生物信息学基因组分析

合集下载

生物信息学中的基因组分析方法

生物信息学中的基因组分析方法

生物信息学中的基因组分析方法生物信息学是一门研究生物学数据以及利用计算机科学和统计学方法来解析生物学问题的学科。

在现代生物学研究中,基因组的分析是非常重要的一环。

基因组是指生物体内存储遗传信息的全部基因、非编码序列和其他调控元件的总和。

基因组的分析方法可以帮助我们理解生物体内基因的结构、功能以及调控机制。

在生物信息学的研究中,有一些经典的基因组分析方法被广泛应用于科研和医学领域。

其中一个重要的方法是基因预测。

基因预测是指通过生物信息学方法来识别DNA序列中的基因位置和结构。

基因预测方法可以归纳为两种主要类型:比较基因组学和基于统计模型的方法。

比较基因组学是一种通过比较不同物种的基因组序列来识别基因的方法。

这种方法基于假设,即功能相似的序列在不同物种间是保守的。

通过比较多个物种基因组序列中的保守区域,可以确定可能的基因位置。

此外,还可以使用基于蛋白质编码区域的序列片段来识别基因的编码区域。

比较基因组学方法对于分析物种间的进化关系和演化过程有着重要意义。

另一种基因预测方法是基于统计模型的方法。

这种方法基于已知的基因序列和氨基酸序列间的相关性,构建统计模型来判断新的序列是否为基因。

其中一个常用的统计模型是隐马尔可夫模型(HMM)。

隐马尔可夫模型将基因作为隐藏的随机变量,根据统计学概率推断出序列中的基因位置和结构。

除了基因预测,基因组分析还包括了很多其他方法。

其中一个重要的方法是基因表达分析。

基因表达分析研究的是基因在不同条件下的表达水平和模式。

这种分析主要依赖于转录组数据,即基因在特定时期或条件下转录产生的RNA序列。

通过对转录组数据的分析,可以了解到基因调控的机制,以及基因在不同生理过程中的作用。

此外,还有一些其他的基因组分析方法,如基因功能注释、基因调控网络分析等。

基因功能注释是指将基因与已知的功能信息进行关联,从而推断出基因的功能。

这种方法可以帮助我们了解基因在细胞过程中的作用。

基因调控网络分析则是研究基因之间的相互作用关系,以及基因调控网络在不同生理过程中的变化。

生物信息学在基因组比较分析中的应用

生物信息学在基因组比较分析中的应用

生物信息学在基因组比较分析中的应用在当今生命科学领域,基因组研究是一个极其重要的方向。

而生物信息学作为一门交叉学科,在基因组比较分析中发挥着至关重要的作用。

基因组比较分析是指对不同物种、个体或同一物种不同发育阶段的基因组进行对比和研究,以揭示生命的奥秘。

这一过程中,生物信息学就像是一把神奇的钥匙,帮助我们打开了理解基因组的大门。

首先,生物信息学在基因序列比对方面发挥着关键作用。

基因序列是基因组的基本组成部分,通过对不同物种或个体的基因序列进行比对,可以发现它们之间的相似性和差异性。

相似性的部分可能暗示着这些基因在进化过程中的保守性,具有重要的生物学功能;而差异性则可能与物种的特异性、个体的遗传变异以及疾病的发生发展相关。

比如说,在研究人类与其他灵长类动物的基因组时,通过生物信息学工具对基因序列进行比对,我们可以发现一些与人类智力、语言能力发展相关的基因在进化过程中的变化。

这些变化可能是人类独特的生理和行为特征的基础。

其次,生物信息学有助于分析基因组的结构变异。

基因组的结构变异包括染色体的缺失、重复、倒位和易位等。

这些变异对于个体的发育、疾病的发生以及物种的进化都有着重要的影响。

通过生物信息学的算法和软件,可以对大规模的基因组数据进行快速处理和分析,准确检测出基因组中的结构变异。

以某些癌症为例,癌细胞的基因组往往存在大量的结构变异,通过对癌症患者和健康人的基因组进行比较分析,能够发现与癌症发生相关的特定结构变异,为癌症的诊断和治疗提供重要的线索。

再者,生物信息学在基因功能预测方面也具有重要意义。

虽然我们已经知道了许多基因的序列,但对于它们的具体功能还知之甚少。

通过对基因序列的特征分析、与已知功能基因的相似性比较以及基因在不同组织和条件下的表达模式分析等,生物信息学可以帮助我们推测基因的功能。

例如,当发现一个新的基因序列时,我们可以利用生物信息学方法将其与已知功能的基因进行比对,根据相似性来初步预测其可能的功能。

生物信息学与基因组测序分析

生物信息学与基因组测序分析

生物信息学与基因组测序分析生物信息学是运用计算机科学和统计学的方法研究生物学问题的一门学科。

随着科技的进步,测序技术的发展使得大规模的基因组测序变得可能,加速了基因组研究的进展。

基因组测序分析是生物信息学领域中重要的研究方向,通过对测序数据的处理和解读,揭示基因组的组成和功能。

基因组测序是指对生物体的所有遗传物质DNA进行全面测序的过程。

DNA测序技术的发展使得我们能够迅速而准确地获得大量的DNA序列信息,从而更好地理解生物的基因组组成和功能。

基因组测序分析的主要目标包括基因识别、功能注释、DNA序列比对和变异检测等。

在基因组测序分析中,基因识别是首要的任务之一。

基因识别是指通过分析DNA序列,确定其中的基因位置和编码蛋白质的序列。

传统的基因识别方法主要依赖于基因组上的开放阅读框,即起始密码子和终止密码子之间的 DNA 区域。

然而,由于基因组的复杂性和非编码基因的存在,仅仅依靠开放阅读框无法准确地识别所有基因。

因此,生物信息学研究者发展出了一系列的基因识别算法,如基于序列特征和统计学模型的方法,以提高基因识别的准确性。

另一个重要的任务是功能注释,即确定DNA序列中的具体功能。

功能注释可以分为两个层次,一个是对基因的功能进行注释,另一个是对基因的调控元件进行注释。

对基因功能的注释包括蛋白质编码能力、酶活性以及参与的生物过程等。

而对调控元件的注释则涉及到启动子、增强子和转录因子结合位点等。

功能注释的目标是提供更深入的基因组理解和生物学解释。

DNA序列比对是基因组测序分析中的重要步骤之一。

DNA序列比对是指将待比对的DNA序列与参考序列进行比对,以确定它们之间的相似性和差异。

DNA序列比对可以帮助我们发现新的基因、检测 SNPs(单核苷酸多态性)和揭示跨物种的保守序列等。

目前,有很多DNA序列比对算法可供选择,如BLAST、Bowtie和BWA等。

最后一个任务是变异检测,在基因组测序分析中起着至关重要的作用。

生物信息学在基因组数据分析中的应用

生物信息学在基因组数据分析中的应用

生物信息学在基因组数据分析中的应用在当今生命科学领域,基因组数据的分析已成为研究的核心之一。

而生物信息学作为一门交叉学科,正发挥着至关重要的作用,为我们理解生命的奥秘提供了强大的工具和方法。

要明白生物信息学在基因组数据分析中的应用,首先得了解什么是基因组数据。

基因组数据可以说是生命的“密码本”,包含了生物体的全部遗传信息。

这些数据量极其庞大,且复杂多样,包括基因序列、染色体结构、基因表达水平等等。

如果靠传统的实验方法和手工分析,要处理如此海量的数据几乎是不可能的任务。

生物信息学在这个时候就“挺身而出”了。

其中一个重要的应用就是序列比对。

简单来说,就是把不同生物的基因序列放在一起比较,找出它们的相似之处和差异。

这对于研究物种进化、基因功能预测等都有着极其重要的意义。

比如,通过比对人类和其他灵长类动物的基因序列,我们可以推测出在进化过程中哪些基因发生了变化,从而导致了人类独特的特征和能力。

基因预测也是生物信息学的拿手好戏。

在基因组数据中,确定哪些区域是真正的基因可不是一件容易的事。

生物信息学通过利用各种算法和模型,结合已知的基因特征和规律,能够较为准确地预测出潜在的基因。

这为后续的基因功能研究和疾病诊断提供了重要的基础。

在基因组数据分析中,蛋白质结构和功能预测也是生物信息学的重要应用领域。

基因最终会表达为蛋白质,而蛋白质的结构决定了其功能。

通过对基因序列的分析,结合已知的蛋白质结构和功能信息,生物信息学能够预测新发现的基因所编码的蛋白质可能具有的结构和功能。

这对于药物研发、疾病机制研究等都具有重要的指导作用。

另外,生物信息学还能帮助我们分析基因表达数据。

基因的表达水平在不同的组织、不同的发育阶段以及不同的生理病理条件下都可能有所不同。

通过对大量基因表达数据的分析,我们可以了解基因的调控网络,发现与疾病相关的基因表达模式,为疾病的诊断和治疗提供新的靶点和思路。

而且,生物信息学在全基因组关联分析(GWAS)中也大显身手。

生物信息学中的基因组分析方法指南

生物信息学中的基因组分析方法指南

生物信息学中的基因组分析方法指南基因组分析是生物信息学领域的重要研究方向,通过分析基因组序列的组成和功能,可以揭示基因组的结构与演化,为疾病诊断、药物开发及转基因技术提供重要的理论和方法支持。

本文将介绍生物信息学中常用的基因组分析方法,包括基因组测序、基因组组装、基因预测、基因差异分析、功能注释等。

首先,基因组测序是进行基因组分析的第一步,它可以获得基因组序列的信息。

常用的测序技术包括传统Sanger测序和高通量测序技术(如二代测序技术和三代测序技术)。

Sanger测序是第一代测序技术,以其准确性而闻名,但速度较慢,适用于小规模的基因组测序。

而二代测序技术(如 Illumina HiSeq、Ion Torrent PGM)具有高通量和低成本的特点,可用于大规模的基因组测序。

三代测序技术(如 Pacific Biosciences SMRT、Oxford Nanopore Technologies MinION)则可以获得更长的读长,有助于解决基因组重复序列和结构变异等问题。

基因组组装是将测序得到的短读段(reads)组装成连续的序列,以便获得完整的基因组信息。

常用的组装算法包括De Bruijn图算法和Overlap-layout-consensus(OLC)算法。

De Bruijn图算法将reads拆分成k-mer,并通过k-mer之间的连接关系进行组装。

而OLC算法则是通过比对reads之间的覆盖关系进行组装。

此外,基于引物的组装技术(如PCR或引物捕获测序)可以通过特定引物将目标区域的序列进行扩增或捕获,用于特定基因组的组装。

基因预测是基因组分析的关键环节,它可以识别基因组序列中的基因。

基因一般由外显子和内含子组成,外显子编码蛋白质,内含子则是非编码区域。

基因预测算法可以通过识别开放阅读框(ORF)和编码序列的特征,如启动子、终止子、剪接位点等,来确定基因的位置和边界。

常用的基因预测工具包括Glimmer、GENSCAN和Augustus 等。

生物信息学-基因组分析(PDF)

生物信息学-基因组分析(PDF)
(optionally) by pre-mRNA splicing. Two transcripts are connected if they share at least part of one exon
in the genomic coordinates. At least one transcript must be expressed outside of the nucleus and one
如果基因组是生命的天书,那么基因就是写成这本书的词汇。生物学家们一直假 设,微生物的故事较短,而人类的故事则是一部巨作,人类拥有8万到10万个基因。但是 UC Berkly的果蝇基因组计划的主任G. Rubin指出,果蝇的基因比我们所认为的最简单的 线虫少了5,000个。他警告说:“生物体的复杂性并不是简单地与基因数量相关联的。”
¾ 基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义;
¾ 人类的基因较其他生物体更“有效” 。
¾ 人类的复杂性更主要的体现在蛋白质的复杂网络中,即蛋白质就是构成 生命的基本构件。Celera公司首席科学家Venter认为:“大部分的生物学行 为发生在蛋白质水平,而不是基因水平。”
目前已完成测序4,000多个基因组
The winner was announced at last week's Homo Sapiens genetics meeting at Cold Spring Harbor Laboratory, New York. The gene champ, Lee Rowen, who directs a sequencing project at the Institute for Systems Biology in Seattle, Washington - beat 460 other hopefuls to take home part of the cash pot.

生物信息学中的基因组分析与功能预测

生物信息学中的基因组分析与功能预测生物信息学作为一门融合了生物学、计算机科学和统计学等多个学科交叉的学科,广泛应用于基因组学的研究中。

基因组分析与功能预测是生物信息学中的重要研究方向,它们的目标是从基因组数据中获得对基因功能的准确预测和详细解释。

本文将介绍基因组分析与功能预测的主要方法和应用。

基因组分析是对基因组数据进行系统的研究和分析,旨在揭示基因组的组成、结构和功能等方面的信息。

在基因组分析中,首先需要获得基因组数据,包括基因序列、基因组结构和基因表达等信息。

目前,高通量测序技术的发展使得获得大规模的基因组数据成为可能,例如全基因组测序和转录组测序等。

这些数据为基因组分析提供了丰富的资源和丰富的信息。

基因组分析的一个重要任务是基因识别和注释。

基因识别是指从基因组数据中鉴定出编码蛋白质的基因序列。

注释是指对基因的结构和功能进行详细描述和解释。

为了实现基因识别和注释,研究人员开发了多种基因组分析工具和算法。

其中,基于比对和比较的方法是最常用的,例如通过与已知基因库比对、序列比对和同源性搜索等。

此外,也有一些基于机器学习和深度学习的方法,如隐马尔科夫模型、支持向量机和神经网络等。

功能预测是基因组分析的另一个重要任务,它通过分析基因的结构和序列来预测基因的功能。

基因功能包括编码蛋白质的功能、参与代谢途径的功能等。

功能预测可以通过多个层次进行,从基因组水平到蛋白质水平,进一步到细胞和组织水平。

基于基因组数据的功能预测方法主要包括基于比对和比较的方法和基于机器学习和深度学习的方法。

此外,还有一些新兴的功能预测方法,如基于网络和信号传导的方法。

基因组分析与功能预测在生物学研究中的应用广泛。

首先,它们对于理解基因组的组成和结构以及基因功能的演化具有重要意义。

通过基因组分析和功能预测,可以研究基因家族的起源和演化,揭示基因的结构变异和功能差异等。

其次,基因组分析与功能预测对于研究疾病的发生和发展也具有重要意义。

生物信息学中的基因组分析与功能预测方法研究

生物信息学中的基因组分析与功能预测方法研究简介:生物信息学是研究生物学数据的收集、存储、检索、分析和解释的一门学科,它结合了生物学、计算机科学和统计学的知识。

基因组分析和功能预测是生物信息学中的重要研究内容,旨在了解生物体的遗传信息和功能。

一、基因组分析方法基因组分析是对生物体中的基因组结构和组成进行研究和分析的过程。

下面介绍几种常见的基因组分析方法。

1.基因组测序:基因组测序是获取生物体基因组的完整序列信息的方法。

常见的基因组测序方法包括Sanger测序、Illumina测序和Oxford Nanopore测序等。

通过基因组测序,我们可以了解生物体基因组中的基因、非编码RNA、调控序列等信息,为功能预测提供数据基础。

2.基因组比对:基因组比对是将新测序的基因组序列与已知的参考序列进行比对,以找出两者之间的相似性和差异性。

常见的基因组比对方法包括BLAST、Bowtie、BWA等。

基因组比对可以帮助我们发现新的基因、突变、重排等结构变化。

3.基因组结构与注释:基因组结构与注释是对基因组中的基因进行识别和注释的过程。

常用的基因组结构与注释方法包括基于比对的方法、基于转录组的方法和基于比较基因组学的方法。

这些方法可以帮助我们了解基因的外显子、内含子、起始密码子、终止密码子等信息。

二、功能预测方法基因组的功能预测是根据基因组序列信息推测基因的功能和参与的生物学过程。

下面介绍几种常见的功能预测方法。

1.同源比较:同源比较是通过比对已知功能的基因组序列来推测新基因的功能。

常见的同源比较方法包括BLAST、HMMER、PHYRE等。

通过同源比较,我们可以从已知功能的基因中找到与待预测基因相似的序列,从而推测其功能。

2.基因家族预测:基因家族预测是通过分析基因组中的重复序列来推测基因的功能。

常用的基因家族预测方法包括Pfam、SUPERFAMILY等。

这些方法可以将基因分为不同的家族,并预测其功能。

3.结构与功能预测:结构与功能预测是通过预测蛋白质的二级结构、三级结构和功能来推测基因的功能。

生物信息学中基因组数据分析的常见问题与解决方案

生物信息学中基因组数据分析的常见问题与解决方案随着高通量测序技术的发展,基因组数据的产生速度大大加快,这为生物信息学领域的研究提供了丰富的数据资源。

基因组数据分析是生物信息学研究的核心环节之一,然而在实践中,研究人员常常会遇到各种问题。

本文将介绍生物信息学中基因组数据分析的常见问题,并提供相应的解决方案。

常见问题一:基因组测序数据的质量控制和预处理在基因组测序过程中,由于测序仪器的限制、样本制备的不完美等原因,会产生各种数据质量问题,如测序错误、低质量碱基和测序重复性差等。

这些问题可能会对后续分析结果产生不良影响。

为了解决这些问题,可以采取以下几种方法:1. 使用质控工具,如FastQC、Trim Galore等,对原始测序数据进行质量评估和修剪,删除低质量碱基和低质量序列。

2. 对于双端测序数据,首先需要进行序列重组,然后根据重组后的序列质量进行过滤。

3. 进行测序重复性检查,排除测序偏差和样品重复等问题。

常见问题二:序列比对和基因组注释基因组测序数据比对是基因组数据分析的重要步骤,通过比对可以将测序reads映射到参考基因组上。

同时,基因组注释将比对结果与已知的生物学和功能信息相结合,有助于理解基因组中的功能元素。

以下是比对和注释相关的常见问题和解决方案:1. 比对算法的选择:根据不同的研究目的和数据类型,选择适合的比对算法,如Bowtie、BWA和STAR等。

2. 比对结果评估:对比对结果进行质量评估,例如检查比对率、剩余未比对的reads和比对的覆盖度等。

3. 基因组注释工具的选择:选择适合研究目的和物种的基因组注释工具,如Ensembl、NCBI和Gencode等。

常见问题三:变异检测和功能预测变异检测是分析基因组数据中存在的个体间或群体间的遗传差异的重要步骤。

功能预测则是根据变异信息预测其对生物体功能的影响。

以下是变异检测和功能预测相关的常见问题和解决方案:1. 变异检测算法的选择:根据数据类型和分析目的,选择合适的变异检测算法,如GATK、SAMtools和VarScan等。

生物信息学中的基因组学数据分析

生物信息学中的基因组学数据分析随着生命科学的快速发展和技术的飞速进步,生物信息学已成为生物研究中不可或缺的工具。

其中,基因组学数据分析是生物信息学中的一个重要分支,通过对生物体基因组数据的统计学、计算学和信息学分析,揭示基因组的组成、结构、功能和演化等方面的规律和特点,因此在生命科学领域具有重要的应用价值,并受到广泛关注。

基因组学数据分析的基本流程基因组学数据分析的基本流程包括数据的预处理、数据的拼接和比对、数据的注释、数据的可视化和数据的挖掘。

1.数据的预处理生物材料不同,提取出的基因组数据的质量也有所差异,因此,数据的预处理是基因组学数据分析的第一步。

预处理包括质量控制、过滤和修剪等操作,旨在提高基因组数据的质量、减少数据的误差和噪声,并为后续的数据分析做好准备。

2.数据的拼接和比对基因组数据往往是以短序列的形式存储的,而大部分生物体的基因组长度都超过了短序列的长度,因此需要将多个短序列拼接成长序列,或将短序列与基因组参考序列进行比对。

拼接和比对过程中,需要考虑到短序列之间的相互关系、短序列的质量和数量,以及参考序列的质量和准确性等因素。

3.数据的注释基因组数据的注释是指通过生物信息学方法对基因组序列进行注释,包括基因结构、基因功能、调控序列、启动子、转录因子结合位点等方面的信息。

基因组数据的注释是基因组学数据分析的核心步骤,其结果对后续的基因功能分析和生物学研究具有重要意义。

4.数据的可视化数据的可视化是把数据以图形的形式呈现出来,使研究人员能够更好地理解基因组数据的特点和规律。

数据的可视化包括基因组序列、染色体、基因结构、基因表达谱图等方面的可视化,通过可视化,研究者可以更直观地了解基因组数据的特点和相互关系,提高数据分析的效率和准确性。

5.数据的挖掘数据的挖掘是指通过生物信息学方法对基因组数据进行深入的挖掘和分析,如基因的功能预测、基因的调控机制、基因的演化等方面的研究。

数据的挖掘是基因组学数据分析的重要环节,其结果对于基因功能研究和生物学研究的深入理解起到关键的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质层面:翻译后修饰
Phosphorylation
Sumoylation Palmitoylation
Ubiquitination
Acetylation
Bioinformatics, 2008-2009, Semester 1, USTC
(4) 相互作用网络
蛋白质-蛋白 质相互作用 网络
Bioinformatics, 2008-2009, Semester 1, USTC
本章内容提要
1. 基因组的结构与内容 2. 基因组注释 3. 比较基因组学 4. 基因/蛋白质的功能预测
Bioinformatics, 2008-2009, Semester 1, USTC
1. 基因组的结构与内容
(1) 基因的结构 (2) mRNA:可变剪切 (3) 蛋白质:翻译后修饰 (4) 相互作用网络:基因、蛋白质、小分子之间
Bioinformatics, 2008-2009, Semester 1, USTC
基因组大小 & 基因数
Bioinformatics, 2008-2009, Semester 1, USTC
基因数量 -> 生物复杂性?
1. 基因数量的变化,无法解释生物学功能、调控机 理以及物种多样性和复杂性的modules
Bioinformatics, 2008-2009, Semester 1, USTC
Gal4p and Kruppel
Gal4p
Kruppel
Bioinformatics, 2008-2009, Semester 1, USTC
其他功能元件
Exon splicing enhancer (ESE) and silencer (ESS) Intron splicing enhancer (ISE) and silencer (ISS)
Bioinformatics, 2008-2009, Semester 1, USTC
Functional elements: Promotor
Bioinformatics, 2008-2009, Semester 1, USTC
Transcription Factor Binding Site
生物信息学
第七章 基因组分析
Bioinformatics, 2008-2009, Semester 1, USTC
人类基因组计划
Bioinformatics, 2008-2009, Semester 1, USTC
基因组、转录组和蛋白质组
基因组 转录组 蛋白质组
化学生物学
Bioinformatics, 2008-2009, Semester 1, USTC
细胞信号通路
G1/S检验点: 有调控方向
Bioinformatics, 2008-2009, Semester 1, USTC
(5) 非编码区
a. 功能元件: 转录因子结合位点;启动 子…
b. Non-coding RNA: MicroRNA c. 转座子 d. 重复片段 e. 伪基因 (Pseudogene)
的相互作用 (5) 非编码区
a. 功能元件: 转录因子结合位点;启动子… b. Non-coding RNA: MicroRNA c. 转座子 d. 重复片段 e. 伪基因 (Pseudogene)
Bioinformatics, 2008-2009, Semester 1, USTC
(1) 基因的结构
Bioinformatics, 2008-2009, Semester 1, USTC
microRNA/miRNA
1. 长度21-23bp 2. 调控基因的表达 3. pre-miRNA: ~70bp
Bioinformatics, 2008-2009, Semester 1, USTC
Transposon
Genotype to Phenotype
Bioinformatics, 2008-2009, Semester 1, USTC
转录后层面:mRNA Splicing
mRNA Splicing
isoform 1 isoform 2 isoform 3
Bioinformatics, 2008-2009, Semester 1, USTC
Bioinformatics, 2008-2009, Semester 1, USTC
tRNA & rRNA
Bioinformatics, 2008-2009, Semester 1, USTC
snoRNAs
snoRNAs: Small nucleolar RNAs; 介导 其他RNA分子的化学修饰,例如甲基化
Bioinformatics, 2008-2009, Semester 1, USTC
Non-coding RNA
1. 不翻译成蛋白质,具有重要的调控功能 2. 分类:
a. transfer RNA (tRNA) b. ribosomal RNA (rRNA) c. snoRNAs, d. microRNAs, e. siRNAs f. piRNAs: 与piwi相互作用的RNA g. long ncRNAs: Xist …
2. 当前解释:蛋白质组的多样性和复杂性 -> 物种的 多样性和复杂性;~10,000,000种蛋白质分子
3. 两种观点:
a. 转录后层面,mRNA剪切,产生拼接异构体 b. 蛋白质层面,蛋白质序列上一个或多个位点上发生的
翻译后修饰
Bioinformatics, 2008-2009, Semester 1, USTC
转座子:在基因组中能够移动位置的DNA 序列
Bioinformatics, 2008-2009, Semester 1, USTC
2. 基因组注释
(1) 基因组序列的拼装 (2) 基因预测 (3) 可变剪切的预测 (4) 非编码的功能元件的预测
Bioinformatics, 2008-2009, Semester 1, USTC
(1) 基因组测序:鸟枪法
Bioinformatics, 2008-2009, Semester 1, USTC
相关文档
最新文档