工频变压器

工频变压器
工频变压器

工频一般指市电的频率,在我国是50Hz,其他国家也有60Hz的。而可以改变这个频率交流电的电压的变压器,就是叫工频变压器了。工频变压器被大家称为低频变压器,以示与开关电源用高频变压器有区别,工频变压器在过去传统的电源中大量使用,而这些电源的稳定方式又是采用线性调节的,所以那些传统的电源又被称为线性电源。

工频变压器的原理非常简单,理论上推导出相关计算式也不复杂,所以大家形成了看法:太简单了,就那三、四个计算公式,没什么可研究的.设计时只要根据那些简单的公式,立马成功。

我认为上面的认识既有可取之处,也有值得研究的地方.可取之处:根据计算式,可以很快就计算出结果,解决了问题;值得研究的地方是:你是否了解自己设计出的产品性能?设计合理吗?设计优化过吗?经济性如何?

举个例子吧,根据功率选铁芯规格就是个很繁杂的问题,因为涉及的因素比较多.有些书推荐采用下面的半经验公式去选取:

S = K·Sqrt(P) (1)

定下S后,然后进行其它的计算.这确实是一种实用的方法,但也要认识到,这也是一种简化了的设计方法,大多数情况下存在着浪费.这种设计方法对业余爱好者来说用不着讨论(只是偶尔设计一个变压器自己用),但对企业来说,值得讨论,产品中大批量采用这种设计时,体现的是降低了经济效益。

工频变压器的设计选材

从节约能源及原材料的角度,可采取以下建议:

1、减少铜的用量,有两个方面可以实现,一是减少线径这就意味着铜阻增大,铜损损耗就会增大。二是减少圈数,就会使空载电流增大,同样空载损耗就会加大,如果变压器长时间的处于通电待机状态,电力资源的浪费是非常大的。每年我国因为家用电器的长期处于待机通电状态造成的电力浪费以数十亿元计。

2、变压器设计时应使铜损和铁损相等,这样变压器的损耗最低,工作最稳定,如果一个变压器设计完后,由于为节省铜线,而采取小号的线径和减少圈数的方法,使得铁心窗口还有很多的空间余量,这样就说明铁心的尺寸选择的过大,造成了铁心的浪费,由于铁心的规格大,绕线的平均周长也大,同样会造成铜线的用量增加。根据现在的价格,铁心的成本要高于铜线的成本。

所以在设计时,在保证性能满足客户的要求的情况下,应尽量选择小号的铁心,能用41的,就绝不用48的。关于空载电流,从节省待机的损耗上考虑,还是尽量低的好。

工频变压器的设计绕制

各种家用电器中,工频变压器无论是自行设计绕制,还是修复烧坏的变压器,都涉及到部分简单的计算,教科书上的计算公式虽然严谨,但实际运用时显得复杂,不甚方便。本文介绍实用的变压器计算的经验公式。

1.铁芯的选择

根据自己需要的功率选择合适的铁芯是绕制变压器的第一步。如果铁芯(硅钢片)选用过大,将导致变压器体积增大,成本升高,但铁芯过小,会增大变压器的损耗,同时带负载能

力变差。

为了确定铁芯尺寸,首先要算出变压器次级的实际消耗功率,它等于变压器次级各绕组电压、负载电流的乘积之和。如果是全波整流变压器,应以变压器次级电压的1/2计算。次级绕组消耗功率加入变压器本身损耗功率,即为变压器初级视在功率。一般次级绕组功率在10w以下的变压器,其本身损耗可达次级实际消耗功率的30~50%,其效率仅为50~70%。次级绕组功率在30W以下损耗约20~30%,50W以下损耗约15~20%,100w以下损耗约10~15%,100W以上损耗约10%以下,上述损耗参数是关于普通插片式变压器的。如果按照R型变压器、c型变压器、环形变压器的顺序,损耗参数依次减小。

根据上述计算的变压器初级总功率可以选定铁芯。铁芯面积S=a×b(cm2).如附图所示。变压器视在功率与s的关系用下述经验公式选用:s=K√P1

P1为变压器初级总视在功率,单位为:VA(伏安),s为应选铁芯截面积,K为一系数,随变压器Pl大小不同选用不同的值。同时考虑到硅钢片之间的绝缘漆、空隙的影响,K与P1关系为:

P1 K值

10VA以下2~2.2

50VA以下2~1.5

lOOVA以下1.5~1.4

2.每伏匝数计算

选定铁芯s以后。再确定每伏匝数,以使绕制的变压器有台理的激磁电流。常用的经验公式为:N=(40~55)/S,N为每伏匝数。

根据不同质量的硅钢片选取系数40~55。比较高级的高硅钢,用眼观察表面有鳞片结晶.且极脆,只弯折1~2次即断裂,断处参差不齐,系数取为40。若硅钢片表面光洁,弯折4~5次仍不易断,断面为整齐直线,系数取50以上。

求出每伏匝数后乘以220V即为初级匝数,乘以次级要求电压数即为次级各绕组匝数。因为导线有电阻,电流流过时会有电压降,求出的次级匝数应增加5~lO%(根据负载电流选择,电流大者可增加较大比例)。

3.导线直径的选择

根据各绕组负载电流的大小,选择不同直径的漆包线。可用下列经验公式求出:

d=O.8√I,

单位:l--A.d(导线直径)--mm。

4.绕制方法及注意事项

由于现在的漆包线绝缘强度大幅度提高,因此对50W以下的小功率变压器大多采用阻燃塑料骨架叠绕法,但必须选用高强度漆包线,且绕制时仍应逐圈排线,严禁大幅度斜跨,以免增大导线间电位差。

对50W以上的变压器,由于每伏匝数减少,导线间电压差较高,最好采取每层垫绝缘纸(O.05mm厚的电缆纸、牛皮纸)的方法,在绕制中应绝对避免上层导线滑入下层。各绕组间绝缘应视绕组电压决定。初次级之间应垫4层以上0.1mm的电缆纸,忌用不干胶胶带。上述叠绕法的小功率变压器,如果次级有两组以上绕组,每组之间也应用两层电缆纸绝缘。如果变压器是用在音响或视听器材中.在多层绕制法中初次级之间应垫入静电屏蔽层。

绕好后.插硅钢片也需注意、必须插紧,以避免产生电磁噪音。无论双E形还是EI形,其端口要紧密接触.宜交叉插,不能有空隙。最后的4~5片可从中间插入,以免损坏线包。然后进行烘干、浸漆。对50W以下的变压器可采取内热法烘干。方法是:将变压器所有次

级绕组短路,与60~100W/220V灯泡串联接入市电,使其自动升温。灯泡越大温度越高,但在密闭状态下,使其温度在80度以下较安全。

工频变压器与高频变压器的区别

1、磁性材料的差别:

工频变压器采用硅钢片作为磁芯材料的;高频变压器是采用铁氧体磁芯材料。

2、工作频率的差别:

工频变压器的工作频率一般是指50HZ货60HZ的电源频率;高频变压器的工作频率一般都在1KHZ以上,甚至几十KHZ或者上百KHZ,应用范围不同频率也不一样。

3、应用方面:

工频变压器一般多用于将220V或者110V工频高压变换成工频低压,供小家电的电路板供电使用(如豆浆机、抽油烟机、音响等等,应用范围比较广泛;高频变压器用途就广泛了(如;手机充电器,电子镇流器,开关电源,彩电电源,电脑电源,液晶驱动及电源等等许多场合都有使用)。

论计算完成后还需要实际测试效果进行验证,因为铁心参数,制作工艺可能和我们假设的不一样,所以设计完成后基本都需要再根据实测结果进行调整。

要求:

高压输出:260V,150ma ;

灯丝1:5V,3A;

灯丝2:6.3v,3A 中心处抽头;

初、次级间应加有屏蔽层。

根据要求铁芯型号采用“GEIB一35”。

计算如下:

(1)计算变压器功率容量(输入视在功率):

P =(1.4×高压交流电压×电流+灯丝1电压×电流+灯丝2电压×电流)/ 效率

=(1.4×260×0.15+5×3+6.3×3)/ 0.9

=(54.6+15+18.9)/ 0.9

= 98.33VA

(2)计算原边电流

I1=1.05×P / 220=0.469A

(3) 按照选定的电流密度(由计划的连续时间决定),选取漆包线直径。

如按照3A/mm2计算:D=0.65×√I (0.65×电流的开方)

并规整为产品规格里有的线径(可查资料):

选定:

原边直径D1=0.45mm

高压绕组直径D2=0.25mm

灯丝绕组直径D3=D4=1.12mm

(4) 铁心截面面积

S0=1.25√(P)=1.25×√98=12.5CM2

(5)铁心叠厚:

根据他的要求铁芯型号采用“GEIB一35”,

查到:舌宽=35MM=3.5CM

则:叠厚=12.5 / 3.5 =3.6CM

一般地(叠厚/舌宽)在1-2之间是比较合适的。

(6)铁心有效截面积:

S1=舌宽×叠厚/ 1.1 = 11.454 CM2

(7) 计算每伏匝数

计算式:每伏匝数n=(45000)/(B×S1)

其中

B=10000-12000(中等质量硅钢片,如原先上海无线电27厂产品铁心)

或15000(Z11等高质量硅硅片)

或8000(电动机用硅钢片)。

S1:铁心有效截面积,等于(舌宽×叠厚)/1.1

假定是中等质量铁心,并且保守点,取B=10000

则:

n=450000 / B×S1

= 450000 /(10000×11.454)

=3.93 (T / V )

(8)计算每组匝数

原边圈数:N1=220n=220×3.93×0.95=822(T)

副边高压:N2=260×1.05×n=1073(T)--这是一半,还要再×2=2146T。

灯丝1(5V):N3=5×1.05×n=21(T)

灯丝2(6.3V):N3=6.3×1.05×n =26(T)

(10)计算每层可绕圈数(窗口高度两端要留下3MM):

查得该铁心窗口高度h=61.5mm,

查表得知:选用的漆包线带漆皮最大外径

D1Max=0.51mm

D2Max=0.30mm

D3Max=1.23mm

D4Max=1.23mm

按照每层可绕:N =(h-0.5-2×3)/(K×DMax)计算

(分子的含义是:由h=61.5mm==》可绕线宽度为61.5-0.5-2×3=55mm)

(分母是排线系数K×最大外径DMax,对于初学者,小于0.3的线K=1.20,0.3-0.8的线K=1.15,大于0.8的线K=1.10。。如您已经有较好的绕线经验,K可以=105~102) 代入上述数据得到:

原边每层可绕:94圈

高压每层可绕:154圈

灯丝每层可绕:39圈(最后有讨论)。

(也可以直接查“每厘米可绕圈数表”得到)

(11)各绕组的层数

前面已经算出各组圈数则,则各绕组的层数:

原边=822/ 94=8.74,取9层

高压=2146/154=13.94,取14层

灯丝1:1层,

灯丝2:1层。

(12)绝缘设计

骨架,用1MM厚红钢纸,外加0.15MM覆膜青壳纸1层+0.08MM电缆纸1层;

原边绕组垫纸用0.08MM电缆纸;

副边高压绕组垫纸用0.05MM电缆纸;

组间绝缘用0.08MM电缆纸1层+0.15MM覆膜青壳纸2层+0.08MM电缆纸1层;

(绕组外绝缘同组间绝缘)

(13)计算线包(压实的)厚度:

=(1+0.15+0.08) (骨架及内层绝缘)

+(9×0.51+8×0.08) (原边绕组)

+(0.08×2+0.15×2) (组间绝缘1)

+(隔离层,如可能用0.05铜箔,如无,就用与高压绕组同直径的线绕一层代)

+(0.08×2+0.15×2) (组间绝缘2)

+(14×0.30+13×0.05)(高压绕组)

+(0.08×2+0.15×2) (组间绝缘3)

+(1.23) (灯丝1)

+(0.08×2+0.15×2) (组间绝缘4)

+(1.23) (灯丝2)

+(0.08×2+0.15×2) (线包外间绝缘)

=1.23+5.23+0.46+0.30+0.46+4.85+0.46+1.23+0.46+1.23+0.46

=16.37mm

(14)检验“蓬松系数”

蓬松系数=铁片窗口宽度/ 线包(压实的)厚度

“蓬松系数”一般可以在1.2-1.3间,蓬松系数小者要注意绕的十分紧才行,蓬松系数过大说明选的铁心规格大了,要重选重算。对于经验不多的初学者,不妨以1.3-1.35进行检验。不然可能绕完了发现装不进铁片。

检验:

蓬松系数=22 / 16.37 = 1.34

很合适的呀。

(15)修正方案::

灯丝绕组可以选用0.8nn直径漆包线2根并绕(0.80线最大外径0.89,每层可绕54圈,6.3V绕组26×2,刚好可以绕下)。这样导线可以分布开来不至于只有半边,绕出来的线包就比较平整。还可以减小绕组厚度。

这时,

计算线包(压实的)厚度:

=1.23+5.23+0.46+0.30+0.46+4.85+0.46+0.89+0.46+0.89+0.46

=15.69mm

蓬松系数=22 / 15.69 =1.41

这就非常之宽松了,说明选的铁心规格大了,利用手头现有铁心当然可以。保证可以成功。

计算完毕。

武汉工频耐压试验装置_试验变压器

https://www.360docs.net/doc/8f1222408.html, 武汉工频耐压试验装置_试验变压器武汉工频耐压试验装置_试验变压器,今天为大家介绍3款工频耐压试验装置,分别为YDJ系列油浸式试验变压器,GTB系列干式试验变压器,YDQ系列充气式试验变压器。 在这里特别强调一点的是,我们通常说的工频耐压是装置一套设备,比如YDJ系列油浸式试验变压器加上对应容量的操作箱或者操作台才叫做工频耐压试验装置。 首先是YDJ系列油浸式试验变压器 YDJ系列油浸式试验变压器,是根据《试验变压器》标准在原同类产品基础上经过大量改进后,研制生产的系列试验变压器,该产品遵照DL/T848.2-2004《高压试验装置通用技术条件-第2部分:工频高压试验装置》,研制生产的一种新型产品。本系列产品具有体积小、重量轻、结构紧凑、功能齐全、通用性强和使用方便等特点。 然后是GTB系列干式试验变压器

https://www.360docs.net/doc/8f1222408.html, 干式试验变压器干式试验变压器,是引进国外最新先进技术,利用先进的生产设备,采用了线圈环氧真空浇注成型,及CD型铁芯的新工艺、新材料、与其同容量,同电压的油浸式试验变压器相比,具有重量轻、体积小、造型美观、性能稳定、使用携带方便、无渗漏油等优点。并有效地削弱了漏磁提高了绝缘强度和抗湿能力 最后是YDQ系列充气式试验变压器 充气式试验变压器是电力设备检测及预防性试验所必备的试验设备。随着我国电力工业的发展,对试验变压器的电压等级要求也越来越高,而传统的油浸式试验变压器,无论在体积上和重量上还是在性能上都越来越不能满足现场工作的要求。

https://www.360docs.net/doc/8f1222408.html, 最后是为大家介绍的操作箱/操作台(根据相应容量选取操作箱或者操作台) 试验变压器操作箱是我公司自主研发、生产的轻型试验变压器的专用配套设备,该控制箱、台具有使用维修方便、性能优越使用安全可靠、外型结构美观、坚固耐用、移动方便等特点。是供电企业、大型工厂、冶金、发电厂、铁路等需要电力维修部门的必备设备。采用先进的微电子处理技术,全部使用过程可提前进行设置,全中文界面,操作简单明了。全部测试项目设定后自动进行测试,无须人工干预。

油浸电力变压器设计手册-沈阳变压器(1999) 6负载损耗计算

目录 1 概述SB-007.6 第 1 页 2 绕组导线电阻损耗(P R)计算SB-007.6 第 1 页 3 绕组附加损耗(P f)计算SB-007.6 第1页3.1 层式绕组的附加损耗系数(K f %)SB-007.6 第 1 页3.2 饼式绕组的附加损耗系数(K f %)SB-007.6 第 2 页3.3 导线中涡流损耗系数(K w %)计算SB-007.6 第 2 页 3.3.1 双绕组运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 2 页3.3.2 降压三绕组变压器联合运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 3 页 SB-007.6 第3 页3.3.3 升压三绕组(或高-低-高双绕组)变压器联合运行方式的最大纵向漏 磁通密度(B m)计算 3.3.4 双绕组运行方式的涡流损耗系数(K w %)简便计算SB-007.6 第4 页3.4 环流损耗系数(K C %)计算SB-007.6 第 4 页3. 4.1 连续式绕组的环流损耗系数(K C %)计算SB-007.6 第4 页3.4.2 载流单螺旋―242‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第5 页 SB-007.6 第5 页3.4.3 非载流(处在漏磁场中间)单螺旋―242‖换位的绕组环流损耗系数 (K C2 %)计算 3.4.4 载流双螺旋―交叉‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第6 页 SB-007.6 第7 页3.4.5 非载流(处在漏磁场中间)双螺旋―交叉‖ 换位的绕组环流损耗 系数(K C2 %)计算 4引线损耗(P y)计算SB-007.6 第7 页5杂散损耗(P ZS)计算SB-007.6 第8 页5.1小型变压器的杂散损耗(P Z S)计算SB-007.6 第8 页5.2中大型变压器的杂散损耗(P Z S)计算SB-007.6 第9 页5.3 特大型变压器的杂散损耗(P Z S)计算SB-007.6 第10 页

工频变压器设计

工频变压器设计 工频变压器是最简单的变压器,基本不用考虑分布电感、分布电容、信号源内阻、等效电路各种指标等复杂因素,直接按标准化步骤操作即可,所以用工频变压器来进行变压器设计入门是最好不过了。简单说就是根据功率选择铁心,然后计算匝数,再看能否绕下。不同的人设计标准不同,可能和下面计算有偏差,但是本质思想都是一样的。有时算到后面需要重新再来,其实相当于一个迭代设计过程,反复设计直至满足要求为止。 理论计算完成后还需要实际测试效果进行验证,因为铁心参数,制作工艺可能和我们假设的不一样,所以设计完成后基本都需要再根据实测结果进行调整。 要求: 高压输出:260V,150ma ; 灯丝1:5V,3A; 灯丝2:6.3v,3A 中心处抽头; 初、次级间应加有屏蔽层。 根据要求铁芯型号采用“GEIB一35”。 计算如下: (1)计算变压器功率容量(输入视在功率): P =(1.4×高压交流电压×电流+灯丝1电压×电流+灯丝2电压×电流)/ 效率 =(1.4×260×0.15+5×3+6.3×3)/ 0.9 =(54.6+15+18.9)/ 0.9 = 98.33VA (2)计算原边电流 I1=1.05×P / 220=0.469A (3)按照选定的电流密度(由计划的连续时间决定),选取漆包线直径。 如按照3A/mm2计算:D=0.65×√I(0.65×电流的开方) 并规整为产品规格里有的线径(可查资料): 选定: 原边直径D1=0.45mm 高压绕组直径D2=0.25mm 灯丝绕组直径D3=D4=1.12mm (4)铁心截面面积 S0=1.25√(P)=1.25×√98=12.5CM2 (5)铁心叠厚:

工频耐压试验装置说明书

RTYD-30kVA/50kV工频耐压试验装置RTYD-30kVA/50kV Withstand HV Test Set 使用说明书 User's Manual 武汉锐拓普电力设备有限公司 W uhan Retop Electric Device Co.,LTD

前言 一、衷心感谢您选用本公司的产品,您将获得本公司全面的技术支持和服务保障。 二、本说明书适用于RTYD-30kVA数显工频耐压试验装置。 三、您在使用本产品前,请仔细阅读本说明书,并妥善保存以备查阅。 四、在阅读本说明书或仪器使用过程中如有疑惑,可向我公司咨询。

目录 1、概述 1.1用途----------------------------------------------------------------------1 1.2性能特点------------------------------------------------------------------1 2、特别提示 2.1电源输入------------------------------------------------------------------2 2.2安全注意事项--------------------------------------------------------------2 2.3测试准确度方面------------------------------------------------------------2 2.4操作方面------------------------------------------------------------------2 3、技术特征 3.1名称和分类----------------------------------------------------------------3 3.2主机结构型式与尺寸-------------------------------------------------------3 3.3使用电源------------------------------------------------------------------3 3.4使用环境要求--------------------------------------------------------------3 3.5安全性能------------------------------------------------------------------3 3.6测量精度------------------------------------------------------------------3 3.7测试项目-----------------------------------------------------------------3 4、工作原理 4.1原理框图------------------------------------------------------------------4 4.2工作原理------------------------------------------------------------------4 5、面板布置 5.1面板示意图----------------------------------------------------------------5 5.2各部件说明----------------------------------------------------------------5 6、基本操作 6.1计时触发电流--------------------------------------------------------------6 6.2过流保护------------------------------------------------------------------6 6.3零位保护------------------------------------------------------------------6 7、测试

工频交流耐压试验

工频交流耐压试验工频交流(以下简称交流)耐压试验是考验被试品绝缘承受各种过电压能力最严格有效的方法,对保证设备安全运行具有重要意义。 交流耐压试验的电压、波形、频率和在被试品绝缘内部电压的分布,均符合实际运行情况,因此,能有效地发现绝缘缺陷。交流耐压试验应在被试品的绝缘电阻及吸收比测量、直流泄漏电流测量及介质损失角正切值tg δ测量均合格后进行。如在这些试验中已查明绝缘有缺陷,则应设法消除,并重新试验合格后才能进行交流耐压试验,以免造成不必要的损坏。 交流耐压试验对于固体有机绝缘来说,会使原来存在的绝缘弱点进一步发展(但又不致于在耐压时击穿),使绝缘强度逐渐衰减,形成绝缘内部劣化的积累效应,这是我们所不希望的。因此,必须正确地选择试验电压的标准和耐压时间。试验电压越高,发现绝缘缺陷的有效性越高,但被试品被击穿的可能性越大,积累效应也越严重。反之,试验电压低,又使设备在运行中击穿的可能性增加。实际上,国家根据各种设备的绝缘材质和可能遭受的过电压倍数,规定了相应的出厂试验电压标准。具有夹层绝缘的设备,在长期运行电压的作用下,绝缘具有累积效应,所以现行有关标准规定运行中设备的试验电压,比出厂试验电压有所降低,且按不同设备区别对待(主要由设备的经济性和安全性来决定)。但对纯瓷套管、充油套管及支持绝缘子则例外,因为它们几乎没有累积效应,故对运行中的设备就取出厂试验电压标准。 绝缘的击穿电压值与加压的持续时间有关,尤以有机绝缘特别明显,其击穿电压随加压时间的增加而逐渐下降。有关标准规定耐压时间为一分钟,一方面是为了便于观察被试品情况,使有弱点的绝缘来得及暴露(固体绝缘发生热击穿需要一定的时间);另一方面,又不致时间过长而引起不应有的绝缘击穿。 第一节试验方法 一、原理接线 交流耐压试验的接线,应按被试品的要求(电压、容量)和现有试验设备条件来决定。通常试验变压器是成套设备(包括控制及调压设备),对调压及控制回路加以简化如图一所示。 图1

变压器的选择与容量计算

变压器的选择与容量计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。选用配电变压器时,如果 把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压 器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与 过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷 中心,供电半径不超过0.5千米。配电变压器的负载率在0.5?0.6之间效率最高,此时变压器的 容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。对于仅向 排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的 1.2倍选 用变压器的容量。一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击, 直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30就右。应当指出的 是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。对 于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实 际可能出现的最大负荷的 1.25倍选用变压器的容量。根据农村电网用户分散、负荷 密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷 大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。对于 变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按 最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。变压器的容 量是个功率单位(视在功率),用AV (伏安)或KVA(千伏安)表示。它是交流电压和交流

基于工频变压器的独立逆变电源设计

课程设计 年月日

主要内容: 该控制电路采用U3988为控制器,输出PWM波形来控制逆变电路功率管,同时U3988内部具有各种电路保护作用,可使逆变电源数字化,简化电路;与无工频变压器逆变电路相比,该电路设计采用工频变压器起到隔离保护的作用,使电路具有系统可靠性功能。实验结果表明,对于传统逆变器,该设计方案不仅省去额外保护电路使电路结构简单明了,还可以使系统从无法保障稳定性到具有可靠稳定性。 基本要求: 1.经滤波电路输出满足要求的交流电压,一般要求输出220 V/50 Hz交流; 2.工频逆变电源输入一般为低压直流; 3.该电路采用全桥变换电路结构,这种变换器输出不是1根火线和1根零线,而 是2根火线; 4.逆变电路可靠稳定。 主要参考资料: [1] 胡启凡.变压器实验技术,中国电力出版社[J].2010-1-1. [2] 尹克宁. 变压器设计原理[M].中国电力出版社,2002. [3] 徐甫荣,陈辉明. 高压变频调速技术应用现状与发展趋势[J ] .高压变频器,2007. [4] 张秀梅, 周盛荣. 变频器用多脉波整流变压器的移相[ J] .包钢科技,2006. [5]张勇.山东东岳能源公司电解铝厂电网谐波分析与治理的研究,硕士学位论文,山东科技大学,2005.

目录 1 任务和要求 ..................................... 错误!未定义书签。 2 总体方案设计与选择 ............................. 错误!未定义书签。 2.1 逆变电源结构设计.......................... 错误!未定义书签。 2.2工频变压器 ................................. 错误!未定义书签。 2.3工频变压器选材 ............................. 错误!未定义书签。 3 逆变电路电源设计 ................................ 错误!未定义书签。 3.1PWM技术 ................................... 错误!未定义书签。 3.2 工频变压器在逆变电路中的作用............... 错误!未定义书签。 3.3 保护电路................................... 错误!未定义书签。 4 结论 ........................................... 错误!未定义书签。参考文献 .......................................... 错误!未定义书签。

高压试验变压器使用方法

高压试验变压器使用方法 高压试验变压器工频耐压试验中限流电阻R1应根据试验变压器的额定容量来选择。如高压侧额定输出电流在 100-300MA时,可取0.5-1Ω/V(试验电压);高压侧额定输出电流为1A 以上时,可取1Ω/V(试验电压)。常用水电阴作为限流电阻,管于长度可按150KV/m考虑,管子和粗细应具有足够的热容量(水阻液配制方法:用蒸馏水加入适量硫酸铜配制成各种不同的阴值)。 球间隙及保护电阻:当电压超过球间隙整定值时(一般取试验电压的110%-120%)球间隙放电,对被试品起到保护作用。球间隙保护电阻可按1Ω/V(试验电压)选取。 在工频耐压试验中,低压侧测量电压(仪表电压)不是非常准确的,其原因是由于试验变压器存在着漏抗,在这上个漏抗上必然存在着压降或容升,使试品上的电压低于或高于低压侧测量电压表上反映出来的电压。工频耐压试验时,被试品上的电压高于试验变压器的输出电压,高压试验变压器厂家也就是所谓容升现象。感应耐压试验时。试验变压器的漏抗必须存在着压降。为了准确测量被试品上所施加电压,因此常在高压侧接入RCF阻容分压器来测量电压。 高压试验变压器操作注意事项: (1)试验人员应做好分工,明确相互间办法。并有专门人监护现场安全及观察试品状态。 (2)被试品应清扫干净,并绝对干燥,以免损坏被试品和试验带来的误差。 (3)对丁大型试验,一般都应先进行空升试验。即不接试品时升压至试验电压,校对各种表计,调整间隙。 (4)升压速度不能太快,并必须防止突然加压。例如调压器不在零位的突然合闸,也不能突然切断电源,一般应在调压器降至零位时拉闸。 (5)当电压升至试验电压时,开始计时,到1min后,迅速降到1/3试验电压以下时,才能拉开电源。

最新变压器设计及计算要点

变压器设计及计算要 点

变压器设计及计算要点 —蒋守诚— 一概述 1. 变压器发展史 (1) 发明阶段(1831~1885) 变压器是利用电磁感应原理来变换电能的设备,故变压器一定在电磁感应原理发现后出现。 1831年英国人法拉第(M.Farady)在铁环上缠绕两个闭合线圈, 在一个线圈中突然接上或断开电池, 另一个线圈所接仪表指针发生偏转, 从而发现电磁感应原理。 1837年英国人曼生(Masson)用薄铁片做电磁线圈的铁心, 从而减少损耗。 1881年法国人爱维(Jaewin) 发现磁滞现象, 美国人斯坦曼茨(C.P.Steimetz)发现磁滞损耗是磁密的1.6次方成正比例。 1882年英国人格拉特 ( Goulard)和吉普斯(J.D.Jibbs)制成15kVA1.5kV的开路铁心的单相变压器。同年法栾(S.Z.Ferranti)和汤姆生 (A.Tomson) 制成电流互感器。 1884年英国人戈普生兄弟开始采用具有闭合铁心的变压器作照明电源。 1884年9月16日匈牙利人布拉提(O.Blathy)和但利(M.Dery)和齐彼尔斯基K.Zipernovsky)在匈牙利的甘兹(Ganz)工厂制造一台1400 VA 120 / 72 V 40 Hz单相闭合磁路的变压器。至1887年底甘兹(Ganz)工厂就生产24台总容量达3000 kVA。 1885年才把这种电器叫做”变压器”。 (2) 完善阶段(1886~1930) 1887年英国人配莱(Belry)发明了单相多轭的分布式铁心。 1888年俄国人多利沃—多勃罗沃尔斯基 ( M.O.Dolivo-Dobrowolsky ) 提出交流三相制。并于1890年发明了三相变压器。同年布朗(Brown)又制造出第一台油冷、油绝缘变压器。 1890年德国人威士顿(Wenstrom)做成对称三相铁心。 1891年德国西门子(Siemens Sohucrerf) 做成不对称三相铁心。美国人斯汀兰(W.Stanley)在西屋公司(Westing House) 做成单相壳式铁心。瑞士的勃朗—鲍佛利(B.B.C)公司的创始人勃朗(E.F.Brown) 做成三相壳式铁心。 1891年德国生产30kVA的油浸变压器(1878年美国人勃劳克斯(D.Brdoks)开始用油做绝缘。) 1900年德国人夏拉(Schalley)做成三相五柱式铁心。 1900年英国人哈特菲尔德(Hodfeild)发明了硅钢片, 1903年开始用硅钢片制造变压器铁心。 (德国在1904年, 美国在1906年, 俄国在1911年, 日本在1922年分别用硅钢片制造变压器铁心) 1905年德国人洛果夫斯基(W. Rowgowski)研究漏磁场提出漏磁系数。 1915年华纳(K.W.Wagner)研究线圈内部电磁振荡的基本理论,提出了过电压保护一种方式。 1922年美国人维特(J. M. Weed)研究过电压理论时, 提出了过电压保护另一种方式。 1930年前后变压器的基本理论已基本形成。 (3) 提高阶段(1930~至今) 1930年以后变压器进入改进提高阶段, 即采用新材料、改进结构、改进工艺、不断扩大变压器的使用范围。

电力变压器继电保护设计

1 引言 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过分析,找到符合电网要求的继电保护方案。 继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。 在电力系统发生故障中,继电保护装置能够及时地将故障部分从系统中切除,从而保证电力设备安全和限制故障波及范围,最大限度地减少电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全水平。 2 课程设计任务和要求

通过本课程设计,巩固和加深在《电力系统基础》、《电力系统分析》和《电力 系统继电保护与自动化装置》课程中所学的理论知识,基本掌握电力系统继电保护设计的一般方法,提高电气设计的设计能力,为今后从事生产和科研工作打下一定的基础。 要求完成的主要任务: 要求根据所给条件确定变电所整定继电保护设计方案,最后按要求写出设计说明书,绘出设计图样。 设计基本资料: 某变电所的电气主接线如图所示。已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数:MVA S N 5.31=,电压:kV 11/%5.225.38/%5.24110?±?±,接线:)1211//(//011--?y Y d y Y N 。短路电压:5.10(%)=HM U ; 6(%);17(%),==ML L H U U 。两台变压器同时运行,110kV 侧的中性点只有一台接地; 若只有一台运行,则运行变压器中性点必须接地,其余参数如图所示。(请把图中的L1的参数改为L1=20km ) ~ 图2.1变电所的电气主接线图

变压器设计1

干式铁心电抗器 一、基本原理 电抗器是一个电感元件,当电抗器线圈中通以交流电时,产生电抗(X L )和电抗压降(U L =I L X L )。 空心电抗器线圈中无铁心,以非导磁材料空气或变压器油等为介质,其导磁系数很小 (1≈μ) ,磁阻(C r )很大,线圈电感(L )、电抗(X L )及电抗压降(U L )均小; 铁心电抗器的线圈中放有导磁的硅钢片铁心材料,硅钢片导磁系数大,磁阻小,其电感(L )、电抗(X L )及电抗压降(U L )均大。另外,铁心电抗器铁心柱上放有气隙(或油隙),改变气隙长度,会改变磁路磁阻,从而得到所需电感值(L )、电抗(X L )及电抗压降(U L )。 铁心电抗器线圈通过交流电,产生磁通分两部分,如图所示。一部分是通过铁心之外的线圈及空道的漏磁通(q Φ),它产生线圈漏抗(X Lq )及漏抗压降(U Lq = I L X Lq );另一部分是通过铁磁路(铁心及气隙)的主磁通(T Φ),它将在线圈中感应一个电势E ,其E ?可以 视为一个电压降,如忽略电阻电压降,此压降可认为是主电抗压降(U LT ) 。等值电路如图所示。 电抗压降(U L )的通式: C C L C C L C L L L L L l A W fI l A W fI r W I L I X I U 28022 109.72?×==== =μμπωω (V) 式中: L I —通过电抗器线圈的电流(A) L X —电抗器电抗(Ω) L —电抗器电感(H) W —线圈匝数 C r —磁阻(H -1 ),C r =C C A l 0μμ μ—相对导磁系数,如空气或变压器油μ=1 0μ—绝对导磁系数,cm H /104.080?×=πμ C l —磁路长度(cm) C A —磁路面积(cm 2 ) 磁通与磁势图 U LT 等值电路图

试验变压器容量选择

高压试验变压器的详细介绍 YD系列轻型高压试验变压器是一种新型高压测试设备,本系列产品采用单框芯式铁芯结构,初级绕组和高压绕组同轴绕制在铁芯上,从而减少漏磁通,增大绕组间的耦合。产品的整体结构紧凑,通用性强,使用携带方便,适用于电力系统及电力用户在现场检测各种高压电器设备的绝缘性能,是电力设备检测 及预防性试验所必备的试验仪器。 YD系列轻型高压试验变压器除了可于交流工频耐压试验,如果配以同等电压等级和同等容量的电容、硅堆及高压直流微安表,便可组装成直流高压试验装置,可以测量高压直流泄漏电流。 二、型号含义 三、原理图

四、技术要求 1、试验变压器使用环境要求: 1.1 输入电压:交流220V或380V,50Hz; 1.2 环境温度:-40℃~40℃; 1.3 相对湿度:≤85%(环境温度为25℃时); 1.4 不含有化学性气体及蒸汽的环境中; 1.5 无爆炸性危险的气体中; 1.6 不受雨水浸入的场合下。 2、技术参数

注:1、我厂YDQ系列试验变压器单台可做到交流300kV,容量300kVA; 2、如果用户需要,我厂生产的YDQ系列试验变压器,抽出200V的串级抽头,可将二台或三台 串级成交流100kV、150kV、200kV、300kV的高电压。也可根据用户的需要,在高压绕组中抽出5~15kV 的中压抽头,供高压电机作交流耐压试验; 3、表格中"直流高压输出"一栏,为交直流两用试验变压器的直流高压输出值; 4、我厂还可根据用户的要求,定制各种特殊规格的试验变压器。 五、操作步骤 1、按接线原理图连接好引线,并将变压器和控制箱可靠接地; 2、试验前,检查各部位的接线是否接触良好,并检查控制箱的调压器是否调至"零"位; 3、接通电源,绿色指示灯亮,按下启动按钮,红色指示灯亮,表示变压器已通电,等待升压; 4、顺时针匀速旋转调压器手柄,进行升压,并密切注意仪表指示以及试品的情况; 5、试验完毕后,应迅速将电压降至零位,并按下停止按钮,然后切断电源,解开试验引线。 六、注意事项 1、做高压试验时,必须由2人或2个以上人员参加,并明确做好分工,明确相互间的联系方法。并有专人监护现场安全及观察试品的试验状态; 2、变压器和控制箱应有可靠的接地; 3、试验过程中,升压速度不能太快,也决不允许突然全电压通电或断电; 4、在升压或耐压试验过程中,如发现下列不正常情况时,应立即降压,并切断电源,停止试验,查明原因后再做试验。①电压表指针摆动很大;②发现绝缘烧焦的异味、冒烟现象;③被测试品内有不正常的声音。 5、试验中,如果试品短路或故障击穿,控制箱中的过流继电器工作,此时,将调压器回至零位,并切断电源后,方可将试品取出。 6、进行电容试验或进行直流高压泄漏试验时,试验完毕后,将调压器降至零位后,并切断电源,然后,应用放电棒将试品或电容器的高压端对地进行放电,以免存留在电容中的电势发生触电危险。 七、试验变压器的容量选择 标称试验变压器容量Pn的确定公式: Pn=kVn2WCt10-9 式中:Pn-标称试验变压器容量(kVA); k -安全系数; Vn-试验变压器的额定输出高压的有效值(kV); W -角频率,W=2πf,f为试验电源的频率; Ct-被试品的电容量(PF)。 对于不同的试验电压Vn,选择适当的安全系数k,标称试验电压较低时,k值可取高一些;以下列出不同的试验电压Vn,所选用的安全系数k值,供参考:

工频变压器设计计算

工频变压器的设计计算 赵一强2010-9-15 ,这个 U2), 从上可知,变压器是通过铁芯的磁场来传递电功率的。借助于磁场实现了初级电路和次级电路的电隔离;又通过改变绕组匝比,来改变次级的输出电压。 二、变压器特性参数和设计要求 1、磁通密度B和电流密度J 磁通密度(又叫磁感应强度)B和电流密度J是变压器设计的关键参数,直接关系着变压器的体积和重量,B 、J值越高,变压器越轻,但是B 、J的取值受到一定条件的限制,因此,变压器的体积和重量也受到这些条件的限制。 4Gs 。 H的关系曲线,在

图3中,Bs —饱和磁感应强度; Bs —过压保护磁感应强度 Bm —最大磁感应强度(计算值) 导磁率: H B ΔΔ= μ 饱和磁通密度为Bs 和导磁率μ是曲线的两个重要参数。 对于磁性材料,要求Bs 、μ 越高越好。Bs 高,变压器体积可减小;μ高,变压器空载电流小。 另外,还要求电阻率ρ高,这样损耗小、发热小。 ⑵ 电流密度J 电流密度J : 电路单位截面积的电流量,单位 :安/厘米2(A/cm 2)。 变压器绕组导线的电阻:q l R cu ρ= 电流导线中所产生的损耗(铜损): l IJ R I P cu cu cu ρ2 == 可以看出,铜损与电流和电流密度的乘积成正比,就是说,随着电流增加,要保持同样的绕组损耗和温升,必须相应地降低电流密度。 2、铁心、导线和绝缘材料 ⑴ 铁心形状和材料 铁心形状:卷绕的有O 型、CD/XCD 型、ED/XED 型、R 型、HSD 型(三相), 冲片的有EI 、CI 型;这是我们常用两种冲片。 铁心材料牌号:硅钢(含硅量在2.3~3.6%) 冷轧无取向硅钢带:含硅量低(在0.5~2.5%);厚0.35、0.5、0.65mm,我们常用0.5mm ; B 高、μ高,铁损大,价格较低,多用于小功率工频变压器。 冷轧取向硅钢带:含硅量较高(在2.5~3%),厚0.27、0.3、0.35mm, 我们常用0.35mm ;B 高、μ高,铁损小,价格较高,多用于中大功率工频变压器。 ⑵ 线圈导线材料 油性漆包线Q 0.05~2.5 耐温等级 A 105℃ 塑醛漆包线QQ 0.06~2.5 耐温等级 E 120℃ 聚酯漆包线QZ 0.06~2.5 耐温等级 B 130℃ 耐压均在600V 以上。最常用的是QZ 漆包线。 线圈允许的平均温升⊿τm =线圈绝缘所允许的最高工作温度-最高环境温度-(5—10K ), 通常不超过60℃。5—10K 是考虑线圈最高温度与平均温度之差,功率大取大值。 ⑶ 层间绝缘材料 500V 以下不需要层间绝缘。各绕组间应垫绝缘0.03 聚酯薄膜2~3层。 3、 电源变压器的主要技术参数 ⑴ 输出功率(视在功率、容量、V A 数) ⑵ 输出电压及电压调整率和要求 ⑶ 电源电压、频率及变化范围 ⑷ 效率 ⑸ 空载电流及空载损耗 ⑹ 绕组平均温升 ⑺ 输入功率因数

变压器的温升计算

变压器的温升计算方法探讨 1 引言 我们提出工频变压器温升计算的问题,对高频变压器的温升计算也可以用来借鉴。工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,其实麻雀虽小五脏俱全,再成熟的东西也需要不断创新才有生命力。对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得,拿来主义就可以了,在本企业来说绝对有效,离开了本企业也带不走那么多数据。但冷静的考虑一下,任何一个企业不可能生产全系列变压器,总会有相当多的系列不在你生产的范围内,遇到一些新问题,只能用打样与试验的方法去解决,小铁心不在话下,耗费的工时与材料都不多,大铁心耗费的铁心与线材就要考虑考虑了。老企业可以用这样简单的办法去解决,只不过多花费一些时间罢了,一个新企业或规模不大的企业,遇到这些问题要用打样与试验的方法去解决,就耗时比较多了,有时候会损失商机。进入软件时代,软件的编写者如不能掌握这一问题,软件的用户将会大大减少。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、

工频耐压试验变压器选型的探讨

收稿日期:2002-06-07 作者简介:林小意(1973-),女,助理工程师,大专,从事水利水电工程施工工作。 工频耐压试验变压器选型的探讨 林小意 (广东省水利水电第二工程局,广东增城 511340) 摘 要:阐述如何通过计算电容量、试验电压下的电容电流和工频耐压试验电压值等参数合理选择工频耐压试验变压器。关键词:工频耐压试验;电容量;电容电流;试验电压值;试验变压器中图分类号:TM306 文献标识码:B 新安装的发电机在投入运行前,运行的发电机进行大修前或更换定子绕组并检修完毕,须进行定子绕组的工频耐压试验。工频耐压试验电压值按/交接预防性试验规程0中的标准电压值进行,持续时间为1mi n 。 1999年梅州水电厂有2台SF1600)20/2600型水轮发电机需更新改造。该发电机额定电压由原来的3.15kV 更改为6.3kV 。在发电机整机安装完毕,进行工频耐压试验时,使用原有容量为10k VA,额定电压为100k V/0.2kV,额定电流为0.1A/50A 工频耐压试验变压器。发电机试验电压按规程计算为13600V 。试验前,发电机定子绕组的绝缘电阻及吸收比摇测,直流耐压和泄露电流试验均符合规程要求。检查试验回路接线无误,投入试验电源,操作调压器稍微升压,即出现试验电容电流升至满档(低压侧电流表指示为50A 以上),操作箱内过电流保护动作,跳开试验电源开关的现象,致使试验失败。经过分析认为是由于试验变压器选择不当所致。 在工频耐压试验中,如何选择适当的试验变压器,现根据发电机实际型号和参数举例说明。 发电机:SF1600)20/2600型,额定电压为6.3k V ,额定转速为300r/min,工频试验电压为13.6kV,选择其工频耐压试验变压器,计算如下: C f = KS 3/4 3(U e +3600)n 1/3 (1)I e =WC f U s @10- 6 (2)S s =I e U s =WC f U s 2@10- 9 (3) 式中 C f )))发电机定子绕组电容量;S )))发电机容量; K )))温度系数(室温25e 时,K =40);U e )))发电机额定电压;n )))发电机额定转速;I e )))试验电压下的电容电流;W )))电角度(其值为314);U s )))工频耐压试验电压值;S s )))额定电压下试验变压器的容量。据式(1)得到该发电机定子绕组电容量: C f = 40@20003/4 3(6300+3600)@3001/3 =0.0602Far 据式(2)得到该发电机定子绕组在试验电压下的电容电流:I e =314@0.0602@13600@10 -6 =0.257A 选择的试验变压器的额定电压应大于工频耐压试验电压值,U >U s (13600V),所以该发电机选择的试验变压器额定电压U =20000V 。 据U =20000V 及式(3)得到该发电机试验变压器额定电压下的容量: S s =314@0.0602@200002@10-9=7.56kVA 选择的试验变压器的额定容量应大于试验容量,S >S s (7.56kVA),所以该发电机选择试验变压器额定容量: S =10kVA 根据以上计算结果,选择试验变压器为容量10kVA,电压20kV/0.2kV,电流0.5A/50A 。 选择以上的变压器,对2台SF1600)20/2600型发电机的定子绕组进行工频耐压试验,额定电压为6.3kV,试验电压为13.6kV,室温为29e 时,测得发电机定子绕组电容电流分别为0.28A 和0.30A,持续时间1min,试验成功。 综上所述,在进行工频耐压试验时,应根据被试品电容量,电容电流及试验电压等参数来合理选择适当的工频耐压试验变压器,这是保证工频耐压试验成功的重要因素。 # 83#增刊2002年6月 广东水利水电G UANGDON G WATER R ESOURCES AND HYDR OPOWER Supple ment J UN 2002

(工频)变压器的工作原理及设计(新)

变压器的工作原理及设计 在电路和磁路中,变压器不但作为电磁能量的传送工具,而且可以改变电路中的电压和电流的大小和相位,在某种情况下可以起电的隔离作用,在各种电力、电子等电路中被广泛应用。 电磁感应是变压器工作原理的基础,因此要想了解变压器的工作原理及性能,进而应用、设计变压器,就必须具备电、磁方面的基础理论知识。电路方面的知识大家比较了解,下面对磁路方面的知识进行必要的补充。 一、电磁感应和磁路中的概念及一些定律 1、电磁感应 磁场变化时,将在它所能影响到的区域内的的电回路中产生电压以至电流。用数学式子来描述: dt d N dt d e Φ-=ψ-= 实际上这种过程是可逆的,即变化的电场产生变化的磁场,变化的磁场产生变化的电电场。从能量的观点来看,在变压器的工作过程中,电路的电能转换为变压器铁芯内的磁能,然后再转换为二次侧的电能,完成能量的传送。 2、磁路中的概念 磁路——磁通通过的区域 磁感应强度B ——表示磁场强弱的一个物理量 磁通Φ——BA =Φ,A 为与磁场方向垂直的片面的面积 磁导率μ——表示物质磁性质的物理量,0μμμr =,70104-?=πμ 磁场强度H ——μ B H = 磁势∑=NI F 磁压降Hl U m = 3、磁路的基本定律 (1) 安培环路定律(全电流定律) ?∑=l I dl H . (2) 磁路的基尔霍夫第一定律 ∑=Φ0 (3) 磁路的基尔霍夫第二定律 ∑∑∑==Ni I Hl 图1 安培环路定律

图2 磁路基尔霍夫第一定律 图3 磁路基尔霍夫第二定律 (4) 磁路的欧姆定律 φφμμm m R A l l B Hl U ==== 4、铁磁物质的磁化曲线 (1) 原始磁化曲线:将一块尚未磁化的铁磁物质进行磁化,在磁场强度H 由0开始逐渐增加时,磁感应强度也逐渐增加,这种曲线称为原始磁 化曲线。 图4 磁畴 图5 原始磁化曲线 (2) 磁滞回线:当铁磁物质在-H m 到+H m 之间反复磁化若干次最后得到对 原点对称的封闭曲线。从磁化过程可以看出,B 的变化总是落后于H 的变化,所以这种现象称为磁滞。 图6 磁滞回线

工频实验变压器

FS系列试验变压器 一、产品概述: 工频耐压试验台可用来检测有关电气装置、电气元件、电气材料的抗电强度及漏电情况。适用于中小型电机、高压电机、低压电器等产品的检测。具有电压、电流数字显示、击穿声光报警、自动断开高压、手动复位、漏电流直接在高压端测量等特点。 二、分类 试验变压器按介质或结构分有五种: 1、油浸式试验变压器:体积大,重量重,容量大,维修方便,后期维护费用高;主流产品。 2、充气式试验变压器:免维护,灭弧性好,重量轻,体积小,局放量小。 3、干式试验变压器:免维护,重量轻,体积小,可倒放,成本高。 4、绝缘筒式试验变压器:成套设备配套性强,电压容量系列齐全,功能完善;阻抗电压低,系统阻抗不大于5%,满足交流污秽试验要求;采用快速电子保护装置,可靠性高。 5、串激式高压试验变压器:容量小、电压低、重量轻,便于运输,接线繁多,成本高。 三、特性 1、本装置占用空间小,重量轻,是非常适合现场试验使用; 2、安全保护非常靠谱,在过流,过压,放电,过热以及零启动时,执行时间1微妙。

3、本装置经过国家权威部门-电力工业电气设备质量检验测试中心(武汉高压研究所)严格的试验鉴定,质量可靠,确保试验人员、被试品和试验设备本身的安全; 4、符合国标要求:有监测峰值/√2功能,可实时监测试验波形; 5、一键鼠标式旋钮“傻瓜式"操作,大屏幕液晶显示; 6、独有软件校准功能,方便用户校准表计,确保高电压值准确度 7、设备自带微型打印机,可及时打印保存试验数据; 四、注意事项 1. 试验变压器应和操作箱(台)配套使用,操作箱(台)的使用方法,请详细参阅操作箱(台)使用说明书。 2. 变压器外壳、高压尾必须接地。为确保安全,试验人员和其它被试验设备与试验变压器之间必须保持足够的距离。 3. 试验变压器的输出一般应串接限流电阻以保护设备安全。 五、配套产品 1、操作系统: FS系列操作箱容量:1kVA~5kVA 输入电压:0.22kV FS系列操作台容量:10kVA~300kVA 输入电压:0.22kV 0.38kV 2、保护式数字微安表 H9840 3、阻容式交直流分压器 FRC—50、100、150、200kV 4、高压直流放电棒 FD—70、140、210kV 5、高压硅堆 2DL—150、300、450kV 6、绝缘支架 50、100、200、300kV 7、高压滤波电容 0.01μF~0.1μF,40~100kV 1、均压球 9、保护球隙 Q—50、100、150、200、250、500 10、标准试油杯 400ml 11、介质油杯 12、折叠式小推车 150、300型 13、水电阻 14、高压验电器 10、35kV 15、高压定相器 10、35、110、220kV 16、各种万用表、兆欧表及测试线

相关文档
最新文档