高考中的天体运动问题1

高考中的天体运动问题1
高考中的天体运动问题1

高考中的天体运动问题

天体运动问题是高考中每年必然出现的一个考点,常以选择题的形式出现,有时候也会出计算题。有两个常见的出题方向,一个是动力学方向另一个是与功和能相结合。处理天体运动的动力学问题时有两个关系最常用到,一,天体在做匀速圆周运动时万有引力提供向心力,即:;二,在天体表面,忽略自转的情况下有得。处理天体运动与功和能相结合的问题时常用到功能关系。下面简举2例分别说明各种题型的做题方法。

动力学问题

例1(2015年北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么()

A.地球公转周期大于火星的公转周期B.地球公转的线速度小于火星公转的线速度

C.地球公转的加速度小于火星公转的加速度D.地球公转的角速度大于火星公转的角速度

解析:由得,∴轨道半径越大,越小;由得,∴轨道半径越大,越小;由得,∴轨道半径越大,越大;向心加速度,∴轨道半径越大,a越小。

点评:本题根据万有引力等于向心力就可以做出来了,这是天体运动中最常见的题型。其实,不止天体运动问题,跟匀速圆周运动相关的题目,大都是对物体进行受力分析,找出指向圆心方向的合力,这个合力就等于向心力。

天体运动与功和能相结合的问题

例2 有人设想:可以在飞船从运行轨道进入返回地球程序时,借飞船需要减速的机会,发射一个小型太空探测器,从而达到节能的目的。如图所示,飞船在圆轨道Ⅰ上绕地球飞行,其轨道半径为地球半径的k倍(k>1)。当飞船通过轨道Ⅰ的A点时,飞船上的发射装置短暂工作,将探测器沿飞船原运动方向射出,并使探测器恰能完全脱离地球的引力范围,即到达距地球无限远时的速度恰好为零,而飞船在发射探测器后沿椭圆轨道Ⅱ向前运动,其近地点B到地心的距离近似为地球半径R。以上过程中飞船和探测器的质量均可视为不变。已知地球表面的重力加速度为g。(1)求飞船在轨道Ⅰ运动的速度大小;(2)若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量。在飞船沿轨道Ⅰ和轨道Ⅱ的运动过程,其动能和引力势能之和保持不变;探测器被射出后的运动过程中,其动能和引力势能之和也保持不变。

①求探测器刚离开飞船时的速度大小;②已知飞船沿轨道Ⅱ运动过程中,通过A点与B点的速度大小与这两点到地心的距离成反比。根据计算结果说明为实现上述飞船和探测器的运动过程,飞船与探测器的质量之比应满足什么条件。

A

B

解析:(1)设地球质量为M,飞船质量为m,探测器质量为m',当飞船与探测器一起绕地球做圆周运动时的速度为v0根据万有引力定律和牛顿第二定律有,对于地面附近的质量为m0的物体有m0g=GMm0/R2,解得:,(2)①设探测器被发射出时的速度为v',因其运动过程中动能和引力势能之和保持不变,所以探测器刚好脱离地球引力应满足,解得:,②设发射探测器后飞船在A点的速度为vA,运动到B点的速度为vB, 因其运动过程中动能和引力势能之和保持不变,所以有,对于飞船发射探测器的过程,根据动量守恒定律有

(m+ m')v0=mvA+ m'v',因飞船通过A点与B点的速度大小与这两点到地心的距离成反比,即RvB=kRvA

解得:。

点评:本题运用了机械能守恒。在只有万有引力对物体做功时,物体的机械能守恒。另外类比重力势能的减少量等于重力做的功还可以根据引力势能的减少量得出万有引力做的功。

卫星的变轨和对接问题

例3(2016年天津卷)我国即将发射“天宫二号”空间实验室,之后发生“神舟十一号”飞船与“天宫二号”对接。假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()。

A、使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接。

B、使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接。]

C、飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接

D、飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接

解析:若使飞船与空间站在同一轨道上运行,然后飞船加速,则向心力变大,此时飞船所受万有引力不足以提供向心力,故飞船将会进入更高的轨道,而不能实现对接,选项A错误;若使飞船与空间站在同一轨道上运行,然后空间站减速,则向心力变小,此时飞船所受万有引力大于所需向心力,故空间站将脱离原轨道而进入更低的轨道,也不能实现对接,选项B错误;要想实现对接,可使飞船在比空间试验室半径较小的轨道上加速,然后飞船将进入较高的空间试验室轨道,逐渐靠近空间站后,两者速度接近时实现对接,选项C正确;若飞船在比空间试验室半径较小的轨道上减速,则飞船将进入更低的轨道,而空间站在更高的轨道上,从而不能实现对接,选项D错误;故选C.

点评:人造天体的对接问题,两个天体对接前不能处于同一轨道。

万有引力与天体运动问题是每年高考的必考题,本文重点分析了天体运动中的动力学问题以及与功、能相结合的问题的解法,希望对同学们的复习备考有所帮助。

高中物理天体运动经典习题

十年高考试题分类解析-物理 1.假设地球是一半径为R 、质量分布均匀的球体。一矿井深度为d 。已知质量分布均匀的球壳对壳内物体的引力为零。矿井底部和地面处的重力加速度大小之比为 A.R d - 1 B.R d +1 C.2)(R d R - D.2 )(d R R - 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v 。假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,,则这颗行星的质量为 A .mv 2 /GN B .mv 4 /GN . C .Nv 2 /Gm .D .Nv 4 /Gm . 3.(2012·北京理综)关于环绕地球运动的卫星,下列说法正确的是 4A C 5A. B.各小行星绕太阳运动的周期均小于一年 C.小行星带内侧小行星的向心加速度值大于外侧小行星的向心 加速度值 D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值 6.(2012·全国理综)一单摆在地面处的摆动周期与在某矿井底部摆动周期的比值为k 。设地球的半径为R 。假定地球的密度均匀。已知质量均匀分布的球壳对壳内物体的引力为零,求矿井的深度d . 1.(2011重庆理综第21题)某行星和地球绕太阳公转的轨道均可视为圆。每过N 年,该行星会运行到日地连线的延长线上,如题21图所示。该行星与地球的公转半径比为

A .231N N +?? ??? B.23 1N N ?? ?-?? C .3 2 1N N +?? ??? D.32 1N N ?? ?-?? 2(2011四川理综卷第17题)据报道,天文学家近日发现了 一颗距地球40光年的 “超级地球”,名为“55Cancrie ”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的 1 480 ,母星的体积约为太阳的60倍。假设母星与太阳密度相同,“55Cancrie ”与地球均做匀速圆周运动,则“55Cancrie ”与地球的 A. B. C.1.m 1、m 2、M (M >>m 1,M >>m 2).在C 的万有引力作用下,a 、b 从2运行周期和相应的圆轨道半径,T 0和R 0是 3.(2010,在月球绕地球运行的轨道处由地球引力产生的加速度大小为2g ,则 A .1g a =B .2g a =C .12g g a +=D .21g g a -= 4(2010四川理综卷第17题).a 是地球赤道上一栋建筑,b 是在赤道平面内做匀速圆周运动、距地面9.6×106 m 的卫星,c 是地球同步卫星,某一时刻b 、c 刚好位于a 的正上方(如图甲所示),经48h ,a 、b 、c 的大致位置 是图乙中的(取地球半径R=6.4×106m ,地球表面重力加速度g=10m/s 2 ,π 5.(2010安徽理综)为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”。假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时,周期分别为T 1和T 2。火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G 。仅利用以上数据,可以计算出 A .火星的密度和火星表面的重力加速度

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

天体运动经典题型分类

万有引力和航天知识的归类分析 一.开普勒行星运动定律 1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如图所示。若飞船要返回地面,可在轨道上某点处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地点运动到近地点所需要的时间。 二.万有引力定律 实例2、设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 ( ) A 、零 B 、无穷大 C 、 2 R GMm D 、无法确定 小结:F= 2 2 1r m Gm 的适用条件是什么 三.万有引力与航天 (一)核心知识 万有引力定律和航天知识的应用离不开两个核心 1、 一条主线 ,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。 2、 黄金代换式 GM =g R 2 此式往往在未知中心天体的质量的情况下和一条主线结合使用 (二)具体应用 应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 1、理论依据:一条主线 2、实例分析 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面 的高度 分别是R 和2R(R 为地球半径).下列说法中正确的是( ) A.a 、b 的线速度大小之比是 2∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4 小结: 轨道模型: 在中心天体相同的情况下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,则卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生变化其它各量也会变化。 应用二、测量中心天体的质量和密度 1、方法介绍 方法一、“T 、r ”计算法 在知道“T 、r ”或“v 、r ”或“ω、r ”的情况下,根据一条主线均可计算出中心天体的质量,这种方法统称为“T 、r ”计算法。在知道中心天体半径的情况下利用密度公式还可以计算出中心天体的密度。 方法二、“g 、R ”计算法 利用天体表面的重力加速度g 和天体半径R. 2、实例分析 例4:已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球:绕地球的运转周期T 1,地球的自转周期T 2 , 天体密度故天体质量由于,,2 2G gR M mg R Mm G ==.π43π3 43 GR g R M V M = ==

天体运动高考真题(高考复习一遍过)

天体运动 1.(2017·北京理综)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期 C .月球绕地球做圆周运动的周期及月球与地球间的距离 D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 D 本题考查天体运动.已知地球半径R 和重力加速度g ,则mg =G M 地m R 2, 所以M 地=gR 2G ,可求M 地;近地卫星做圆周运动,G M 地m R 2=m v 2R ,T =2πR v ,可解 得M 地=v 2R G =v 2T 2πG ,已知v 、T 可求M 地;对于月球:G M 地·m r 2=m 4π2 T 2月 r ,则M 地=4π2r 3 GT 2月 ,已知r 、T 月可求M 地;同理,对地球绕太阳的圆周运动,只可求出太阳质量M 太,故此题符合题意的选项是D 项. 2.(多选)2016年4月6日1时38分,我国首颗微 重力科学实验卫星——实践十号返回式科学实验卫星, 在酒泉卫星发射中心由长征二号丁运载火箭发射升空, 进入近百万米预定轨道,开始了为期15天的太空之旅, 大约能围绕地球转200圈,如图所示.实践十号卫星的 微重力水平可达到地球表面重力的10-6g ,实践十号将在太空中完成19项微重力科学和空间生命科学实验,力争取得重大科学成果.以下关于实践十号卫星的相关描述中正确的有( ) A .实践十号卫星在地球同步轨道上 B .实践十号卫星的环绕速度一定小于第一宇宙速度 C .在实践十号卫星内进行的19项科学实验都是在完全失重状态下完成的 D .实践十号卫星运行中因受微薄空气阻力,需定期点火加速调整轨道 BD 实践十号卫星的周期T =15×24200 h =1.8 h ,不是地球同步卫星,所以

高考物理真题分类汇编:万有引力和天体运动

高中物理学习材料 金戈铁骑整理制作 2014年高考物理真题分类汇编:万有引力和天体运动 19.[2014·新课标全国卷Ⅰ] 太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是( ) 地球 火星 木星 土星 天王星 海王星 轨道半径(AU) 1.0 1.5 5.2 9.5 19 30 A.各地外行星每年都会出现冲日现象 B .在2015年内一定会出现木星冲日 C .天王星相邻两次冲日的时间间隔为土星的一半 D .地外行星中,海王星相邻两次冲日的时间间隔最短 19.BD [解析] 本题考查万有引力知识,开普勒行星第三定律,天体追及问题.因为冲日现象实质上是角速度大的天体转过的弧度恰好比角速度小的天体多出2π,所以不可能每年都出现(A 选项).由开普勒行星第三定律有T 2木T 2地=r 3木 r 3地=140.608,周期的近似比值为12,故木星的周期为12年,由曲线运动追及公式 2πT 1t -2πT 2t =2n π,将n =1代入可得t =12 11年,为木星两次冲日的时间间隔,所以2015年能看到木星冲日现象, B 正确.同理可算出天王星相邻两次冲日的时间间隔为1.01年.土星两次冲日的时间间隔为1.03年.海王星两次冲日的时间间隔为1.006年,由此可知 C 错误, D 正确. 18.[2014·新课标Ⅱ卷] 假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( ) A.3πGT 2 g 0-g g 0 B.3πGT 2g 0 g 0-g C. 3πGT 2 D.3πGT 2g 0 g 18.B [解析] 在两极物体所受的重力等于万有引力,即 GMm R 2 =mg 0,在赤道处的物体做圆周运动的周期等于地球的自转周期T ,则GMm R 2-mg =m 4π2T 2R ,则密度 ρ=3M 4πR 3=34πR 3 g 0R 2 G =3πg 0GT 2(g 0-g ) .B 正确. 3. [2014·天津卷] 研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种

天体运动模型

常见的天体运动模型 天体及卫星的运动问题也是高考的热点问题,从近几年全国各地的高考试题来看,透彻理解四个基本模型是关键。 计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。 一、自转模型 1.考虑地球(或某星球)自转影响,地表或地表附近的随地球转的物体所受重力实质是万有引力的一个分力 由于地球的自转,因而地球表面的物体随地球自转时需 要向心力,向心力必来源于地球对物体的万有引力,重力实际 上是万有引力的一个分力,由于纬度的变化,物体作圆周运动 的向心力也不断变化,因而地球表面的物体重力将随纬度的变 化而变化,即重力加速度的值g 随纬度变化而变化;从赤道到两极逐渐增大.在赤道上,在两极处, 。 2.忽略地球(星球)自转影响,则地球(星球)表面或地球(星球)上方高空物体所受的重力就是地球(星球)对物体的万有引力. 在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M ,半径为R ,其表面的重力加速度为g ,由这一近似关系有:,即。这一关系式的应用,可实现天体表面重力加速度g 与的相互替代,因此称为“黄金代换”。 二、环绕模型 环绕模型的基本思路是:①把天体、卫星的环绕运动近似看 做是匀速圆周运动;②万有引力提供天体、卫星做圆周运动的向 心力:G Mm r 2=m v 2r =m ω2r =m ? ?? ??2πT 2r =m(2πf)2r= ma 其中r 指圆周运动的轨道半径;③在地球表面,若不考虑地球自转,万有引 力等于重力:由G Mm R 2=mg 可得天体质量M =R 2g G ,这往往是题目中重要的隐含条件。 三、变轨模型 若卫星所受万有引力等于做匀速圆周运动的向心力,将 保持匀速圆周运动;当卫星由于某种原因速度突然改变时 (开启或关闭发动机或空气阻力作用),万有引力就不再等于 向心力,卫星将做变轨运行。①当v 增大时,所需向心力增 大,即万有引力不足以提供向心力,卫星将做离心运动,脱 离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道 运行,由v =r GM 知其运行速度要减小,但重力势能、

【重磅】天体运动高考真题(高考复习一遍过)

天体运动 1.(2017·北京理综)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期 C .月球绕地球做圆周运动的周期及月球与地球间的距离 D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 D 本题考查天体运动.已知地球半径R 和重力加速度g ,则mg =G M 地m R 2,所以M 地=gR 2G ,可求M 地;近地卫星做圆周运动,G M 地m R 2=m v 2R ,T =2πR v ,可解得M 地=v 2R G =v 2T 2πG ,已知v 、T 可求M 地;对于月球:G M 地·m r 2=m 4π2 T 2月 r ,则M 地=4π2r 3 GT 2月 ,已知r 、T 月可求M 地;同理,对地球绕太阳的圆周运动,只可求出太阳质量M 太,故此题符合题意的选项是D 项. 2.(多选)2016年4月6日1时38分,我国首颗 微重力科学实验卫星——实践十号返回式科学实验卫 星,在酒泉卫星发射中心由长征二号丁运载火箭发射升 空,进入近百万米预定轨道,开始了为期15天的太空 之旅,大约能围绕地球转200圈,如图所示.实践十号卫星的微重力水平可达到地球表面重力的10-6g ,实践十号将在太空中完成19项微重力科学和空间生命科学实验,力争取得重大科学成果.以下关于实践十号卫星的相关描述中正确

的有( ) A.实践十号卫星在地球同步轨道上 B.实践十号卫星的环绕速度一定小于第一宇宙速度 C.在实践十号卫星内进行的19项科学实验都是在完全失重状态下完成的D.实践十号卫星运行中因受微薄空气阻力,需定期点火加速调整轨道 BD 实践十号卫星的周期T=15×24 200 h=1.8h,不是地球同步卫星,所以不 在地球同步轨道上,故A错误;第一宇宙速度是近地卫星的环绕速度,也是最大的圆周运动的环绕速度,则实践十号卫星的环绕速度一定小于第一宇宙速度,故B正确;根据题意可知,实践十号卫星内进行的19项科学实验都是在微重力情况下做的,此时重力没有全部提供向心力,不是完全失重状态,故C错误;实践十号卫星运行中因受微薄空气阻力,轨道半径将变小,速度变小,所以需定期点火加速调整轨道,故D正确. 3.(多选)(2017·四川资阳二诊)如图所示为一卫星沿椭圆轨道绕 地球运动,其周期为24小时,A、C两点分别为轨道上的远地点和 近地点,B为短轴和轨道的交点.则下列说法正确的是( ) A.卫星从A运动到B和从B运动到C的时间相等 B.卫星运动轨道上A、C间的距离和地球同步卫星轨道的直径相等 C.卫星在A点速度比地球同步卫星的速度大 D.卫星在A点的加速度比地球同步卫星的加速度小 BD 根据开普勒第二定律知,卫星从A运动到B比从B运动到C的时间长, 故A错误;根据开普勒第三定律a3 T2= k,该卫星与地球同步卫星的周期相等,则

2019高考物理一轮复习天体运动题型归纳

天体运动题型归纳 李仕才 题型一:天体的自转 【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .1 2 4π3G ρ?? ??? B .1 2 34πG ρ?? ??? C .1 2 πG ρ?? ??? D .1 2 3πG ρ?? ??? 解析:在赤道上2 2 R m mg R Mm G ω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m R Mm G ω=②又 T π ω2= ③ 33 4 R M ρπ= ④ ②③④得:2 3GT π ρ= ④即21 )3(ρπG T =选D 练习 1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布 均匀的球体,半径为R 。则地球的自转周期为( ) A. 2T = 2T =R N m T ?=π2 D.N m R T ?=π2 2、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为: A. 0203g g g GT π- B. 0203g g g GT π- C. 23GT π D. 23g g GT πρ=

题型二:近地问题+绕行问题 【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。已知月球半径为R ,引力常量为G 。则下列说法正确的是 A .月球表面的重力加速度g 月=hv 2 L 2 B .月球的质量m 月=hR 2v 20 GL C .月球的第一宇宙速度v = v 0 L 2h D .月球的平均密度ρ=3hv 2 2πGL 2R 解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2 ,联立解得g 月=2hv 2 0L 2;由mg 月=G mm 月R 2, 解得m 月=2hR 2v 2 0GT 2;由mg 月=m v 2 R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3hv 2 2πGL 2R 。 练习:“玉兔号”登月车在月球表面接触的第一步实现了中国人“奔月”的伟大梦想。机器人“玉兔号”在月球表面做了一个自由下落试验,测得物体从静止自由下落h 高度的时间t ,已知月球半径为R ,自转周期为T ,引力常量为G 。则下列说法正确的是 A .月球表面重力加速度为t 2 2h B .月球第一宇宙速度为 Rh t C .月球质量为hR 2 Gt 2 D .月球同步卫星离月球表面高度 3hR 2T 2 2π2t 2-R 【例题2】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕。“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的1 20 。该中心恒星与太阳的质量比约为 A.1 10 B .1 C .5 D .10

2017-2019高考物理真题分类解析---万有引力定律与航天

2017-2019高考物理真题分类解析---万有引力定律 与航天 1.(2019·新课标全国Ⅰ卷)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。在另一星球N 上用完全相同的弹簧,改用物体Q 完成同样的过程,其a –x 关系如图中虚线所示,假设两星球均为质量均匀分布的球体。已知星球M 的半径是星球N 的3倍,则 A .M 与N 的密度相等 B .Q 的质量是P 的3倍 C .Q 下落过程中的最大动能是P 的4倍 D .Q 下落过程中弹簧的最大压缩量是P 的4倍 【答案】AC 【解析】A 、由a –x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:mg kx ma -=,变形式为:k a g x m =- ,该图象的斜率为k m -,纵轴截距为重力加速度g 。根据图象的纵轴截距可知,两星球表面的重力加速度之比为: 0033 1 M N a g g a ==;又因为在某星球表面上的物体,所受重力和万有引力相等,即:2Mm G m g R '=',即该星球的质量2gR M G =。又因为:3 43R M πρ=,联立得34g RG ρπ=。 故两星球的密度之比为: 1:1N M M N N M R g g R ρρ=?=,故A 正确;B 、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg kx =,即:kx m g = ;结合a –x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比为:00122 P Q x x x x ==,故物体P 和物体Q 的质量之比

天体运动中的双星问题

天体运动中的双星问题 1.我们的银河系的恒星中大约四分之一是双星。某双星是由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。由天文观察 测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G。由此 可求出S2的质量为 C. D. 2.经长期观测人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线速度远小于两个星体之间的距离,而且双星系统一般远离其他天体。如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期 相同的匀速圆周运动。现测得两颗星之间的距离为L,质量之比为m1︰m2=3︰2。则可 知 A.m1︰m2做圆周运动的角速度之比为2︰3 B.m1︰m2做圆周运动的线速度之比为3︰2 C.m1做圆周运动的半径为 D.m 2做圆周运动的半径为 3.月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成 的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。据此观点,可知月球与地球 绕O点运动的线速度大小之比约为 A 1∶6400 B 1∶80 C 80∶1 D 6400∶1 8.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线 上某点O做匀速圆周运动,由此可知,冥王星绕O点运动的 A C.线速度大小约为卡戎的7倍 D.向心力大小约为卡戎的7倍 11.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O 的两侧。引力常数为G。 求两星球做圆周运动的周期; 1、设想把质量为m的物体,放到地球的中心,地球的质量为M,半径为R,

2015年高考物理真题分类汇编:万有引力和天体运动

2015年高考物理真题分类汇编:万有引力和天体运动 (2015新课标I-21). 我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落,已知探测器的质量约为1.3×103kg,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度约为9.8m/s2,则此探测器 A. 着落前的瞬间,速度大小约为8.9m/s B. 悬停时受到的反冲作用力约为2×103N C. 从离开近月圆轨道这段时间内,机械能守恒 D. 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度 【答案】B、D 【考点】万有引力定律及共应用;环绕速度 【解析】在中心天体表面上万有引力提供重力:= mg , 则可得月球表面的重力加速度 g月= ≈ 0.17g地= 1.66m/s2 .根据平衡条件,探测器悬停时受到的反作用力F = G探= m探 g月≈ 2×103N,选项B正确;探测器自由下落,由V2=2g月h ,得出着落前瞬间的速度v ≈3.6m/s ,选项A错误;从离开近月圆轨道,关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,发动机做了功,机械能不守恒,故选项C错误;在近月圆轨道 万有引力提供向心力:= m,解得运行的线速度V月= = < , 小于近地卫星线速度,选项D正确。 【2015新课标II-16】16. 由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。已知同步卫星的环绕速度约为3.1x103/s,某次发 射卫星飞经赤道上空时的速度为1.55x103/s,此时 卫星的高度与同步轨道的高度相同,转移轨道和 同步轨道的夹角为30°,如图所示,发动机给卫星 的附加速度的方向和大小约为 A. 西偏北方向,1.9x103m/s B. 东偏南方向,1.9x103m/s C. 西偏北方向,2.7x103m/s D. 东偏南方向,2.7x103m/s 【答案】B

高中天体运动必备基础知识及例题讲解

授课主题 万有引力与重力的关系 教学目的 理解万有引力与重力之间的关系及会运用知识解此类问题 授课日期及时段 2013.04.06 ;3课时 教学内容 一, 本周错题讲解 二, 知识归纳 .考点梳理 (1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供, 即: Gr v m r Mm 22==mω2 r=mr T 224π (2).估算天体的质量和密度 由G 2r Mm =mr T 224π得:M=2 3 24Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量. 由ρ=V M ,V=34πR3 得: ρ=3 233R GT r π.R 为中心天体的星体半径 特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=2 3GT π (2003年高考),由此可以测量天体的密度. (3)行星表面重力加速度、轨道重力加速度问题

表面重力加速度g 0,由02GMm mg R = 得:02GM g R = 轨道重力加速度g ,由 2()GMm mg R h =+ 得:2 2 0()()GM R g g R h R h ==++ (4)卫星的绕行速度、角速度、周期与半径的关系 (1)由Gr v m r Mm 22=得:v=r GM . 即轨道半径越大,绕行速度越小 (2)由G 2 r Mm =mω2 r得:ω=3r GM 即轨道半径越大,绕行角速度越小 (3)由2 224Mm G m r r T π=得:3 2r T GM π = 即轨道半径越大,绕行周期越大. (5)地球同步卫星 所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h . 由: G 2 224()Mm m R h T π=+(R+h) 得: 2 3 2 4h R GMT π=-=3.6×104km=5.6R R表示地球半径 三.热身训练 1.把火星和地球绕太阳运行的轨道视为圆周。由火星和地球绕太阳运动的周期之比可求得 A .火星和地球的质量之比 B .火星和太阳的质量之比 C .火星和地球到太阳的距离之比 D .火星和地球绕太阳运动速度之比 2.宇航员在探测某星球时,发现该星球均匀带电,且电性为负,电荷量为Q .在一次实验时,宇航员将一带负电q (q <

天体运动中重要的模型:公转、自转、天体的追及相遇问题

【例1】 火星的半径约为地球半径的一半,火星的质量约为地球质量的1/9。地球上质量为50kg的人,如果到火星去,他的质量和重力分别是( ) A.50kg 500N B.50kg 222N C.25kg 500N D.25kg 222N 【例2】 月球质量是地球质量的1/81,月球的半径是地球半径的1/4。月球上空高500m处有一质量为60kg的物体自由下落。它落到月球表面所需要的时间是多少? 【例3】 宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处。已知该星球的半径与地球半径之比为R星∶R地=1∶4,地球表面重力加速度为g,设该星球表面附近的重力加速度为g′,空气阻力不计。则( ) A.g′∶g=5∶1 B.g′∶g=5∶2 C.M星∶M地=1∶20 D.M星∶M地=1∶80 【例4】 一位善于思考的同学,为探月宇航员估算环绕月球做匀速圆周运动的卫星的最小周期想出了一种方法:在月球表面以初速度v0竖直上抛一个物体,若物体只受月球引力作用,忽略其他力的影响,物体上升的最大高度为h,已知该月球的直径为d,卫星绕月球做圆周运动的最小周期为( ) A B C D

【例5】 某一颗星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h 处平抛一物体, 水平射程为60m ,如果在该星球上,从相同高度以相同的初速度平抛同一物体,那么其水平射程应为 ( ) A .10m B .15m C .90m D .360m 【例6】 火星的质量和半径分别约为地球的1/10和1/2,地球表面的重力加速度为g ,则火星表面的重力加速度约为( ) A .0.2g B .0.4 g C .2.5g D .5g 【例7】 万有引力定律和库仑定律都遵循平方反比律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比。例如电场中反映各点电场强弱的物理量是电场强度,其定义式为E =F /q ,在引力场中可以有一个类似的物理量来反映各点引力场的强弱,设地球质量为M ,半径为R ,地球表面处的重力加速度为g ,引力常量为G ,如果一个质量为m 的物体位于距离地心2R 处的某点,则下列表达式中能反映该点引力场强弱的是( ) A .2M G R B .2g C .2(2)Mm G R D . 4g 三颗卫星 【例8】 已知地球赤道上的物体随地球自转的线速度大小为v 1、向心加速度大小为a 1,近地卫星线速度大小为v 2、向心加速度大小为a 2,地球同步卫星线速度大小为v 3、向心加速度大小为a 3。设近地卫星距地面高度不计,同步卫星距地面高度约为地球半径的6倍。则以下结论正确的是( ) A . 23v v = B . 231 7 v v = C . 131 7 a a = D . 13491 a a = 【例9】 如图所示,a 为地球赤道上的物体;b 为沿地球表面附近做匀速圆周运动的人造卫星;c 为地球同步卫星。关于a 、b 、c 做匀速圆周运动的说法中正确的是( ) A .角速度的大小关系为a c b ωωω=> B .向心加速度的大小关系为a b c a a a >> C .线速度的大小关系为a b c v v v => D .周期关系为a c b T T T => 同步卫星

天体运动高考真题(高考复习一遍过)

天 体运动 1.(2017·北京理综)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期 C .月球绕地球做圆周运动的周期及月球与地球间的距离 D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 D 本题考查天体运动.已知地球半径R 和重力加速度g ,则mg =G M 地m R 2, 所以M 地=gR 2G ,可求M 地;近地卫星做圆周运动,G M 地m R 2=m v 2R ,T =2πR v ,可解 得M 地=v 2R G =v 2T 2πG ,已知v 、T 可求M 地;对于月球:G M 地·m r 2=m 4π2 T 2月r ,则M 地=4π2r 3 GT 2月 ,已知r 、T 月可求M 地;同理,对地球绕太阳的圆周运动,只可求出太阳质量M 太,故此题符合题意的选项是D 项. 2.(多选)2016年4月6日1时38分,我国首颗微 重力科学实验卫星——实践十号返回式科学实验卫星, 在酒泉卫星发射中心由长征二号丁运载火箭发射升空, 进入近百万米预定轨道,开始了为期15天的太空之旅, 大约能围绕地球转200圈,如图所示.实践十号卫星的 微重力水平可达到地球表面重力的10-6g ,实践十号将在太空中完成19项微重力科学和空间生命科学实验,力争取得重大科学成果.以下关于实践十号卫星的相关描述中正确的有( ) A .实践十号卫星在地球同步轨道上 B .实践十号卫星的环绕速度一定小于第一宇宙速度 C .在实践十号卫星内进行的19项科学实验都是在完全失重状态下完成的 D .实践十号卫星运行中因受微薄空气阻力,需定期点火加速调整轨道 BD 实践十号卫星的周期T =15×24200 h =1.8 h ,不是地球同步卫星,所以

高考物理天体运动公式归纳

高考物理天体运动公式归纳 高考物理天体运动公式 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2; ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地 +h)/T2{h&asymp;36000km,h:距地球表面的高度,r地:地球的半径} 强调:(1)天体运动所需的向心力由万有引力提供,F向=F 万;(2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高考物理分子动理论、能量守恒定律公式 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥&asymp;0,F分子力&asymp;0,E分子势能&asymp;0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册 P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来

【选择题专练】2015高考物理大一轮复习专题系列卷 万有引力定律 天体运动

选择题专练卷(四) 万有引力定律 天体运动 一、单项选择题 1.(2014·潍坊模拟)截止到2011年9月,欧洲天文学家已在太阳系外发现50余颗新行星,其中有一颗行星,其半径是地球半径的1.2倍,其平均密度是地球0.8倍。经观测发现:该行星有两颗卫星a 和b ,它们绕该行星的轨道近似为圆周,周期分别为9天5小时和15天12小时,则下列判断正确的是( ) A .该行星表面的重力加速度大于9.8 m/s 2 B .该行星的第一宇宙速度大于7.9 km/s C .卫星a 的线速度小于卫星b 的线速度 D .卫星a 的向心加速度小于卫星b 的向心加速度 2.一位同学为了测算卫星在月球表面附近做匀速圆周运动的环绕速度,提出了如下实验方案:在月球表面以初速度v 0竖直上抛一个物体,测出物体上升的最大高度h ,已知月球的半径为R ,便可测算出绕月卫星的环绕速度。按这位同学的方案,绕月卫星的环绕速度为 ( ) A .v 0 2h R B .v 0h 2R C .v 02R h D .v 0 R 2h 3.(2014·皖南八校联考)2012年6月24日,航天员刘旺手动控制“神舟九号”飞船完成与“天宫一号”的交会对接,形成组合体绕地球圆周运动,速率为v 0,轨道高度为340 km 。“神舟九号”飞船连同三位宇航员的总质量为m ,而测控通信由两颗在地球同步轨道运行的“天链一号”中继卫星、陆基测控站、测量船,以及北京飞控中心完成。下列描述错误的是 ( ) A .组合体圆周运动的周期约1.5 h B .组合体圆周运动的线速度约7.8 km/s C .组合体圆周运动的角速度比“天链一号”中继卫星的角速度大 D .发射“神舟九号”飞船所需能量是12m v 20 4.“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成。地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法中正确的是( ) A .静止轨道卫星的周期约为中轨道卫星的2倍 B .静止轨道卫星的线速度大小约为中轨道卫星的2倍 C .静止轨道卫星的角速度大小约为中轨道卫星的1/7

高中物理天体运动多星问题 (2)

双星模型、三星模型、四星模型 天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万 有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银 r ,1、 持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。 解析:双星绕两者连线上某点做匀速圆周运动,即: 22 21212 21L M L M L M M G ωω==---------? ..L L L =+21-------?由以上两式可得:L M M M L 2121+= ,L M M M L 2 12 2+= 又由1 2212214L T M L M M G π=.----------?得:) (221M M G L L T +=

【例题3】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两 星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为(D ) A .2 12)(4GT r r r -2π B .2 312π4GT r C .2 32π4GT r D .2 122π4GT r r 答案:D , 球A 引球看成似处理 这样算得的运行周期T 。已知地球和月球的质量分别为且A 对A 根据牛顿第二定律和万有引力定律得L m M T m L +=22)( 化简得) (23 m M G L T +=π ⑵将地月看成双星,由⑴得) (23 1m M G L T +=π 将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得 L T m L GMm 2 2 )2(π= 化简得GM L T 3 22π=

第四章 专题突破 天体运动中常考易错的“三个命题点”.doc

专题突破 天体运动中常考易错的“三个命题点” 同步卫星的运动规律 考向1 同步卫星的运动特点 【例1】 “静止”在赤道上空的地球同步气象卫星把广阔视野内的气象数据发回地面,为天气预报提供准确、全面和及时的气象资料。设地球同步卫星的轨道半径是地球半径的n 倍,下列说法正确的是( ) A.同步卫星的运行速度是第一宇宙速度的1n B.同步卫星的运行速度是地球赤道上物体随地球自转获得速度的1n C.同步卫星的运行速度是第一宇宙速度的1 n D.同步卫星的向心加速度是地球表面重力加速度的 1 n 解析 同步卫星绕地球做匀速圆周运动,由万有引力提供向心力,则G Mm r 2=ma n =m v 2r =mω2r =m 4π2T 2r ,得同步卫星的运行速度v = GM r ,又第一宇宙速度v 1=GM R ,所以v v 1=R r =1n ,故选项A 错误,C 正确;a n =GM r 2,g =GM R 2,

所以a g =R 2r 2=1n 2,故选项D 错误;同步卫星与地球自转的角速度相同,v =ωr , v 自=ωR ,所以v v 自 =r R =n ,故选项B 错误。 答案 C 考向2 同步卫星与其他卫星运动物理量的比较 【例2】 (2019·名师原创预测)我国首颗极地观测小卫星是我国高校首次面向全球变化研究、特别是极地气候与环境监测需求所研制的遥感科学实验小卫星。假如该卫星飞过两极上空,其轨道平面与赤道平面垂直,已知该卫星从北纬15°的正上方,按图示方向第一次运行到南纬15°的正上方时所用时间为1 h ,则下列说法正确的是( ) 图1 A.该卫星与同步卫星的轨道半径之比为1∶4 B.该卫星的运行速度一定大于第一宇宙速度 C.该卫星与同步卫星的加速度之比为316∶1 D.该卫星在轨道上运行的机械能一定小于同步卫星在轨道上运行的机械能 解析 该卫星从北纬15°运行到南纬15°时,转动的角度为30°,则可知卫星的周期为12小时,而同步卫星的周期为24小时,设卫星和同步卫星的轨道半径分别 为r 1、r 2,根据开普勒第三定律有r 31T 21=r 32T 22,可得r 1r 2 =314,故A 错误;第一宇宙速度是最大环绕速度,所以该卫星的运行速度不大于第一宇宙速度,故B 错误; 根据a =(2πT )2r ,知a 1a 2=r 1r 2·T 22T 21 =316,故C 正确;由于不知道该卫星与同步卫星的质量关系,所以无法判断机械能的大小,D 错误。 答案 C

相关文档
最新文档