高二期末试卷(文科班)

合集下载

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知实数a 、b ,那么||||||a b a b +=-是0ab <的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2.若实数x ,y 满足约束条件020x y x y -≥⎧⎨+-≤⎩,则2z x y =-的最小值为()A .1-B .1C .2-D .23.已知数列{}n a 与{}n b 均为等差数列,且354a b +=,598a b +=,则47a b +=()A .5B .6C .7D .84.已知()110m a a a=++>,()31xn x =<,则m ,n 之间的大小关系是()A .m n >B .m n <C .m n=D .m n≤5.在ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若4,30a b A ===︒,则B =()A .30︒B .30︒或150︒C .60︒D .60︒或120︒6.若曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,则a b +=()A .2B .0C .1-D .2-7.抛物线()220x py p =>上一点M 的坐标为()2,1-,则点M 到焦点的距离为()A .3B .2C .1D .17168.函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,令(2)a f =',(4)b f =',(4)(2)2f f c -=,则下列数值排序正确的是()A .b a c <<B .a b c <<C .a c b <<D .c b a<<9.已知椭圆221(0)y x m m+=>的焦点在y 轴上,长轴长是短轴长的2倍,则m =()A .2B .1C .14D .410.已知函数()f x 的导函数()f x '的图像如图所示,以下结论:①()f x 在区间(2,3)-上有2个极值点②()f x '在=1x -处取得极小值③()f x 在区间(2,3)-上单调递减④()f x 的图像在0x =处的切线斜率小于0正确的序号是()A .①④B .②③④C .②③D .①②④11.函数()sin e xxf x =在[],ππ-上大致的图象为()A .B .C .D .12.已知定义在R 上的函数()f x 的导函数为()f x ',若()e xf x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是()A .()20,eB .()0,2C .()2,e-∞D .(),2-∞二、填空题13.若命题“x ∃∈R ,22x m ->”是真命题,则实数m 的取值范围是______.14.已知直线1l :()2100mx y m ++=>,与双曲线C :2214x y -=的一条渐近线垂直,则m =__________.15.设{}n a 是公差不为0的等差数列,11a =且248,,a a a 成等比数列,则1291011a a a a ++= ___16.已知钝角三角形的三边a =k ,b =k +2,c =k +4,则k 的取值范围是___________.三、解答题17.设2:3,:11180p a x a q x x <<-+≤.(1)若1a =,“p 且q ”为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.已知函数()29f x x x =+-.(1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围.19.如图,已知平面四边形ABCD ,45A ∠=︒,75ABC ∠=︒,30BDC ∠=︒,2BD =,CD =(1)求CBD ∠;(2)求AB 的值.20.已知函数()2()4(),R f x x x a a =--∈且(1)0f '-=.(1)求a 的值;(2)讨论函数()f x 的单调性;(3)求函数()f x 在[2,2]-上的最大值和最小值.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -,椭圆上任一点到两个焦点的距离之和(1)求椭圆C 的方程;(2)是否存在实数m ,使直线:l y x m =+与椭圆有两个不同的交点M 、N ,并使||||AM AN =,若存在,求出m 的值;若不存在,请说明理由.22.已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程;(2)当0a ≤时,对于任意0x >,证明:()cos f x x >.参考答案:1.D【分析】等式两边平方结合反例即可判断.【详解】因为2222||||||2|2|||0a b a b a ab b a ab b ab ab ab +=-⇒++=-+⇒=-⇒≤,所以必要性不成立;当1,2a b ==-时,满足0ab <,但||||||a b a b +≠-,所以必要性不成立;所以||||||a b a b +=-是0ab <的既不充分也不必要条件.故选:D .2.A【分析】画出可行域,平移基准直线20x y -=到可行域边界位置,由此来求得z 的最小值.【详解】020x y x y -=⎧⎨+-=⎩,解得1x y ==,设()1,1A ,平移基准直线20x y -=到可行域边界()1,1A 处时,2z x y =-取得最小值1211-⨯=-.故选:A3.B【分析】根据等差数列的性质即可求解.【详解】因为354a b +=,598a b +=,所以355912a b a b ++=+,即355912a a b b ++=+,根据等差数列的性质可知3559472212a a b b a b ++=+=+,所以476a b +=.故选:B.4.A【分析】利用基本不等式及其指数函数的单调性即可求解.【详解】∵0a >,∴1113m a a=++≥=,当且仅当1a =时,等号成立,即3m ≥,又∵1x <,∴1333x n =<=,即3n <,则m n >,故选:A .5.D【分析】根据4,30a b A ===︒,利用正弦定理求解.【详解】解:在ABC 中,4,30a b A ===︒,由正弦定理得sin sin a bA B=,所以sin sin 30sin 42b A B a ⋅===,所以B =60︒或120︒,故选:D 6.A【分析】求出导数,将0x =代入后,可得1a =,将()0,b 代入10x y -+=后可得1b =,进而得到a b +.【详解】由2y x ax b =++得2y x a '=+,又曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,故当0x =时,1y a '==又点()0,b 在10x y -+=上,则1b =,故2a+b =.故选:A .7.B【分析】将点M 坐标代入抛物线可得p ,则所求距离为12p+.【详解】()2,1M - 在抛物线上,42p ∴=,解得:2p =,∴点M 到焦点的距离为122p+=.故选:B.8.C【分析】利用导数的几何意义判断.【详解】由函数图象知:()()()42(2)442f f f f -''<<-,所以a c b <<,故选:C 9.D【分析】根据椭圆的方程,结合椭圆的几何性质,列式求解.【详解】由条件可知,2a m =,21b =,且22=⨯,解得:4m =.故选:D 10.B【分析】根据导函数()f x '的图像,求出函数的单调区间,求出函数的极值点,分析判断①②③,对于④:由于()f x 的图像在0x =处的切线斜率为()0f ',从而可由导函数的图像判断.【详解】根据()f x '的图像可得,在()2,3-上,()0f x '≤,所以()f x 在()2,3-上单调递减,所以()f x 在区间()2,3-上没有极值点,故①错误,③正确;由()f x '的图像可知,()f x '在()2,1--单调递减,在()1,1-单调递增,故②正确;根据()f x '的图像可得()00f '<,即()f x 的图像在0x =处的切线斜率小于0,故④正确.故选:B.11.B【分析】分析函数()f x 的奇偶性及其在[]0,π上的单调性,结合排除法可得出合适的选项.【详解】对任意的[]π,πx ∈-,()()()sin sin eexxx x f x f x ---==-=-,所以,函数()sin ex xf x =在[],ππ-上的图象关于原点对称,排除AC 选项,当0πx ≤≤时,()sin ex xf x =,则()πcos sin 4e e xxx x xf x ⎛⎫- ⎪-⎝⎭'==-,因为ππ3π444x -≤-≤,由()0f x '<可得π3π044x <-≤,则ππ4x <≤,由()0f x ¢>可得ππ044x -≤-<,则π04x ≤<,所以,函数()f x 在π0,4⎡⎫⎪⎢⎣⎭上单调递增,在π,π4⎛⎤ ⎥⎝⎦上单调递减,排除D 选项.故选:B.12.A【分析】设()()e 2xg x f x =-+,求导可得()g x 在R 上单调递减,再根据()ln 2f x x >+转化为()ln 4g x >,再结合()g x 的单调性求解即可.【详解】设()()e 2x g x f x =-+,则()()e xg x f x '-'=.因为()e xf x '<,所以()e 0x f x '-<,即()0g x '<,所以()g x 在R 上单调递减.不等式()ln 2f x x >+等价于不等式()ln 24f x x -+>,即()ln 4g x >.因为()22e 2f =+,所以()()222e 24g f =-+=,所以()()ln 2g x g >.因为()g x 在R 上单调递减,所以ln 2x <,解得20e x <<故选:A 13.(),2-∞【分析】求得22y x =-的最大值,结合题意,即可求得结果.【详解】22y x =-的最大值为2,根据题意,2m >,即m 的取值范围是(),2-∞.故答案为:(),2-∞.14.4【分析】求得双曲线C 的渐近线方程,根据直线垂直列出等量关系,即可求得结果.【详解】对双曲线C :2214x y -=,其渐近线方程为12y x =±,对直线1l :()2100mx y m ++=>,且斜率为02m-<,根据题意可得1122m -⨯=-,解得4m =.故答案为:4.15.910【详解】分析:由题意先求出{}n a 的通项公式,再利用裂项相消法求和即可.详解:∵数列{a n }是公差不为0的等差数列,a 1=1,且a 2,a 4,a 8成等比数列,∴(1+3d )2=(1+d )(1+7d ),解得d=1,或d=0(舍),∴a n =1+(n ﹣1)×1=n .∴129101111111111191112239102239101010a a a a ++=+++=-+-++-=-=⨯⨯⨯故答案为910点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.16.26k <<【分析】先解不等式cos 0C <,再结合两边之和大于第三边求解.【详解】解:∵c b a >>,且ABC 为钝角三角形,∴C ∠为钝角,∴()()()()222222224412cos 022222k k k a b c k k C ab k k k k ++-++---===<++,∴24120k k --<,解得26k -<<,由两边之和大于第三边得24k k k ++>+,∴2k >.∴26k <<.故答案为:26k <<17.(1){23}x x ≤<(2){0a a ≤或23}a ≤≤【分析】(1)先分别求得P 为真命题和q 为真命题的实数x 的取值范围,再根据p 且q 为真命题,利用集合的交集运算求解;(2)记{3}C x a x a =<<,根据p 是q 的充分不必要条件,由C B Ü求解.【详解】(1)解:当1a =时,P 为真命题,实数x 的取值范围为{13}A x x =<<,211180(2)(9)029x x x x x -+≤⇒--≤⇒≤≤,q 为真命题,实数x 的取值范围为{}29B x x =≤≤,∵p 且q 为真命题所以实数x 的取值范围为{23}A B x x ⋂=≤<;(2)记{3}C x a x a =<<∵p 是q 的充分不必要条件所以C BÜ当0a ≤时,C =∅,满足题意;当0a >时,239a a ≥⎧⎨≤⎩解得23a ≤≤;综上所述:实数a 的取值范围为{0a a ≤或23}a ≤≤18.(1){}311x x <<;(2)9a >.【分析】(1)根据零点分段法可得()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,然后分段解不等式,即得;(2)由题可得()min a f x >,然后求函数的最小值即得.【详解】(1)因为函数()29f x x x =+-,所以()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,所以931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩,解得311x <<,所以原不等式的解集为{}311x x <<;(2)由()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,可得函数()f x 在(),9-∞上单调递减,在()9,+∞上单调递增,当9x =时,函数()f x 有最小值为9,∴9a >.19.(1)60︒;(2.【分析】(1)由余弦定理求2BC ,根据勾股逆定理知90DCB ∠=︒,即可求CBD ∠.(2)由(1)得120ADB ∠=︒,应用正弦定理即可求AB 的值.【详解】(1)在△BCD 中,由余弦定理,有2222cos301BC BD CD BD CD =+-⋅︒=,222BC CD BD ∴+=,即90DCB ∠=︒,60CBD ∴∠=︒.(1)在四边形ABCD 中,756015ABD ∠=︒-︒=︒,∴120ADB ∠=︒,在△ABD 中,由正弦定理sin120sin 45AB BD =︒︒,则sin120sin 45BD AB ⋅︒=︒20.(1)12a =(2)调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎛⎫- ⎪⎝⎭(3)最大值为92,最小值为5027-【分析】(1)求导得2()324f x x ax '=--,代入(1)0f '-=,得可得答案;(2)由题意可得()(34)(1)f x x x '=-+,分别解()0f x '>,()0f x '<,即可得函数的单调递增、减区间;(3)根据导数的正负,判断函数在[2,2]-上的单调性,即可得答案.【详解】(1)解:因为函数()2()4(),R f x x x a a =--∈,∴()22()2()4324f x x x a x x ax =-+-=--',由(1)0f '-=,得3240a +-=,解得12a =;(2)解:由(1)可知2()34(34)(1)f x x x x x ==-'--+,解不等式()0f x '>,得43x >或1x <-,所以函数()f x 的单调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,解不等式()0f x '<,得413x -<<,所以函数()f x 的单调递减区间为41,3⎛⎫- ⎪⎝⎭;(3)解:当22x -≤≤时,函数()f x 与()f x '的变化如下表所示:令()0f x '=,解得43x =或=1x -,x[)2,1--=1x -41,3⎛⎫- ⎪⎝⎭43x =4,23⎛⎤ ⎥⎝⎦()f x '+0-0+()f x 单调递增极大值单调递减极小值单调递增因为9(1)2f -=,(2)0f =;所以当=1x -时,函数()f x 取得极大值9(1)2f -=;又因为(2)0f -=,450327f ⎛⎫=- ⎪⎝⎭,所以当43x =时,函数()f x 取得极小值450327f ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最大值为92,最小值为5027-.21.(1)2213x y +=(2)不存在,理由见解析【分析】(1)结合椭圆的定义,结合顶点坐标,即可求椭圆方程;(2)首先求线段MN 的中垂线方程,根据点A 在中垂线上,求m ,并判断是否满足0∆>.【详解】(1)椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -得1b =椭圆上任一点到两个焦点的距离之和2a =a =所以椭圆的方程为2213x y +=(2)设直线l 与椭圆C 两个不同的交点()()1122,,,M x y N x y ∵||||AM AN =所以,点A 在线段MN 的中垂线l ',下面求l '的方程联立方程2233y x m x y =+⎧⎨+=⎩去y ,可得2246330x mx m ++-=由()222(6)443312480m m m ∆=-⨯⨯-=-+>,解得22m -<<1232mx x +=-设MN 的中点为()00,P x y ,有120003244x x m m x y x m +==-=+=则l '的方程为344m m y x ⎛⎫-=-+ ⎪⎝⎭即2m y x =--由于点A 在直线MN 的中垂线l '上,解得2m =又∵22m -<<所以不存在实数m 满足题意.22.(1)1y x =-+或()2314y x =-(2)证明见解析【分析】(1)易知()1,0不在()f x 上,设切点()3000,1x x x -+,由导数的几何意义求出切线方程,将()1,0代入求出对应0x ,即可求解对应切线方程;(2)构造()()31cos 0g x x ax x x =-+->,求得()23sin g x x a x '=-+,再令()()u x g x '=,通过研究()u x '正负确定()g x '单调性,再由()g x '正负研究()g x 最值,进而得证.【详解】(1)由题,1a =时,()31f x x x =-+,()231f x x '=-,设切点()3000,1x x x -+,则切线方程为()()()320000131y x x x x x --+=--,该切线过点()1,0,则()()3200001311x x x x -+-=--,即3200230x x -=,所以00x =或032x =.又()01f =;()01f '=-;32328f ⎛⎫= ⎪⎝⎭,32324f ⎛⎫'= ⎪⎝⎭.所以,切线方程为1y x =-+或()2314y x =-;(2)设()()31cos 0g x x ax x x =-+->,则()23sin g x x a x '=-+,令()()()23sin 0u x g x x a x x '==-+>,则()6cos u x x x '=+,可知π02x <<,时,()0u x '>;π2x ≥时,()0u x '>,故0x >时均有()0u x '>,则()u x 即()g x '在()0,∞+上单调递增,()0g a '=-,因为0a ≤时,则()00g a '=-≥,()()00g x g ''>≥,故()g x 在()0,∞+上单调递增,此时,()()00g x g >=.所以,当0a ≤时,对于任意0x >,均有()cos f x x >.。

2022-2023学年高二上学期期末考试数学(文)试题

2022-2023学年高二上学期期末考试数学(文)试题

2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。

高二第一学期期末考试数学试卷(文科)

高二第一学期期末考试数学试卷(文科)

高二第一学期期末考试数学试卷(文科)一、选择题(本大题共12小题,每小题5分,满分60分)1.不等式250x x -≥的解集是 ( ) A .[0,5] B .[5,)+∞ C .(,0]-∞ D .(,0][5,)-∞+∞2.椭圆2212516x y +=的离心率为( ) A .35 B .45C .34D .16253.等差数列}{n a 中,3a = 2 ,则该数列的前5项的和为 ( )A .32B .20C .16D .104.抛物线y = -2x 2的准线方程是 ( ) A .x=-21 B.x=21 C .y=81 D .y=-815. 数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( )A .1B .56C .16D .1306.椭圆2211625x y +=的焦点为F 1,F 2,P 为椭圆上一点,若12PF =,则=2PF ( )A.2B.4C.6D.8 7.“1x >”是“2x x >”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.双曲线192522=-y x 的渐近线为( )A. .x y 53±= B. 3x -5y = 0 C. 3x +5y = 0 D. 3y -5x = 09. 在ABC ∆中,60B =,2b ac =,则ABC ∆一定是 ( ) A.直角三角形 B.等边三角形 C.锐角三角形 D.钝角三角形10.已知12=+y x ,则y x 42+的最小值为 ( ) A .8 B .6 C .22 D .2311.一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时到达B 处,在B 处看见灯塔M 在北偏东15°方向,此时灯塔M 与渔船的距离是( )A .27海里B .214海里C .7海里D .14海里12.若不等式()()222240a x a x -+--<对任意实数x 均成立,则实数a 的取值范围 是 ( )A .[]2,2- B .(]2,2- C .()2,+∞ D .](,2-∞二、填空题(本大题共4小题,每小题5分,共20分)13、在条件y x z y x y x +=⎪⎩⎪⎨⎧≤+-≤>2,01221目标函数下则函数z 的最大值为 . 14、命题:“存在一个实数x ,使得23+x =0”的否定形式为: 。

高二下学期文科数学期末检测试题

高二下学期文科数学期末检测试题

高二下学期数学期末试题数学(文)试卷命题人:张思意 审题人:段兴仁一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 全集B C A B A I I ⋂===则集合集合},4,1{},5,4,3,1{},6,5,4,3,2,1{ 等于( ) A .{1,4} B .{2,6} C .{3,5} D .{2,3,5,6}2、某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽取容量为45人的样本,那么高一、高二、高三年级抽取的人数分别为( ) A . 15,5,25 B . 15,15,15 C . 10,5,30 D . 15,10,203、a 、b 是异面直线,下列命题中错误的是 ( )A .有且只有一条直线和a 、b 都垂直相交B .a 、b 所成角的范围是(0,2π]C .过空间任一点都可以作一个平面和a 、b 都平行D .过a 有且只有一个平面和b 平行4、棱长为a 的正四面体ABCD 的四个顶点在一半径为R 的球面上,则正四面体的外接球的表面面积S 为( )A .2a πB .225a π C .223a π D .243a π5、平面内有定点A 、B 及动点P ,设命题甲是“||||PB PA -是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的双曲线”. 那么甲是乙的( )A 、必要不充分条件B 、充分不必要条件C 、充要条件D 、既不充分也不必要条件6、C 133+C 233+C 333+…+C 3333除以9的余数是( )A.0B.8C.2D.77.环卫工人准备在路的一侧依次栽种7棵树,现只有梧桐树和柳树可供选择,则相邻两棵 树不同为柳树的栽种方法有 ( ) A .121 B .34 C .33 D .14 8、函数()y f x =的图象如图所示,则导函数()f x '的图象可能是( )9.设7654321772221052,)1()21(a a a a a a a x a x a x a x a a x x +++++++++++=++则 =( )A .287B .288C .289D .29010、如图,在棱长为4的正方体ABCD —A′B′C′D′中,E 、F 分别是AD ,A′D′的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A′B′C′D′上运动,则线段MN 的中点P 的轨迹(曲面)与二面角A —A′D′—B′所围成的几何体的体积为( )A .B .C .D .11、定义:当a ≤b 且a ≤c 时a=min {a,b,c }。

高二文科期末考试题及答案

高二文科期末考试题及答案

高二文科期末考试题及答案一、选择题(每题2分,共20分)1. 马克思主义哲学认为,世界是:A. 物质的B. 精神的C. 观念的D. 意识的答案:A2. 下列关于中国历史事件的叙述,错误的是:A. 秦始皇统一六国B. 汉武帝开疆拓土C. 唐朝实行科举制度D. 明朝实行闭关锁国答案:D3. 以下属于中国古典文学四大名著的是:A. 《红楼梦》B. 《水浒传》C. 《西游记》D. 《三国演义》E. 《儒林外史》答案:ABCD4. 以下哪个选项不是中国封建社会的“五礼”之一?A. 冠礼B. 婚礼C. 丧礼D. 祭礼E. 宴会答案:E5. 以下哪个国家不是联合国安全理事会常任理事国?A. 中国B. 美国C. 俄罗斯D. 法国E. 印度答案:E二、填空题(每空1分,共10分)1. 我国古代著名的哲学家孔子,其思想被称为________。

答案:儒家思想2. 我国历史上著名的“贞观之治”发生在唐朝,当时的皇帝是________。

答案:唐太宗3. 马克思主义哲学认为,实践是检验真理的唯一标准,这一观点体现了实践的________。

答案:客观性4. 我国古代著名的医学典籍《黄帝内经》主要论述了________和________。

答案:阴阳五行、脏腑经络5. 我国古代的科举制度开始于________朝代。

答案:隋朝三、简答题(每题10分,共20分)1. 简述中国封建社会的“重农抑商”政策。

答案:中国封建社会的“重农抑商”政策是指在封建社会中,政府为了维护国家的经济基础和社会稳定,采取了一系列政策措施,强调农业的重要性,限制商业的发展。

这一政策体现了封建统治者对农业的重视,认为农业是国家的根本,而商业则被视为次要的,甚至有害的。

通过征收高税、限制商人的社会地位等手段,来抑制商业的发展。

2. 阐述中国近代史上的“五四运动”及其意义。

答案:五四运动是中国近代史上一次具有深远影响的爱国民主运动。

1919年5月4日,北京的学生因为对巴黎和会上中国外交的失败感到愤怒,发起了抗议活动,随后迅速蔓延至全国。

内蒙古包头市2022-2023学年高二上学期期末考试数学(文)试题含解析

内蒙古包头市2022-2023学年高二上学期期末考试数学(文)试题含解析

2022-2023学年度第一学期高二年级期末教学质量检测试卷文科数学(答案在最后)一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“00x ∃>,200x x >”的否定是()A .0x ∀>,2x x ≤B .00x ∃>,200x x ≤C .00x x ∃≤,200x x ≤D .0x ∀≤,2x x ≤2.抛物线2y x =-的焦点坐标为() A .()1,0-B .1,02⎛⎫- ⎪⎝⎭C .1,04⎛⎫- ⎪⎝⎭D .1,04⎛⎫⎪⎝⎭3.已知a ,b ∈R ,则“0a b >>”是方程“22220x y ax b +++=表示圆”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.在空间直角坐标系中,点A 、B 坐标分别为()3,0,1A -,()2,3,3B -.则A 、B 两点的距离为() A .25B .2C .10D .5055A .22123x y -=B .2214y x -=C .2214y x -=D .22132y x -=6.P 是椭圆22143x y +=上的一点,F 是椭圆的左焦点,O 是坐标原点,已知点M 是线段PF 的中点,且34OM =,则PF =() A .54B .32C .52D .1347.已知圆O :224x y +=与圆22260x y x +--=交于A 、B 两点,则AB =() A .23B 3C .2D .48.若实数m 满足05m <<,则曲线221155x y m -=-与曲线221155x y m -=-的()A .离心率相等B .焦距相等C .实轴长相等D .虛轴长相等9.M 是椭圆Γ:()222210x y a b a b+=>>上一点,1F ,2F 是椭圆的两个焦点,若122MF MF =,且12MF MF ⊥,则椭圆Γ的离心率为()A .12B 3C 25D 510.已知命题p :椭圆()22210,1x y a a a +=>≠的离心率为e ,若2a >.则230,4e ⎛⎫∈ ⎪⎝⎭;命题q :双曲线()222210,0x y a b a b -=>>的两条渐近线的夹角为θ,若a b =,则90θ=︒.下列命题正确的是() A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()()p q ⌝∧⌝11.M 、N 是双曲线2213y x -=上关于原点O 对称的两点,1F 、2F 是左、右焦点.若12MN F F =,则四边形12MF NF 的面积是() A .23B .3C .4D .612.在平面直角坐标系中,()2,0A ,()0,2B .以下各曲线:①22132x y +=;②()2222x y ++=;③22y x =;④221x y -=中,存在两个不同的点M 、N ,使得MA MB =且NA NB =的曲线是() A .①②B .③④C .②④D .①③二、填空题:本大题共4小题,每小题5分,共20分.13.以双曲线22135x y -=的焦点为顶点,以双曲线22135x y -=的顶点为焦点的椭圆方程为______.14.抛物线24y x =上一点M 到x 轴的距离为6,则点M 到抛物线焦点的距离为______.15.在平面直角坐标系中,过()1,3P -作圆O :221x y +=的两条切线,切点分别为A 、B ,则直线AB 的方程为______.16.设1F 、2F 为椭圆Γ:2212521x y +=的两个焦点,P 为Γ上一点且在第二象限.若112PF F F =,则点P的坐标为______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题考生根据要求作答. (一)必考题:共60分17.(12分)已知圆C 过()4,3A ,()0,1B -,且圆心C 在直线l :10x y --=上.经过点()4,0M 的直线m 交圆C 于P 、Q 两点. (1)求圆C 的标准方程;(2)若CP CQ ⊥,求直线m 的方程.18.(12分)抛物线()220y px p =>的准线被圆22230x y y +--=截得的弦长为23(1)求p 的值;(2)过点()4,0M 的直线交抛物线于点A 、B ,证明:OA OB ⊥.19.(12分)已知椭圆Γ的对称中心为原点O ,焦点在y 3 (1)求椭圆Γ的离心率;(2)若椭圆Γ的一个焦点为()0,2F ,过F 且斜率为1的直线l 交椭圆于两点A 、B .求椭圆的标准方程并求AOB △的面积.20.(12分)在平面直角坐标系中,点A 、B 的坐标分别为()1,0A -,()1,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为2. (1)求M 的轨迹方程;(2)记M 的轨迹为曲线Γ,过点()1,1P 能否作一条直线l ,与曲线Γ交于两点D 、E ,使得点P 是线段DE 的中点?21.(12分)已知椭圆Γ:()222210x y a b a b+=>>左右焦点分别为1F 、2F 3k 的直线l 交椭圆于两点A 、B ,当直线l 过1F 时,2AF B △的周长为8. (1)求椭圆Γ的方程;(2)设OA 、OB 斜率分别为1k 、2k ,若12k =,求证:1214k k ⋅=,并求当AOB △面积为74时,直线l的方程.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错误、漏涂均不给分,如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】(10分)在直角坐标系xOy 中,曲线C 的参数方程为cos cos 2x y m ϕϕ=⎧⎨=+⎩(ϕ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为cos 24πρθ⎛⎫-= ⎪⎝⎭(1)当0m =时,求曲线C 与x 轴交点的直角坐标; (2)直线l 与曲线C 有唯一公共点,求实数m 的值. 23.【选修4-5:不等式选讲】(10分)已知x 、y 、z 均为正实数,且22243x y z ++=. (1)求2x y z ++的最大值; (2)若2y x =,证明:113x z+≥. 2022-2023学年度第一学期高二年级期末教学质量检测试卷文科数学参考答案一、选择题1.A 2.C 3.A 4.B 5.C 6.C 7.A 8.B 9.D 10.C 11.D 12.D 二、填空题13.22185x y +=14.10 15.310x y -+=16.5372⎛-⎝⎭三、解答题17.解:(1)直线AB 的垂直平分线方程为3y x =-+ 与10x y --=联立得,2x =,1y =,即()2,1C 圆C 半径22R CA ==所以,圆C 的标准方程为()()22218x y -+-=.(2)∵22CP CQ ==,CP CQ ⊥∴圆心C 到直线m 的距离2d = 当直线m 的斜率存在时,设直线m 的方程为()4y k x =- 由22121k d k +==+得34k =当直线m 的斜率不存在时,直线m 方程为4x =,C 到m 距离为2 综上可得,直线m 方程为34120x y --=或40x -=. 18.解:(1)圆22230x y y +--=的圆心()0,1C ,半径为2;所以C 到准线距离为1,所以准线方程为1x =- 所以2p =.(2)由(1)得,抛物线标准方程为24y x =. 设直线AB 方程为4x my =+,()11,A x y ,()22,B x y4x my =+与24y x =联立得24160y my --=216640m =+>∆,由韦达定理1216y y ⋅=-,2212121644y y x x ⋅=⋅=12120OA OB x x y y ⋅=+=,即以线段AB 为直径的圆过点M .19.解:(1)设椭圆标准方程为()222210y x a b a b+=>>则有232a b =,因为222c a b =- 所以椭圆离心率63c e a ==. (2)椭圆标准方程为22162y x +=,直线l 的方程为2y x =+设()11,A x y ,()22,B x y ,直线l 方程代入椭圆方程得22210x x +-=. 解得1,2132x -±=所以AOB △的面积12132S OF x x =⋅⋅-= 20.解:(1)设(),M x y ,则1AM y k x =+,1BM yk x =-由2AM AN k k ⋅=得211y yx x ⋅=+-整理得()22221y x x =-≠±所以,点M 得轨迹方程为()22112y x x -=≠.(可以不化为标准方程的形式,限制条件也可以为0y ≠)(2)设()11,D x y ,()22,E x y ,可得221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩两式相减得()()()()12121212102x x x x y y y y +--+-= 由题意,122x x +=,122y y +=,所以12122AB y y k x x -==-直线AB 方程为21y x =-代入()22112y x x -=≠±得,22430x x -+=.∵80∆=-<,∴不存在这样的直线l . 21.解:(1)由题意,48a =,3c e a ==5c =1b = 椭圆Γ的方程为2214x y +=.(2)设直线l 的方程为()10,12y x m m m =+≠≠±,()11,A x y ,()22,B x y , 与椭圆方程联立得,222220x mx m ++-=122x x m +=-,21222x x m =-可得2121211112222y y x m x m m ⎛⎫⎛⎫=++=-⎪⎪⎝⎭⎝⎭所以12121214y y k k x x == ()2222121621115222m AB k x m -⎛⎫=+-=+=- ⎪⎝⎭O 到直线AB 得距离25m d =OAB 的面积()2272S m m =-=解得12m =±,或7m =所以直线l 方程为1122y x =±,或172y x =±. 22.解:(1)2cos 2cos 10y ϕϕ==-=,得2cos ϕ= 所以曲线C 与x 轴交点得坐标为2,02⎛⎫± ⎪ ⎪⎝⎭. (2)cos cossin sin244ππρθρθ+=得22222x y +=2x y +=为直线l 的方程 曲线C 的普通方程为221y x m =+-方程221y x m =+-与2x y +=联立得2230x x m ++-=()1830m ∆=--=得258m =. 23.解:(1)由柯西不等式()()()222211142x y zx y z ++++≥++所以23x y x ++≤,当且仅当21x y z ===时等号成立. (2)证明:因为2y x =,0x >,0y >,0z >, 由(1)得243x y z x z ++=+≤ 即043x z <+≤,所以1143x z ≥+因为()114445529z x z x x z x z x z x z ⎛⎫⎛⎫++=++≥+⋅=⎪ ⎪⎝⎭⎝⎭当且仅当4x zz x=,即21z x ==时,等号成立. 因为043x z <+≤,所以11934x z x z +≥≥+,即113x z+≥.。

2022-2023学年陕西省部分名校高二上学期期末数学(文)试题 解析版

2022-2023学年陕西省部分名校高二上学期期末数学(文)试题 解析版

2022-2023学年陕西省部分名校高二上学期期末数学试卷(文科)考生注意:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2. 请将各题答案填写在答题卡上.3. 本试卷主要考试内容:北师大版必修5占30%,选修1-1占70%.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 椭圆C :22143x y +=的长轴为( ) A. 1B. 2C. 3D. 42. 在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若3c =,4b =,3A π=,则a =( )A.B. C. 5 D. 63. 已知p :0x ∀>,230x x +>;q :x ∃∈R ,210x +=.则下列命题中,真命题是( )A. p q ⌝∧B. p q ⌝∨C. p q ∧⌝D. p q ∧4. 设0(3)(3)lim 6x f x f x x∆→+∆--∆=-∆,则()3f '=( )A. -12B. -3C. 3D. 125. 已知等比数列{}n a 的前n 项乘积为n T ,若25T T =,则4a =( ) A. 1B. 2C. 3D. 46. 已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程为340x y +=,则该双曲线的离心率是( )A.43B.53C.54D.7. 已知抛物线C :220x y =-的焦点为F ,抛物线C 上有一动点P ,且()3,6Q --,则PF PQ +的最小值为( )A. 8B. 16C. 11D. 268. 已知数列{}n a 满足1n n a a d -=+,2n ≥,n ∈N ,则“2m n a a d -=”是“2m n -=”的( ) A. 充分必要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件9. 函数21()ln 32f x x x =++的最小值是( ) A.92 B. 4C.72D. 310. 设1a <,则1211a a+-+的最小值为( )A.32B. 32- C. 1D. 211. 已知P 为抛物线C :216x y =-上一点,F 为焦点,过P 作C 的准线的垂线,垂足为H ,若PFH △的周长不小于30,则点P 的纵坐标的取值范围是( ) A. (],5-∞-B. (],4-∞-C. (],2-∞-D. (],1-∞-12. 定义在()0,+∞上的函数()f x 的导函数为()f x ',且()()4xf x f x '<恒成立,则( )A. 16(1)4(2)f f f >>B. 16(1)(2)4f f f >>C. 16(1)4(2)f f f <<D. 16(1)(2)4f f f <<第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13. 已知双曲线C :2221(0)x y a a-=>的焦距为10,则a =______.14. 若x ,y 满足约束条件10201x y x y x +-≥⎧⎪-≥⎨⎪≤⎩,则z y x =-的最小值为______.15. 已知函数()ln 1f x x x mx =++的零点恰好是()f x 的极值点,则m =______.16. 已知椭圆C :2214x y +=的左、右焦点分别为1F ,2F ,P 为椭圆C 上的一点,若121cos 3F PF ∠=-,则12PF PF ⋅=______.三、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分) 已知函数()f x 满足32()(1)1f x x f x '=-⋅+.(1)求()1f '的值;(2)求()f x 的图象在2x =处的切线方程. 18.(12分)已知抛物线C :()220y px p =->,()06,A y -是抛物线C 上的点,且10AF =.(1)求抛物线C 的方程;(2)已知直线l 交抛物线C 于M ,N 两点,且MN 的中点为()4,2-,求直线l 的方程. 19.(12分)已知数列{}n a 的前n 项和为n S ,且(7)2n n n S +=. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 20.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin()bC A B a=--. (1)求A ;(2)设2a =,当b 的值最大时,求ABC △的面积. 21.(12分)已知函数()()ln 1f x x x a x =+-. (1)当2a =-时,求()f x 的单调区间;(2)证明:当1a <-时,()f x 在()1,+∞上存在唯一零点. 22.(12分)已知双曲线C :()222210,0x y a b a b-=>>的右焦点为),渐近线方程为2y x =±. (1)求双曲线C 的标准方程;(2)设D 为双曲线C 的右顶点,直线l 与双曲线C 交于不同于D 的E ,F 两点,若以EF 为直径的圆经过点D ,且DG EF ⊥于点G ,证明:存在定点H ,使GH 为定值.高二数学试卷参考答案(文科)1. D 椭圆C :22143x y +=的长轴为4. 2. A 由余弦定理可得2222cos 13a b c bc A =+-=,所以a = 3. C 由题意可得p 为真命题,q 为假命题.故p q ∧⌝为真命题.4. B 因为0(3)(3)lim2(3)6x f x f x f x∆→+∆--∆'==-∆,所以()33f '=-.5. A 因为25T T =,所以3451a a a =.因为2354a a a =,所以41a =.6. C 因为()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,所以:3:4b a =,54c e a ===.7. C 记抛物线C 的准线为l ,作PT l ⊥于T ,当P ,Q ,T 共线时,PF PQ +有最小值,最小值为6112p+=. 8. C 因为()2m n a a m n d d -=-=,所以2m n -=或0d =,故“2m n a a d -=”是“2m n -=”的必要不充分条件.9. C 由题意可得233111()x f x x x x -'=-=,令()0f x '>,1x >,令()0f x '<,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,故()f x 的最小值是()712f =.10. A12112(11)11211a a a a a a ⎛⎫+=+-++ ⎪-+-+⎝⎭12(1)331122a a a a +-++-+=≥,当且仅当12(1)11a a a a+-=-+,即3a =-. 11. A 如图,设点P 的坐标为(),m n ,准线4y =与y 轴的交点为A ,则4PF PH n ==-,FH ====PFH △的周长为()24n -.设函数()2(4)(0)f n n n =-≤,则()f n 为减函数,因为()530f -=,所以()30f n ≥的解为5n ≤-.12. A 设函数4()()f x g x x=,0x >,则4385()4()()4()()0x f x x f x xf x f x g x x x''--'==<, 所以()g x 在()0,+∞上单调递减,从而(1)(2)g g g >>,即44(1)(2)12f f >>,则16(1)4(2)f f f >>.13. 2125a +=,解得a =a =-(舍去).14. -1 作出可行域(图略),当直线y x z =+经过点()1,0时,z y x =-取最小值,最小值为-1.15. -1 设0x 是()ln 1f x x x mx =++的零点,也是()f x 的极值点,则()ln 1f x x m '=++,所以0000ln 10ln 10x x mx x m ++=⎧⎨++=⎩,解得01x =,1m =-. 16. 3 因为22212121212cos 2PF PF F F F PF PF PF +-∠=⋅()21212122122PFPF PFPF PF PF +-⋅-=⋅122113PF PF =-=-⋅,所以123PF PF ⋅=.17. 解:(1)因为2()32(1)f x x f x ''=-⋅,所以(1)32(1)f f ''=-,解得(1)1f '=. (2)由(1)可得32()1f x x x =-+,2()32f x x x '=-,则()25f =,()28f '=.故所求切线的方程为()582y x -=-,即811y x =-. 18. 解:(1)因为6102pAF =+=, 所以8p =,故抛物线C 的方程为216y x =-.(2)易知直线l 的斜率存在,设直线l 的斜率为k ,()11,M x y ,()22,N x y ,则2112221616y x y x ⎧=-⎨=-⎩,两式相减得()22121216y y x x -=--,整理得12121216y y x x y y -=--+.因为MN 的中点为()4,2-,所以12121644y y k x x -==-=--,所以直线l 的方程为()244y x -=-+,即4140x y ++=. 19. 解:(1)当1n =时,111842a S ⨯===. 当2n ≥时,1(1)(6)2n n n S --+=,所以1(7)(1)(6)322n n n n n n n a S S n -+-+=-=-=+,因为1n =也满足,所以通项公式为3n a n =+.(2)因为11111(3)(4)34n n n b a a n n n n +===-++++, 所以1111111145563444416n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭. 20. 解:(1)三角形的性质和正弦定理可知sin sin sin()sin()sin()2cos sin sin b B C A B A B A B A B a A==--=+--=⋅,其中sin 0B ≠,所以2sin cos sin 21AA A ==,因为()0,A π∈,所以()20,2A π∈,故22A π=,4A π=.(2)由正弦定理有22sin 4sin sin b B Cb B C a A++===+,且34sin 4sin 4B C B B π⎛⎫+=+-⎪⎝⎭cos ))B B B ϕ=+=+,其中1tan 2ϕ=,所以当()sin 1B ϕ+=时,b +有最大值,此时sin cos 5B ϕ==,cos 5B =,所以sin sin()sin (sin cos )42C A B B B B π⎛⎫=+=+=+=⎪⎝⎭由正弦定理有sin sin a bA B=,故b =,所以1112sin 2225ABC S ab C ==⨯=△. 21.(1)解:当1a =时,()ln 1f x x '=-.令()0f x '<,得0e x <<,令()0f x '>,得e x >, 所以()f x 的单调递减区间为()0,e ,单调递增区间为()e,+∞. (2)证明:()()ln 1f x x a '=++,令()0f x '=,得1e a x --=,因为1a <-,所以10e e 1a -->=.当()11,e a x --∈时,()0f x '<,()f x 在()11,e a --上单调递减;当()1e ,a x --∈+∞时,()0f x '>,()f x 在()1e ,a --+∞单调递增. 而()1e (1)0af f --<=,且()()e e ln e e 10a a a af a a ----=+-=->, 又因为()f x 在()1e ,a --+∞上单调递增, 所以()f x 在()1e ,a --+∞上有唯一零点. 当()11,e a x --∈时,恒有()()10f x f <=,()f x 无零点.综上,当1a <-时,()f x 在()1,+∞上存在唯一零点.22.(1)解:由题意知c =因为双曲线C 的渐近线方程为2y x =±,所以2b a =.因为222a cb =-,所以2a =,b =故双曲线C 的标准方程为22143x y -=. (2)证明:设()11,E x y ,()22,F x y .①当直线l 的斜率存在时,设l 的方程为y kx m =+,联立方程组22143y kx m x y =+⎧⎪⎨-=⎪⎩,化简得()()2223484120k x kmx m ---+=,则()()222(8)4412340km m k ∆=++->,即22430m k -+>,且122212283441234km x x k m x x k ⎧+=⎪⎪-⎨--⎪=⎪-⎩. 因为()()1212220DE DF x x y y ⋅=--+=, 所以()()2212121(2)4k x x km x x m ++-+++()2222241281(2)403434m km k km m k k--=+⋅+-⋅++=--, 化简得221628(2)(14)0m km k m k m k ++=++=, 所以2m k =-或14m k =-,且均满足22430m k -+>.当2m k =-时,直线l 的方程为()2y k x =-,直线过定点()2,0,与已知矛盾; 当14m k =-时,直线l 的方程为()14y k x =-,过定点()14,0M . ②当直线l 的斜率不存在时,由对称性不妨设直线DE :2y x =-,联立方程组222143y x x y =-⎧⎪⎨-=⎪⎩,得2x =(舍去)或14x =,此时直线l 也过定点()14,0M .因为DG EF ⊥,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径. 故存在定点()8,0H ,使GH 为定值6.。

高二数学文科期末测试题

高二数学文科期末测试题

高二数学文科期末测试题高二数学文科期末测试题一.选择题(每小题5分,共60分)1.以下四个命题中,真命题的序号是(。

)A。

①②。

B。

①③。

C。

②③。

D。

③④2.“x≠”是“x>”的(。

)A。

充分而不必要条件。

B。

必要而不充分条件C。

充分必要条件。

D。

既不充分也不必要条件3.若方程C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a是常数),则下列结论正确的是(。

)A。

$\forall a\in R^+$,方程C表示椭圆。

B。

$\forall a\in R^-$,方程C表示双曲线C。

$\exists a\in R^-$,方程C表示椭圆。

D。

$\exists a\in R$,方程C表示抛物线4.抛物线:$y=x^2$的焦点坐标是(。

)A。

$(0,\frac{1}{4})$。

B。

$(0,\frac{1}{2})$。

C。

$(1,\frac{1}{4})$。

D。

$(1,\frac{1}{2})$5.双曲线:$\frac{y^2}{4}-\frac{x^2}{1}=1$的渐近线方程和离心率分别是(。

)A。

$y=\pm2x$,$e=3$。

B。

$y=\pm\frac{1}{2}x$,$e=5$C。

$y=\pm\frac{1}{2}x$,$e=3$。

D。

$y=\pm2x$,$e=5$6.函数$f(x)=e^xlnx$在点$(1,f(1))$处的切线方程是(。

)A。

$y=2e(x-1)$。

B。

$y=ex-1$。

C。

$y=e(x-1)$。

D。

$y=x-e$7.函数$f(x)=ax^3+x+1$有极值的充要条件是(。

)A。

$a>$。

B。

$a\geq$。

C。

$a<$。

D。

$a\leq$8.函数$f(x)=3x-4x^3$($x\in[0,1]$)的最大值是(。

)A。

$\frac{2}{3}$。

B。

$-1$。

C。

$1$。

D。

$-\frac{2}{3}$9.过点$P(0,1)$与抛物线$y^2=x$有且只有一个交点的直线有(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx学年度第一学期期末考试高二政治(文)考试时间 120分钟满分 150分第I卷选择题(75分)一、在下列各题的四个选项中,只有一项是最符合题意的。

(每小题2分,共48分)1.哲学和具体科学的关系是A.哲学是各门具体科学的基础B.哲学和具体科学是整体和部分的关系C.哲学是对具体科学的概括和总结D.具体科学对哲学有反作用2.下列看法中,属于世界观的有①物质是不依赖于人的意识并能为人的意识所反映的客观实在②科教兴国③水往低处流④存在即被感知⑤天行有常,不为尧存,不为桀亡A.①②④⑤B.①②③④⑤C.①②⑤D.①④⑤3.人们对同一客观事物进行考察,既可能作出歪曲的反映,也能够形成如实的反映。

它们的区别是A.歪曲的反映不是对客观事物的反映,如实的反映是对客观事物的反映B.不在于对客观事物作出什么性质的反映,而在于是不是对客观事物作出了反映C.不在于是不是对客观事物作出了反映,而在于对客观事物作出了什么性质的反映D.歪曲的反映是对事物现象的反映,正确的反映是对事物本质的反映4.“巧妇难为无米之炊”,“画饼难以充饥”,这主要强调A.意识有能动作用B.物质决定意识C.联系是普遍的D.因果联系是普遍的客观的5.“按图索骥”这一成语给我们的哲学启示是A.要发挥主观能动性,不要消极等待B.要重视实践的作用,不能思想僵化C.要从实际出发,不能迷信书本D.要继承前人的经验,不能割断历史6.被称为火之洲的新疆吐鲁番,在每年6、7、8月间,整个“火洲”像一个巨大的烤箱。

但在这个季节,有许多人不远万里来到这里,把人体的患病部位埋到沙子里让灼热的太阳晒,有很多病都可以治好。

病人利用吐鲁番的阳光、沙子治病说明A.自然界的内在属性随着人类的认识能力的提高而不断增多B.自然物能否被人利用和人类的认识能力无关C.人能根据自然物本身的属性和规律去有意识地利用自然物D.自然物的内在属性不因人的认识水平的提高而改变中国艺术家丰子恺说过,音乐是精神的食粮,音乐性质的良否,必须审慎选择。

回答7-8题:7.“音乐是精神的食粮”说明A.音乐是一种意识的形态B.音乐来自于人的精神C.音乐与人类的活动无关D.音乐能促进人类精神的发展8、“必须审慎选择”音乐的哲学依据是A. 发展的观点B. 联系的观点C. 意识对物质具有能动的反作用D. 坚持适度原则9.一个人种了株葫芦,不料叶子被虫子吃了,有人告诉他说:“你赶紧消灭虫子吧,不然葫芦叶子很快会被吃光的”。

他说:“我要的是葫芦,葫芦叶子没了不要紧。

”此人的错误在于A.否认了事物的联系,用孤立的观点看问题B.没有看到事物是运动变化发展的C.否认了部分是整体的部分D.犯了离开运动谈物质的形而上学错误10.美国一位心理学家说:“I+we=full I。

”(我+我们=完整的我)。

这句话包含的主要哲理是A、人与人之间都是有联系的B、构成事物的成分在结构上的变化也能引起质变C、整体是由部分组成,没有部分就无所谓整体D、部分离不开整体,部分只有在整体中才有意义11.因果联系的基本特征是①先行后续②引起被引起③互为因果④先因后果A、①②B、②③C、③④D、①④12.唯物辩证法讲的联系,其内涵是A.事物内部关系和事物外部关系B.事物之间相互影响、相互制约的关系C、事物内部诸要素之间相互影响、相互制约的关系D.事物之间以及事物内部诸要素之间的相互影响、相互制约的关系13.凡是企求永远不变的最终体系的理论,反而或迟或早会“寿终正寝”。

这就告诉我们①必须坚持用发展的观点看问题②要积极创造客观条件,使之和变化发展的实际相符合③只有坚持与时俱进、开拓创新,认识才能符合实际并推动客观事物的发展④只要敢于冲破现有条件的制约,人的认识就会有生命力A、①②③B、②③④C、①③D、①②14.不断促进社会主义物质文明、政治文明和精神文明的协调发展。

这体现了A.矛盾普遍性和特殊性相统一的观点B.全面的观点和发展的观点C.量变和质变相统一的观点D.内外因相结合的观点15.“我们嘲笑别人的缺陷,却不知道这些缺陷也在我们内心嘲笑我们自己。

”这其中蕴涵的哲学道理是A、矛盾双方是相互依赖和相互影响的B、矛盾双方的地位是不平等的C、矛盾双方可以在一定条件下相互转化D、矛盾双方各具有不同的特点16.“和谐而又不千篇一律,不同而又不相互冲突。

和谐以共生共长,不同以相辅相成。

”这就要求我们①在对立中把握统一,这统一中把握对立②要一切从实际出发,具体问题具体分析③在抓主要矛盾的同时,又要恰当地处理次要矛盾④这矛盾激化时注意统一,在矛盾缓和时注意对立A、①②B、①③C、②③D、①④中医讲求辩症施治、对症下药。

有时对同一类疾病根据不同病因施以不同疗法,称为“同病异治”;有时又对不同的疾病根据相同的病理表现施以同一类疗法,称为“异病同治”。

据此回答17-18题。

17、“同病异治”和“异病同治”最突出的共同点是重视A、矛盾的普遍性和特殊性的辩证关系B、意识的能动作用C、内因和外因的辩证关系D、从整体上把握现象之间的联系18、“异病同治”是有条件的,而某些江湖“神医”声称可以用一种药包治百病,这违背了的原则。

A、适度B、具体问题具体分析C、两点论和重点论相统一D、对立统一19.《人民日报》载文指出:“生活在同一蓝天下,有的人事业有成,有的人碌碌无为,有的人无所作为。

这或许是机遇的不同,也可能是环境使然,但我相信更多的原因在自身。

”从哲学上看“我相信更多的原因在自身”这句话主要是说A.事物发展是内因与外因共同作用的结果B.内因是事物变化发展的根据C.外因是事物变化发展的条件D.外因必须通过内因发挥作用20.行为学中有这样一个公式:重要+重要+重要+……重要=0。

这说明A、矛盾的普遍性和特殊性是相互联结的B、意识对物质具有反作用C、工作中要善于分清主次、抓好重点D、必须承认相对静止的存在21.把经济结构问题解决好,才能扩大国内需求,增加有效供给,也才能切实提高国民经济的整体水平,在日趋激烈的国际竞争中赢得主动。

调整经济结构能提高经济整体水平,从哲学上看是因为A.事物数量上的增减达到一定程度就会发生质变B.构成事物的成分在排列次序上的变化能引起质变C.扩大需求达到一定程度能促使经济素质的提高D.通过发挥主观能动性,就能促使事物的质变22.宋代诗人杨万里诗云:“莫道下山便无难,赚得行人错喜欢。

正入万山圈子里,一山方出一山拦。

”这首诗包含的哲学寓意是A.世界是物质的,物质第一性,意识第二性B.物质世界是神秘莫测,不可知的C.人生多歧路,苦难无尽头D.事物发展的总趋势是前进的,但道路是曲折的23.以下成语、俗语中,属于形而上学的有①滴水穿石②物极必反③刻舟求剑④断章取义⑤墨守成规⑥失败乃成功之母⑦无规矩,不成方圆⑧统筹兼顾A、①②③B、④⑤⑦C、③④⑤D、③⑥⑧24.只有坚持辩证法,反对形而上学,才能真正坚持一切从实际出发,实事求是。

这是因为A、辩证法是唯物论的前提和基础B、唯物论与辩证法是统一的C、坚持了辩证法就坚持了唯物论D、唯物论与辩证法是始终结合在一起的二、在下列各题的四个选项中,至少有一项是符合题意的。

(错选、多选,该题不给分。

少选且正确的给1分。

每小题3分,共27分)25.离开既定的条件创新,是盲目而没有根基的;离开创新讲条件,则会捆住自己的手脚,迈不开发展的步子。

这就要求我们A.把正视客观条件和发挥意识能动性结合起来B.既要承认物质的决定作用,又要承认意识的能动作用C.把解放思想和实事求是统一起来D.既要把握联系的客观性,又要坚持发展的永恒性26.“依葫芦画瓢”,“照猫画虎”的错误在于A. 否认了事物的相互联系B. 违背了一切从实际出发,实事求是的原则C. 否认了矛盾的特殊性原理D. 违背了具体问题具体分析的原则27.唐代诗人顾况写道:“冬青树上持凌霄,岁岁花凋树不凋。

凡物各自有根本,种禾终不生豆苗。

”这首诗蕴含的哲理是A.事物运动有自身内在的规律B.内因是事物变化发展的根据C.矛盾的特殊性是一事物区别于它事物的根据D.量变必然引起质变28.坚持用发展的观点观察和处理问题,我们就要A、把事物如实地看成是一个变化发展着的过程B、把一切变化都看成是发展C、弄清事物在其发展过程中所处的阶段和地位D、有创新精神,促进新事物的发展29、在西部大开发中,我们不能为追求眼前利益而不惜破坏自然资源和生态环境,否则,从哲学上讲就是无视A、人的主观能动性B、事物联系的客观性C、事物发展的前进性D、规律的客观性30.矛盾的普遍性和特殊性的关系是A、整体与部分的关系B、对立与统一的关系C、共性与个性的关系D、多数与少数的关系31.日本作家芥川曾说:“在百米赛跑中,九十九步是一半,另一步是一半,这是一个超数学问题。

”这启示我们A.事物的性质主要是由矛盾的主要方面决定的,B.要从实际出发,实事求是C.要抓住时机,促成飞跃D.在一定条件下,关键部分的性质对整体的功能起决定作用32.“穷则变,变则通,通则久”,“终日乾乾,与时偕行”的观点,与“道之大原出于天,天不变,道亦不变”的观点,反映了A.唯物论与唯心论的对立B.唯物论与辩证法的统一C.辩证法与形而上学的分歧D.唯心论与形而上学的联系33.“新陈代谢”的哲学寓意是A、物质的运动是有规律的B、矛盾双方在一定条件下相互依存、相互转化C、矛盾是事物变化发展的动力D、新事物必然战胜旧事物第II卷非选择题(75分)三、简答题(本大题19分,34题9分,35题10分)34.在过去的100年里,人类发明了电话电报、原子弹、计算机、卫星。

因特网于1969年问世,到xx年底全球因特网使用者多达2.6亿,计算机网络已经使全世界变成了一个“地球村”。

科技对社会和经济的巨大贡献日益证明,科学技术是第一生产力。

据统计,其对经济的贡献率目前已达80%至90%。

经验表明新发明在应用中所创价值超过科技投入的近10倍以上。

高科技改善了人们的生活,也带来了很多负面效应。

20世纪人类不止一次打开“潘多拉盒子”,全球变暖、沙漠化加剧、物种灭迹、核武器阴影......人类文明如何发展,已成为21世纪知识经济时代人类所共同面临的重大课题。

上述材料对科技作用的分析中,体现了哪些唯物辩证法的道理?(9分)35.有这样一种观点:聪明的人总是按规律办事,领悟力较差的人爱凭自己的经验处理问题,愚蠢的人只是根据个人的需要行事。

请运用所学哲学道理,结合上述观点,回答下列问题:(1)为什么按规律办事就显得聪明些?按规律办事与从实际出发是什么关系?(4分)(2)办事情是不是要善于运用已有的经验?“领悟力较差的人”错在哪里?(3分)(3)办事情是不是要考虑自己的需要?“愚蠢的人”错在哪里?(3分)四、辨析题(本大题22分,每小题11分)36.物质和意识是相互影响、相互依赖、相互促进的(11分)37.辨析:“千里之堤,溃于蚁穴”与“无边落木萧萧下,不尽长江滚滚来”正确揭示了事物的发展(11分)五、论述题(本大题共2小题,第38题18分,第39题16分。

相关文档
最新文档