6名女生排成一排,要求男女相间的排法有种。 12、4名男生和3名女生排成一排,要求男女相间的排法有种。 13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有 种排法。 14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。

15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。 若4个空位中恰有3个空位连在一起,有种坐法。 16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5 不能排在一起,则不同的5位数共有个。 17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变, 那么不同的排法有种。 18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒, 乙不能跑第四棒,共有种参赛方案。 19、现有6名同学站成一排:甲不站排头也不站排尾有种不同的排法甲 不站排头,且乙不站排尾有种不同的排法 20、有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共 有种。 21、以正方体的顶点为顶点的四面体共有个。 22、由1、2、3、4、5、6组成没有重复数字的六位数,其中个位数字小于十位数字, 十位数字小于百位数字,则这样的数共有个。 23、A,B,C,D,E五人站一排,B必须站A右边,则不同的排法有种。 24、晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2 个节目 插入原节目单中,则不同的插法有种。 25、书架上放有6本书,现在要再插入3本书,保持原有书的相对顺序不变,则不 同的放法有种。 26、9个子高低不同的人排队照相,要求中间的最高,两旁依次从高到矮的排法共 有种。 27、书架上放有5本书(1~5册),现在要再插入3本书,保持原有的相对顺序不变, 有种放法。 28、12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调 整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 29、有五项工作,四个人来完成且每人至少做一项,共有种分配方法。

高考试题分类解析排列组合二项式定理

高考试题分类解析排列组 合二项式定理 Last revision date: 13 December 2020.

2005年全国高考试题分类解析(排列组合、二项式定理) 选择题 1. (全国卷Ⅱ)10()x 的展开式中64x y 项的系数是( ) (A) 840 (B) 840- (C) 210 (D) 210- 2.(全国卷Ⅲ)在(x?1)(x+1)8的展开式中x 5的系数是( ) (A )14 (B )14 (C )28 (D )28 3.(北京卷)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( ) (A )124414128C C C (B )124414128 C A A (C )12441412833C C C A ( D )12443141283C C C A 4.(北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( ) (A )144 4C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种 5.(福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游 览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙 两人不去巴黎游览,则不同的选择方案共有( ) A .300种 B .240种 C .144种 D .96种 6.(湖北卷)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给 4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那 么不同的分法种数是( ) A .168 B .96 C .72 D .144 7.(湖南卷)4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( ) A .48 B .36 C .24 D .18 8.(江苏卷)设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( ) ( A ) 10 ( B ) 40 ( C ) 50 ( D )80 9.(江苏卷)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 ( ) (A )96 (B )48 (C )24 (D )0 10.(江西卷)123)(x x +的展开式中,含x 的正整数次幂的项共有 ( )

(完整版)排列组合练习题3套(含答案)

排列练习 一、选择题 1、将3个不同的小球放入4个盒子中,则不同放法种数有() A、81 B、64 C、12 D、14 2、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于() A、 B、 C、 D、 3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数() A、64 B、60 C、24 D、256 4、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是() A、2160 B、120 C、240 D、720 5、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且合唱节目不能相邻,则不同排法的种数是() A、 B、 C、 D、 6、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() A、 B、 C、 D、 7、用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数有() A、24 B、36 C、46 D、60 8、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是() A、B、C、D、 二、填空题 1、(1)(4P 84+2P 8 5)÷(P 8 6-P 9 5)×0!=___________(2)若P 2n 3=10P n 3,则n=___________ 2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为 __________________________________________________________________ 3、4名男生,4名女生排成一排,女生不排两端,则有_________种不同排法 4、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成_________种不同币值。

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

历年高考排列组合试题及其答案

二项式定理历年高考试题荟萃(三) 一、填空题(本大题共 24 题, 共计102分) 1、(1+2x)5的展开式中x2的系数是________.(用数字作答) 2、的展开式中的第5项为常数项,那么正整数的值 是. 3、已知,则( 的值等于 . 4、(1+2x2)(1+)8的展开式中常数项为。(用数字作答) 5、展开式中含的整数次幂的项的系数之和为(用数字作答). 6、(1+2x2)(x-)8的展开式中常数项为。(用数字作答) 7、的二项展开式中常数项是(用数字作答). 8、 (x2+)6的展开式中常数项是.(用数字作答) 9、若的二项展开式中的系数为,则______(用数字作答). 10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等 于. 11、(x+)9展开式中x3的系数是.(用数字作答)

12、若展开式的各项系数之和为32,则n= ,其展开式中的常数项为。(用数字作答) 13、的展开式中的系数为.(用数字作答) 14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________. 15、(1+2x)3(1-x)4展开式中x2的系数为 . 16、的展开式中常数项为 ; 各项系数之和 为 .(用数字作答) 17、 (x)5的二项展开式中x2的系数是____________.(用数字作答)18、(1+x3)(x+)6展开式中的常数项为_____________. 19、若x>0,则(2+)(2-)-4(x-)=______________. 20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________. 21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= . 22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答) 23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.

排列组合测试题(含答案)

排例组合专题训练 1. 将3个不同的小球放入4个盒子中,则不同放法种数有A .81 B .64 C .12 D .14 2.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 A .33A B .334A C .523533A A A - D .23113 23233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是 A.20 B .16 C .10 D .6 4.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5.在8 2 x ? ?的展开式中的常数项是A.7 B .7- C .28 D .28- 6.5 (12)(2)x x -+的展开式中3 x 的项的系数是A.120 B .120- C .100 D .100- 7.22n x ???展开式中只有第六项二项式系数最大,则展开式中的常数项是 A .180 B .90 C .45 D .360 8.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 A .60个 B .48个 C .36个 D . 24个 9.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是 A .1260 B .120 C .240 D .720 10.n N ∈且55n <,则乘积(55)(56)(69)n n n ---L 等于 A .5569n n A -- B .15 69n A - C .15 55n A - D .14 69n A - 11.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A .120 B .240 C .280 D .60 12.把10 )x -把二项式定理展开,展开式的第8项的系数是 A .135 B .135- C .- D . 13.2122n x x ??+ ?? ?的展开式中,2 x 的系数是224,则2 1x 的系数是A.14 B .28C .56 D .112 14.不共面的四个定点到面α的距离都相等,这样的面α共有几个A .3 B .4 C .6 D .7

高中数学排列组合专题

排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种 B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有() A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有() A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的

插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和. 12.求(x2+﹣2)5的展开式中的常数项. 13.求值C n5﹣n+C n+19﹣n. 14.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的种数.(1)选5名同学排成一行; (2)全体站成一排,其中甲只能在中间或两端; (3)全体站成一排,其中甲、乙必须在两端; (4)全体站成一排,其中甲不在最左端,乙不在最右端; (5)全体站成一排,男、女各站在一起; (6)全体站成一排,男生必须排在一起; (7)全体站成一排,男生不能排在一起; (8)全体站成一排,男、女生各不相邻; (9)全体站成一排,甲、乙中间必须有2人; (10)全体站成一排,甲必须在乙的右边; (11)全体站成一排,甲、乙、丙三人自左向右顺序不变; (12)排成前后两排,前排3人,后排4人. 15.用1、2、3、4、5、6共6个数字,按要求组成无重复数字的自然数(用排列数表示).

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

排列组合高考真题及答案

排列组合高考真题及答 案 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

1.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A )12种 (B )18种 (C )36种 (D )54种 【答案】B 【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力. 【解析】标号1,2的卡片放入同一封信有 种方法;其他四封信放入两个信封, 每个信封两个有种方法,共有种,故选B. 2.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有 (A )30种 (B )36种 (C )42种 (D )48种 解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法 即221211645 4432C C C C C C -?+=42 法二:分两类 甲、乙同组,则只能排在15日,有24C =6种排法 3.某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有

A. 504种 B. 960种 C. 1008种 D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4 414 222A A A ?种方法 甲乙排中间,丙排7号或不排7号,共有)(43 31313 4422A A A A A +种方法 故共有1008种不同的排法 名学生和2位第师站成一排合影,2位老师不相邻的排法种数为 (A )8289A A (B )8289A C (C ) 8287A A (D )8287A C 答案:A 5.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法 ①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个 ②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个 算上个位偶数字的排法,共计3(24+12)=108个 答案:C 6.如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用 (A )288种 (B )264种 (C )240种 (D )168种 【答案】D 【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。 (1) B,D,E,F 用四种颜色,则有441124A ??=种涂色方法;

相关文档
最新文档