步步高2015大二轮数学第四篇 高考中档大题规范练(四)
【步步高】2015届高考数学(理科,全国通用)二轮专题配套word版练习: 立体几何]
![【步步高】2015届高考数学(理科,全国通用)二轮专题配套word版练习: 立体几何]](https://img.taocdn.com/s3/m/66ebc56dcaaedd3383c4d378.png)
立体几何1.一个物体的三视图的排列规则是俯视图放在正(主)视图下面,长度与正(主)视图一样,侧(左)视图放在正(主)视图右面,高度与正(主)视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.在画一个物体的三视图时,一定注意实线与虚线要分明.[问题1] 如图,若一个几何体的正(主)视图、侧(左)视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________. 答案 432.在斜二测画法中,要确定关键点及关键线段.“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半.”[问题2] 如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________. 答案 2 23.简单几何体的表面积和体积(1)S 直棱柱侧=c ·h (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式 S 圆柱侧=2πrl (r 为底面半径,l 为母线), S 圆锥侧=πrl (同上),S 圆台侧=π(r ′+r )l (r ′、r 分别为上、下底的半径,l 为母线). (5)体积公式V 柱=S ·h (S 为底面面积,h 为高), V 锥=13S ·h (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S 、S ′为上、下底面面积,h 为高).(6)球的表面积和体积 S 球=4πR 2,V 球=43πR 3.[问题3] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( ) A .4π B .3π C .2π D.32π 答案 D4.空间直线的位置关系:①相交直线——有且只有一个公共点.②平行直线——在同一平面内,没有公共点.③异面直线——不在同一平面内,也没有公共点.[问题4] 在空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系是________. 答案 相交5.空间直线与平面、平面与平面的位置关系 (1)直线与平面①位置关系:平行、直线在平面内、直线与平面相交. ②直线与平面平行的判定定理和性质定理:判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.③直线与平面垂直的判定定理和性质定理:判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 性质定理:垂直于同一个平面的两条直线平行. (2)平面与平面①位置关系:平行、相交(垂直是相交的一种特殊情况). ②平面与平面平行的判定定理和性质定理:判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. ③平面与平面垂直的判定定理和性质定理:判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.[问题5] 已知b ,c 是平面α内的两条直线,则“直线a ⊥α”是“直线a ⊥b ,直线a ⊥c ”的________条件. 答案 充分不必要 6.空间向量(1)用空间向量求角的方法步骤①异面直线所成的角若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ,则cos θ=|cos 〈v 1,v 2〉|. ②直线和平面所成的角利用空间向量求直线与平面所成的角,可以有两种方法:方法一 分别求出斜线和它在平面内的射影直线的方向向量,转化为求两条直线的方向向量的夹角(或其补角).方法二 通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. ③利用空间向量求二面角也有两种方法:方法一 分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小.方法二 通过平面的法向量来求,设二面角的两个面的法向量分别为n 1和n 2,则二面角的大小等于〈n 1,n 2〉(或π-〈n 1,n 2〉).易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,容易误以为是线面角的余弦.②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. (2)用空间向量求A 到平面α的距离: 可表示为d =|n ·AB →||n |.[问题6] (1)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于________.(2)正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________. 答案 (1)64 (2)24解析 (1)方法一 取A 1C 1的中点E ,连接AE ,B 1E ,如图. 由题意知B 1E ⊥平面ACC 1A 1,则∠B 1AE 为AB 1与侧面ACC 1A 1所成的角. 设正三棱柱侧棱长与底面边长为1, 则sin ∠B 1AE =B 1E AB 1=322=64.方法二 如图,以A 1C 1中点E 为原点建立空间直角坐标系E -xyz ,设棱长为1,则A ⎝⎛⎭⎫12,0,1,B 1⎝⎛⎭⎫0,32,0, 设AB 1与平面ACC 1A 1所成的角为θ,EB 1→为平面ACC 1A 1的法向量. 则sin θ=|cos 〈AB 1→,EB 1→〉|=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫-12,32,-1·⎝⎛⎭⎫0,32,02×32=64. (2)建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O ⎝⎛⎭⎫12,12,1. 设平面ABC 1D 1的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AB →=0,n ·AD 1→=0,∴⎩⎪⎨⎪⎧y =0,-x +z =0.令z =1,得⎩⎪⎨⎪⎧x =1,y =0,∴n =(1,0,1),又OD 1→=⎝⎛⎭⎫-12,-12,0, ∴O 到平面ABC 1D 1的距离d =|n ·OD 1→||n |=122=24.易错点1 三视图认识不清致误例1 一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80错解 由三视图知,该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4,宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是正方形,边长为4. 所以表面积S =42×3+2×4+2×12(2+4)×4=48+8+24=80.找准失分点 不能准确把握三视图和几何体之间的数量关系,根据正视图可知,侧视图中等腰梯形的高为4,而错认为等腰梯形的腰为4.正解 由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12 =17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.答案 C易错点2 对几何概念理解不透致误例2 给出下列四个命题:①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱; ②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③底面是平行四边形的四棱柱是平行六面体; ④底面是矩形的平行六面体是长方体.其中正确的命题是__________(写出所有正确命题的序号). 错解1 ①②③ 错解2 ②③④找准失分点 ①是错误的,因为棱柱的侧棱要都平行且相等;④是错误的,因为长方体的侧棱必须与底面垂直. 正解 ②③易错点3 对线面关系定理条件把握不准致误例3 已知m 、n 是不同的直线,α、β、γ是不同的平面.给出下列命题: ①若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α,或n ⊥β; ②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α,且n ∥β; ⑤若m 、n 为异面直线,则存在平面α过m 且使n ⊥α. 其中正确的命题序号是________. 错解 ②③④⑤找准失分点③是错误的;⑤是错误的.正解①是错误的.如正方体中面ABB′A′⊥面ADD′A′,交线为AA′.直线AC⊥AA′,但AC不垂直面ABB′A′,同时AC也不垂直面ADD′A′.②正确.实质上是两平面平行的性质定理.③是错误的.在上面的正方体中,A′C不垂直于平面A′B′C′D′,但与B′D′垂直.这样A′C就垂直于平面A′B′C′D′内与直线B′D′平行的无数条直线.④正确.利用线面平行的判定定理即可.⑤错误.从结论考虑,若n⊥α且m⊂α,则必有m⊥n,事实上,条件并不能保证m⊥n.故错误.答案②④1.已知三条不同直线m,n,l与三个不同平面α,β,γ,有下列命题:①若m∥α,n∥α,则m∥n;②若α∥β,l⊂α,则l∥β;③α⊥γ,β⊥γ,则α∥β;④若m,n为异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β.其中正确命题的个数是()A.0 B.1 C.2 D.3答案 C解析因为平行于同一平面的两条直线除了平行,还可能相交或成异面直线,所以命题①错误;由直线与平面平行的定义知命题②正确;由于垂直于同一个平面的两个平面可能平行还可能相交,因此命题③错误;过两条异面直线分别作平面互相平行,这两个平面是唯一存在的,因此命题④正确.故选C.2.设m,n是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是()A.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件答案 A解析当m⊂α时,若n∥α可得m∥n或m,n异面;若m∥n可得n∥α或n⊂α,所以“n∥α”是“m∥n”的既不充分也不必要条件,答案选A.3.一个几何体的三视图如图所示,则该几何体的体积是()A .64B .72C .80D .112答案 B解析 根据三视图,该几何体为下面是一个立方体、上面两个三棱锥,所以V =4×4×4+2×13×(12·4·2)×3=72,故选B.4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是( ) A .① B .② C .③ D .④ 答案 C解析 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图所示中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.5.一个几何体的三视图如图所示,则该几何体的表面积为( )A .2+ 2B .3+ 2C .1+2 2D .5答案 A解析 由三视图可知,该几何体是一个四棱锥,如图所示. 该几何体的底面是边长为1的正方形,故S 1=12=1. 侧棱P A ⊥面ABCD ,且P A =1, 故S △P AB =S △P AD =12×1×1=12,而PD ⊥DC ,CB ⊥PB ,且PB =PD =2, 所以S △PBC =S △PDC =12×2×1=22.所以该几何体的表面积为S =1+2×12+2×22=2+ 2.故选A.6.如图,已知六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( ) A .PB ⊥ADB .平面P AB ⊥平面PBC C .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45° 答案 D解析 若PB ⊥AD ,则AD ⊥AB ,但AD 与AB 成60°角,A 错误;平面P AB 与平面ABD 垂直,所以平面P AB 一定不与平面PBC 垂直,B 错误;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,C 错误;直线PD 与平面ABC 所成角为∠PDA ,在Rt △P AD 中,AD =P A , ∴∠PDA =45°,D 正确.7.对于四面体ABCD ,给出下列四个命题: ①若AB =AC ,BD =CD ,则BC ⊥AD ; ②若AB =CD ,AC =BD ,则BC ⊥AD ; ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD .其中正确的是________.(填序号) 答案 ①④解析 取线段BC 的中点E ,连接AE ,DE , ∵AB =AC ,BD =CD , ∴BC ⊥AE ,BC ⊥DE , ∴BC ⊥平面ADE , ∵AD ⊂平面ADE , ∴BC ⊥AD ,故①正确.设点O 为点A 在平面BCD 上的射影, 连接OB ,OC ,OD , ∵AB ⊥CD ,AC ⊥BD , ∴OB ⊥CD ,OC ⊥BD , ∴点O 为△BCD 的垂心, ∴OD ⊥BC ,∴BC ⊥AD ,故④正确,易知②③不正确,填①④.8.如图,四面体ABCD 中,AB =1,AD =23,BC =3,CD =2,∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为________.答案 π3解析 由∠ABC =∠DCB =π2知,BA →与CD →的夹角θ就是二面角A -BC -D 的平面角. 又AD →=AB →+BC →+CD →,∴AD →2=(AB →+BC →+CD →)2 =AB →2+BC 2→+CD →2+2AB →·CD →.因此2AB →·CD →=(23)2-12-32-22=-2, ∴cos(π-θ)=-12,且0<π-θ<π,则π-θ=23π,故θ=π3.9.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β. 其中为真命题的是________.(填序号) 答案 ①④解析 对命题①,则l ⊥α,α∥β得,l ⊥β,m ⊂β,∴l⊥m,故①正确.对命题②,l⊥mD⇒/l⊥β,则l⊥mD⇒/α∥β,故②错误.对命题③,当α⊥β时,l与m也可能相交或异面或平行,故③错误.对命题④,由l⊥α,l∥m得m⊥α,又m⊂β,∴α⊥β,故④正确.10.三棱锥D-ABC及其三视图中的正(主)视图和侧(左)视图如图所示,则棱BD的长为________.答案4 2解析由正(主)视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=2;由侧(左)视图知CD=4,BE=23,在Rt△BCE中,BC=BE2+EC2=(23)2+22=4,在Rt△BCD中,BD=BC2+CD2=42+42=4 2.故答案为4 2.。
2015届高考数学(文科,通用)二轮复习突破练 高考中档大题规范练(四) Word版含答案

高考中档大题规范练(四)——概率与统计(推荐时间:70分钟)1.(2014·湖南)某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 解 (1)甲组研发新产品的成绩为 1,1,1,0,0,1,1,1,0,1,0,1,1,0,1, 其平均数为x 甲=1015=23;方差为s 2甲=115⎣⎡⎦⎤⎝⎛⎭⎫1-232×10+⎝⎛⎭⎫0-232×5=29. 乙组研发新产品的成绩为 1,0,1,1,0,1,1,0,1,0,0,1,0,1,1, 其平均数为x 乙=915=35;方差为s 2乙=115⎣⎡⎦⎤⎝⎛⎭⎫1-352×9+⎝⎛⎭⎫0-352×6=625. 因为x 甲>x 乙,s 2甲<s 2乙,所以甲组的研发水平优于乙组. (2)记事件E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b )共7个. 故事件E 发生的频率为715.将频率视为概率,则得所求概率为P (E )=715.即恰有一组研发成功的概率为715.2.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.(1)求点P (x ,y )在直线y =x -2上的概率; (2)求点P (x ,y )满足y 2<2x 的概率. 解 每枚骰子出现的点数都有6种情况, 所以基本事件总数为6×6=36(个).(1)记“点P (x ,y )在直线y =x -2上”为事件A , 则事件A 有4个基本事件:(3,1),(4,2),(5,3),(6,4), 所以P (A )=436=19.(2)记“点P (x ,y )满足y 2<2x ”为事件B ,则事件B 有12个基本事件:(1,1),(2,1),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3), 所以P (B )=1236=13.3.有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取得的两个球颜色相同的概率; (2)求取得的两个球颜色不相同的概率. 解 从六个球中取出两个球的基本事件有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共计15个基本事件.(1)记事件A 为“取出的两个球是白球”,则这个事件包含的基本事件的是(1,2),(1,3),(2,3),共计3个基本事件,故P (A )=315=15.记事件B 为“取出的两个球是黑球”,同理可得P (B )=15.记事件C 为“取出的两个球的颜色相同”,则C =A +B ,且A ,B 互斥,根据互斥事件的概率加法公式,得P (C )=P (A +B )=P (A )+P (B )=25.(2)记事件D 为“取出的两个球的颜色不相同”,则事件C ,D 互斥,根据互斥事件概率之间的关系,得P (D )=1-P (C )=1-25=35.4.(2014·辽宁)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:P (2≥k ) 解 (1)将2×22=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(60×10-20×10)270×30×80×20=10021≈4.762. 因为4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}.其中a i 表示喜欢甜品的学生,i =1,2;b j 表示不喜欢甜品的学生,j =1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则事件A ={(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}. 事件A 是由7个基本事件组成,因而P (A )=710.5.某商场为吸引顾客消费,推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O 为圆心,且标有20元,10元,0元的三部分区域面积相等.假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券.顾客甲和乙都到商场进行了消费,并按照规则参与了活动.(1)若顾客甲消费了128元,求他获得的优惠券金额大于0元的概率; (2)若顾客乙消费了280元,求他总共获得的优惠券金额不低于20元的概率. 解 (1)设“甲获得的优惠券金额大于0元”为事件A .因为指针停在任一位置都是等可能的,而题中所给的三部分区域的面积相等, 所以指针停在20元,10元,0元区域内的概率都是13.根据互斥事件的概率,有P (A )=13+13=23,所以“顾客甲获得的优惠券金额大于0元”的概率是23.(2)设“乙获得的优惠券金额不低于20元”为事件B .因为顾客乙转动转盘两次,设乙第一次转动转盘获得优惠券的金额为x 元,第二次获得优惠券的金额为y 元,则基本事件空间可以表示为Ω={(20,20),(20,10),(20,0),(10,20),(10,10),(10,0),(0,20),(0,10),(0,0)},即Ω中含有9个基本事件, 每个基本事件发生的概率都为19.而乙获得的优惠券金额不低于20元,是指x +y ≥20, 所以事件B 中包含的基本事件有6个. 所以乙获得的优惠券金额不低于20元的概率为 P (B )=69=23.6.已知关于x 的一元二次方程9x 2+6ax -b 2+4=0,a ,b ∈R .(1)若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求已知方程有两个不相等实根的概率;(2)若a 是从区间[0,3]内任取的一个数,b 是从区间[0,2]内任取的一个数,求已知方程有实数根的概率.解 设事件A 为“方程9x 2+6ax -b 2+4=0有两个不相等的实数根”;事件B 为“方程9x 2+6ax -b 2+4=0有实数根”.(1)由题意,知基本事件共9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值. 由Δ=36a 2-36(-b 2+4)=36a 2+36b 2-36×4>0, 得a 2+b 2>4.事件A 要求a ,b 满足条件a 2+b 2>4,可知包含6个基本事件,即(1,2),(2,1),(2,2),(3,0),(3,1),(3,2),则事件A 发生的概率为P (A )=69=23.(2)a ,b 的取值所构成的区域如图所示,其中0≤a ≤3,0≤b ≤2.构成事件B 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a 2+b 2≥4}(如图中阴影部分), 则所求的概率为P (B )=2×3-14×π×222×3=1-π6.。
【步步高】(广东专用)2015届高考数学二轮复习专.

第1讲排列.组合与二项式定理2•排列、组合、两个计数原理往往通过实际问 题进行综合考查,一般以选择、填空题的形式 出现,难度中等,还经常与概率问题相结合, 出现在解答题的第一或第二个小题中,难度也 为中等;对于二项式定理的考查,主要出现在 选择题或填空题中,难度为易或中等.考情解读 1 •高考中对两个计数原理、排考情解手学2F知识梳理1 •分类加法计数原理和分步乘法计数原理如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘.2 •排列与组合⑴排列:从光个不同元素中取出个元素,按照一定的顺序排成一列,叫做从死个不同元素中取出加个元素的一个排歹•从〃个不同元素中取出加个元素的排列数公式是A = n{n - 1)(〃-2)…(〃+ 1)或写成n\(2)组合:从死个不同元素中取出个元素组成一组,叫做从死个不同元素中取出加个元素的一个组 合•从〃个不同元素中取出加个元素的组合数公式是 咆d ・g+l )或号成r -5 -」 /与秋5-应!(…)! • ⑶组合数的性质①etc ;严;②c^^c+cr 1. 3•二项式定理⑴二项式定理:(a + b)" = C%"沪 + C\a n ~lb + C%"叫2 + ••• + Gfl"~r b r + ••• + C"^b'\r = 0,1^, •••, n). (2)二项展开式的通项Tr +i = W, r = 0,U, •», n,其中 C ;叫做二项 式系数.11m\_ 亠and)二项式系数的性质①对称性:与首末两端“等距离”两项的二项式系数相等cm即eg, cjzzcr1,②最大值:当"为偶数时,中间的一项的二项式系数&取得最大值;当«为奇数时,中间的两项的二项式系数C二卅1C]相等,且同时取得最大值.+ 1 + •••③各二项◎丽分类突破>热点一两个计数原理>热点二排列与组合>热点三二项式定理两个例1 (1)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大•当思维启迪先3,4固定在图中的位置时,填写空格的方法为(A.6 种B.12 种C.18 种D.24 种—•O * "E解析•• •每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填后与之相邻的空格可填6,7,8任一个;余下两个数字按从小到大只有一种方法.共有2X3=6种结果,故选A・答案A⑵如果一个三位正整数“a“J满足如<^且如《2,则称这样的三位数为凸数(如120,343,275), 那么所有凸A.240B.204C.729D.920 思维启迪按中间数进行分类.解析分8类,当中间数为2时,有1X2=2种;当中间数为3时,有2X3=6种;当中间数为4时,有3X4 = 12 种;当中间数为5时,有4X5=20 种;当中间数为6时,有5X6=30 种;当中间数为7时,有6X7=42 种;(1)在应用分类加法计数原理和分步乘法计数原理 时,一般先分类再分步,每一步当中又可能用到!■ 分类加法计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当i 玄加练1选出2名男医生、1名女医生组成一个医疗小组,则 不同的选法共有()A.60 种B.70 种C.75 种D.150 种 思或表(1)(201)有6名男医生、5名女医生,从中列出示意足这样条件的函数的个数为(A.8B.9C.26D.27ln(x 2+l)=l=»x=±A/e —1,ln(x 2+l)=2=>x=±\t 2--l,所以定义域取值即在这5个元素中选取,②当定义域中有4个元素时,C ;C]=4,③当定义域中有5个元素时,有一种情况. 所以共有4+4+1=9(个)这样的函数. 答案B数/仗2111(2 + 1)的值域为{0,1,2},则满 ①当定义域中有3个元素C ;C ;Cj=4, 解析I软诫汇排列与组合例2 (1)(2014 •重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168思维启迪将不能相邻的节目插空安排;—廿•: GW q「IT •解卞先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1, 小品2,相声” “小品1,相声,小品2”和“相声, 小品1,小品2"・对于第一种情况,形式为“□小品1歌舞1小品2口相声丁 ,有A;CjA;=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“口小品1□相声□小品2□” ,有A圖=48(种)安排方法,故共有36+36+48=120(种)安排方法.答案B其中“1=(), “5 = 2, “]2 = 5,且%+ 1-加=1,R = l,2,3,…,11,则满足这种条件的不同数列的个数为(A.84B.168C.76D.152思维启迪⑵数列V\a k+x—a^ = l, jt = 1,2,3, (11)前一项总比后一项大1或小1,如到色中4个变化必然有3升1减,到如2中必然有5升2减,是组合的问题,AC1XC?=84. 答案A解排列、组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素.⑵以位置为主体,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.变式训练2(1)在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序〃和C实施时必须相邻,则实验顺序的编排方法共有()A.24 种C.96 种B.48 种D.144 种首先安排4有2种方法;第二步在剩余的5个位置选取相邻的两个排C, 有4种排法,而C位置互换有2种方法;第三步安排剩余的3个程序,有&种排法, 共有2X4X2XA;=96(种).答案C(2)从0,1,23,4中任取四个数字组成无重复数字的四位数,其中偶数的个数________ (用数字作答).且为0,1,2,3,4中任取四个数字组成无重复数字的四位一是当0在个位的四位偶数有A;=24(个);二是当0不在个位时,先从2,4中选一个放在个位,再从余下的三个数选一个放在首位,应有A]A提=36(个),故共有四位偶数60个.丰热点三二项式定理例3 (1)在(a+x)7展开式中『的系数为35,则实数a的值为 _____ •思维启迪利用通项公式求常数项;解析通项公式:77+i=C"-匕所以展开式中J的系数为C制=35,解得尸1・P)如果(1 +X +Z)(x 一“)5(“为实常数)的展开式中所有项 的系数和为0,则展开式中含0项的系数为—_・思维启迪可用赋值法求二项展开式所有项的系数和. 解析•・・令兀=1得(1+x +x 2)(x 一“)啲展开式中所有项 的系数和为(1 + 1 + 12)(1-«)5=0, •I “ = 1, (1 +x +x 2)(x —a)5=(1 +x +x 2)(x — l)5= (Z —1)仗一1)4=兀3仗一1)4一仗一1)4, 其展开式中含『项的系数为d(-l)3-C ;(-l)°=-5.(1)在应用通项公式时,要注意以下几点:① 它表示二项展开式的任意项,只要死与厂确定, 该项就随之确定;② 7;+】是展开式中的第厂+1项,而不是第厂项; ③ 公式中,方的指数和为nRa, 〃不能随便颠 倒位置;思维升4④ 对二项式(a-by 展开式的通项公式要特别注意符号问题.(2) 在二项式定理的应用中,“赋值思想”是一 种重要方法,是处理组合数问题、系数问题的 经典方法. 变式训练3(1)(2014•湖北诺二项式(2工+了的展开式中]的系数 是84,则实数a 等于()A.2思维升尹叱5»r二项式(2x+-)7的展开式的通项公式为T;+1 = G(2Q7 丁白JC 旷处7巳令7—2r=—3,得厂=5・故展开式中Z的系数是C?2V=84,解得a=l.X答案C—<«>/*«J r n(2)(2014-浙江)在(1 +x)6(l +刃4的展开式中,记严尸项的系数为几n, n),贝IJ/(3,O) +/(2,1) +/(1,2) + 力0,3)等于(。
2015步步高理科数学中档题目强化练——概率与统计

A.41
B.17290
C.34
D.2234
解析 基本事件的总数是 C310,在三种门票中各自选取一张 的方法是 C15C13C12, 故随机事件“选取的 3 张中价格互不相同”的概率是 C15CC31310C12=5×132×0 2=14, 故其对立事件“选取的 3 张中至少有 2 张价格相同”的概 率是 1-14=34.
都是 p(0<p<1),假设每位同学能否通过测试是相互独立的,
则至少有一位同学能通过测试的概率为
(D )
A.(1-p)n
B.1-pn C.pn
D.1-(1-p)n
解析 显然 n 位同学参加某项选拔测试可看做 n 次独立重复试 验,其中没有一位同学能通过测试的概率为(1-p)n,故至少有 一位同学能通过测试的概率为 1-(1-p)n.
1
2
3
4
5
6
7
8
9 10
9.已知集合 A={x|x2+3x-4<0},B=xxx+ -24
<0.
(1)在区间(-4,5)上任取一个实数 x,求“x∈A∩B”的概率;
(2)设(a,b)为有序实数对,其中 a,b 分别是集合 A,B 中任
取的一个整数,求“a-b∈A∪B”的概率.
解 (1)由已知得 A={x|x2+3x-4<0} ={x|-4<x<1},
B组 专项能力提升
1
2
3
4
5
3.某人随机地将编号为 1,2,3,4 的四个小球放入编号为 1,2,3,4 的四 个盒子中,每个盒子中放一个小球,球的编号与盒子的编号相同 时叫做放对了,否则就叫放错了.设放对的个数为 ξ,则 ξ 的期
高考数学(文)自由复习步步高系列04(解析版).doc

【课本内容再回顾——查缺补漏】回顾一:三角函数的图象与性质1. 三角函数定义、同角关系与诱导公式(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x.各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. (2)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(3)诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.2. 三角函数的图象及常用性质函数 y =sin x y =cos x y =tan x图象单调性在[-π2+2k π,π2+2k π](k ∈Z )上单调递增;在[π2+2k π,3π2+2kπ](k ∈Z )上单调递减 在[-π+2k π,2k π](k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在(-π2+k π,π2+k π)(k ∈Z )上单调递增对称性对称中心:(k π,0)(k ∈Z );对称轴:x =π2+k π(k ∈Z )对称中心:(π2+k π,0)(k ∈Z );对称轴:x =k π(k ∈Z )对称中心:(k π2,0)(k ∈Z )3.回顾二:三角变换与解三角形1. 两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.2. 二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α. 3. 三角恒等式的证明方法(1)从等式的一边推导变形到另一边,一般是化繁为简. (2)等式的两边同时变形为同一个式子. (3)将式子变形后再证明. 4. 正弦定理a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c2R.a ∶b ∶c =sin A ∶sin B ∶sin C .5. 余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .6. 面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7. 解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.回顾三:平面向量1. 平面向量中的五个基本概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0. (2)长度等于1个单位长度的向量叫单位向量,a 的单位向量为a|a |.(3)方向相同或相反的向量叫共线向量(平行向量).(4)如果直线l 的斜率为k ,则a =(1,k )是直线l 的一个方向向量. (5)向量的投影:|b |cos 〈a ,b 〉叫做向量b 在向量a 方向上的投影. 2. 平面向量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一一个实数λ,使b =λa .(2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底. 3. 平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则: (1)a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0.(2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 4. 平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=x 2-x 12+y 2-y 12.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 【热点知识再梳理——胸有成竹】热点一:三角函数y =A sin(ωx +φ)的图象及解析式【典例】将函数sin 3y x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的解析式是( ) A.1sin2y x = B.1sin 22y x π⎛⎫=- ⎪⎝⎭ C.1sin 26y x π⎛⎫=- ⎪⎝⎭ D.sin 26y x π⎛⎫=- ⎪⎝⎭【题型概述】该类题主要包括三角函数的图象和变换以及已知图象确定解析式两种题型,已知图象求解析式这类型题的解决方法一般为利用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置;函数的图象变换这类型题,务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向. 【跟踪练习】函数)2||,0,0)(sin(πϕωϕω<>>+=A x A y 的部分图象如图所示,则该函数的解析式是( )热点二:三角函数的性质【典例】已知向量1(cos ,),(3sin ,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求()f x 的最小正周期.(Ⅱ) 求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型概述】该类型题目主要考察三角函数的图象和性质,首先应恒等变形为()y Asin x ωϕ=+,且将ω化为正,这样可求周期2T πω=,将ωx +φ看成一个整体,利用复合函数的单调性求单调区间,利用三角函数的图象求值域以及对称问题等.【跟踪练习】已知函数()2sin (sin cos )f x x x x =+. (Ⅰ)求()f x 的最小正周期; (Ⅱ)当[0,]2x π∈时,求()f x 的最大值.热点三:三角函数与三角形问题的结合【典例】已知函数2()sin(2)2cos 1()6f x x x x R π=-+-∈.(1)求()f x 的单调递增区间;(2)在ABC ∆中,三内角,,A B C 的对边分别为,,a b c ,已知1()2f A =,2a b c =+,18bc =.求a 的值.【题型概述】该类题型将三角函数的图象和性质与正弦定理融合到一起,其解法往往是,既然是三角形问题,就会用到三角形内角和定理和正、余弦定理以及相关三角形理论,及时边角转换,可以帮助发现问题解决思路;同时它也是一种三角变换,只不过角的范围缩小了,因此常见的三角变换方法和原则都是适用的.【跟踪练习】已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<,x ∈R 的最大值是1,最小正周期是2π,其图像经过点(0,1)M . (1)求()f x 的解析式;(2)设A 、B 、C 为△ABC 的三个内角,且3()5f A =,5()13f B =,求()f C 的值.热点四:三角变换、向量、三角形问题的综合【典例】已知向量(cos ,sin )A A =-m ,(cos ,sin )B B =n ,cos2C ⋅=m n ,其中,,A B C 为ABC ∆的内角.(Ⅰ)求角C 的大小;(Ⅱ)若6AB =,且18CA CB ⋅=u u u r u u u r,求,AC BC 的长.【跟踪练习】在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知m ()A A sin 3,cos 2=,n ()A A cos 2,cos -=,m ·n 1-=.(1)求A ∠的大小;(2)若32=a ,2=c ,求△ABC 的面积.【综合模拟练兵——保持手感】1.在ABC ∆中,120,5,7,A AB BC ===o 则sin sin BC的值为______________.2.将函数x x y cos sin +=的图象向左平移)0(>m m 个长度单位后,所得到的函数为偶函数,则m 的最小值是( ) A .4π B.6πC .43π D .65π3.已知ABC ∆的周长为21+,且sin sin 2sin A B C +=(1)求边AB 的长; (2)若ABC ∆的面积为1sin 6C ,求角C .& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷4.已知向量(cos ,sin )A A =-m ,(cos ,sin )B B =n ,cos2C ⋅=m n ,其中,,A B C 为ABC ∆的内角.(Ⅰ)求角C 的大小;(Ⅱ)若6AB =,且18CA CB ⋅=u u u r u u u r ,求,AC BC 的长.。
2015步步高理科数学专题四

专题四 高考中的立体几何问题1.(2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是 ( )A.4B.143C.163D.6 答案 B解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=143. 2.(2013·课标全国Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满 足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A.α∥β且l ∥αB.α⊥β且l ⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l答案 D解析 假设α∥β,由m ⊥平面α,n ⊥平面β,则m ∥n ,这与已知m ,n 为异面直线矛盾,那么α与β相交,设交线为l 1,则l 1⊥m ,l 1⊥n ,在直线m 上任取一点作n 1平行于n ,那么l 1和l 都垂直于直线m 与n 1所确定的平面,所以l 1∥l .3.如图,点O 为正方体ABCD —A ′B ′C ′D ′的中心,点E 为面B ′BCC ′的中心,点F 为B ′C ′的中点,则空间四边形D ′OEF在该正方体的各个面上的投影不可能是( )答案 D解析 空间四边形D ′OEF 在正方体的面DCC ′D ′上的投影是A ;在面BCC ′B ′上的投影是B ;在面ABCD 上的投影是C ,故选D.4.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →、AD →、AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( ) A.5 B.6C.4D.8 答案 A解析 ∵AC 1→=AA 1→+AB →+AD →,∴AC 1→2=(AA 1→+AB →+AD →)2=AA 1→2+AB →2+AD →2+2·AA 1→·AB →+2·AA 1→·AD →+2·AB →·AD →=9+1+4+2×3×1×12+2×3×2×12+2×1×2×12=25, ∴|AC 1→|=5.故选A.5.如图,四棱锥P -ABCD 的底面是一直角梯形,AB ∥CD ,BA ⊥AD ,CD =2AB ,P A ⊥底面ABCD ,E 为PC 的中点,则BE 与平面P AD 的位置关系为________.答案 平行解析 取PD 的中点F ,连接EF ,在△PCD 中,EF 綊12CD . 又∵AB ∥CD 且CD =2AB ,∴EF 綊AB ,∴四边形ABEF 是平行四边形,∴EB ∥AF .又∵EB ⊄平面P AD ,AF ⊂平面P AD ,∴BE ∥平面P AD .题型一 空间点、线、面的位置关系例1 (2013·山东)如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥P A ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE ∥平面P AD ;(2)求证:平面EFG ⊥平面EMN .思维启迪 (1)在平面P AD 内作直线CE 的平行线或者利用平面CEF ∥平面P AD 证明;(2)MN 是平面EFG 的垂线.证明 (1)方法一 取P A 的中点H ,连接EH ,DH .又E 为PB 的中点,所以EH 綊12AB . 又CD 綊12AB ,所以EH 綊CD . 所以四边形DCEH 是平行四边形,所以CE ∥DH .又DH ⊂平面P AD ,CE ⊄平面P AD .所以CE ∥平面P AD .方法二 连接CF .因为F 为AB 的中点,所以AF =12AB . 又CD =12AB ,所以AF =CD . 又AF ∥CD ,所以四边形AFCD 为平行四边形.因此CF ∥AD ,又CF ⊄平面P AD ,所以CF∥平面P AD.因为E,F分别为PB,AB的中点,所以EF∥P A.又EF⊄平面P AD,所以EF∥平面P AD.因为CF∩EF=F,故平面CEF∥平面P AD.又CE⊂平面CEF,所以CE∥平面P AD.(2)因为E、F分别为PB、AB的中点,所以EF∥P A.又因为AB⊥P A,所以EF⊥AB,同理可证AB⊥FG.又因为EF∩FG=F,EF⊂平面EFG,FG⊂平面EFG.所以AB⊥平面EFG.又因为M,N分别为PD,PC的中点,所以MN∥CD,又AB∥CD,所以MN∥AB,所以MN⊥平面EFG.又因为MN⊂平面EMN,所以平面EFG⊥平面EMN.思维升华高考对该部分的考查重点是空间的平行关系和垂直关系的证明,一般以解答题的形式出现,试题难度中等,但对空间想象能力和逻辑推理能力有一定的要求,在试卷中也可能以选择题或者填空题的方式考查空间位置关系的基本定理在判断线面位置关系中的应用.如图所示,直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N分别为A1B,B1C1的中点.求证:(1)BC∥平面MNB1;(2)平面A1CB⊥平面ACC1A.证明(1)因为BC∥B1C1,且B1C1⊂平面MNB1,BC⊄平面MNB1,故BC∥平面MNB1.(2)因为BC⊥AC,且ABC-A1B1C1为直三棱柱,故BC⊥平面ACC1A1.因为BC⊂平面A1CB,故平面A1CB⊥平面ACC1A1.题型二平面图形的翻折问题例2如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,BE,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.思维启迪(1)翻折前后,△ACD内各元素的位置关系没有变化,易知DE⊥DC,再根据平面BCD⊥平面ACD可证明DE⊥平面BCD;(2)注意从条件EF∥平面BDG得线线平行,为求高作基础.(1)证明∵AC=6,BC=3,∠ABC=90°,∴∠ACB=60°.∵CD为∠ACB的平分线,∴∠BCD=∠ACD=30°.∴CD=2 3.∵CE=4,∠DCE=30°,∴DE2=CE2+CD2-2CE·CD·cos 30°=4,∴DE=2,则CD2+DE2=EC2.∴∠CDE=90°,DE⊥DC.又∵平面BCD⊥平面ACD,平面BCD∩平面ACD=CD,DE⊂平面ACD,∴DE⊥平面BCD.(2)解∵EF∥平面BDG,EF⊂平面ABC,平面ABC∩平面BDG=BG,∴EF∥BG.∵点E在线段AC上,CE=4,点F是AB的中点,∴AE =EG =CG =2.如图,作BH ⊥CD 于H .∵平面BCD ⊥平面ACD ,∴BH ⊥平面ACD .由条件得BH =32, S △DEG =13S △ACD =13×12AC ·CD ·sin 30°=3, ∴三棱锥B -DEG 的体积V =13S △DEG ·BH =13×3×32=32. 思维升华 平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.(2012·北京)如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE ∥平面A 1CB .(2)求证:A 1F ⊥BE . (3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.(1)证明 因为D ,E 分别为AC ,AB 的中点,所以DE ∥BC .又因为DE ⊄平面A 1CB ,所以DE ∥平面A 1CB .(2)证明由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.又A1D∩CD=D,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE,又因为BE⊂平面BCDE,所以A1F⊥BE.(3)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取AC,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.题型三线面位置关系中的存在性问题例3如图,在矩形ABCD中,AB=2BC,P、Q分别是线段AB、CD的中点,EP⊥平面ABCD.(1)求证:DP⊥平面EPC;(2)问在EP 上是否存在点F ,使平面AFD ⊥平面BFC ?若存在,求出FP AP的值;若不存在,说明理由.思维启迪 先假设EP 上存在点F 使平面AFD ⊥平面BFC ,然后推证点F 的位置.(1)证明 ∵EP ⊥平面ABCD ,∴EP ⊥DP .又ABCD 为矩形,AB =2BC ,P 、Q 分别为AB 、CD 的中点,连接PQ ,则PQ ⊥DC 且PQ =12DC . ∴DP ⊥PC .∵EP ∩PC =P ,∴DP ⊥平面EPC .(2)解 假设存在F 使平面AFD ⊥平面BFC ,∵AD ∥BC ,BC ⊂平面BFC ,AD ⊄平面BFC ,∴AD ∥平面BFC .∴AD 平行于平面AFD 与平面BFC 的交线l .∵EP ⊥平面ABCD ,∴EP ⊥AD ,而AD ⊥AB ,AB ∩EP =P ,∴AD ⊥平面EAB ,∴l ⊥平面F AB .∴∠AFB 为平面AFD 与平面BFC 所成二面角的平面角.∵P 是AB 的中点,且FP ⊥AB ,∴当∠AFB =90°时,FP =AP .∴当FP =AP ,即FP AP=1时,平面AFD ⊥平面BFC . 思维升华 对于线面关系中的存在性问题,首先假设存在,然后在这个假设下利用线面关系的性质进行推理论证,寻求假设满足的条件.若条件满足则肯定假设,若得到矛盾则否定假设.如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)问在棱CD上是否存在点E,使D1E∥平面A1BD.若存在,确定点E位置;若不存在,说明理由.(1)证明在直四棱柱ABCD-A1B1C1D1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形,∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,又D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD⊂平面ADC1,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)解假设存在点E,使D1E∥平面A1BD.连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,可使MN∥D1E,又M是AD1的中点,则N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.即E是DC的中点.综上所述,当E是DC的中点时,可使D1E∥平面A1BD.题型四 空间向量与立体几何例4 (2012·大纲全国)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE=2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.思维启迪 利用P A ⊥平面ABCD 建立空间直角坐标系,利用向量求解.方法一 (1)证明 因为底面ABCD 为菱形,所以BD ⊥AC .又P A ⊥底面ABCD ,所以PC ⊥BD .如图,设AC ∩BD =F ,连接EF .因为AC =22,P A =2,PE =2EC ,故PC =23,EC =233,FC =2, 从而PCFC =6,ACEC = 6.因为PCFC =ACEC ,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠P AC =90°.由此知PC ⊥EF .因为PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)解 在平面P AB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC .又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC .因为BC 与平面P AB 内两条相交直线P A ,AG 都垂直,故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD =P A 2+AD 2=2 2.设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD ∥平面PBC ,A 、D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则sin α=d PD =12.所以PD 与平面PBC 所成的角为30°.方法二 (1)证明 以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系Axyz ,则C (22,0,0),P (0,0,2),E ⎝⎛⎭⎫423,0,23,设D (2,b,0),其中b >0,则B (2,-b,0).于是PC →=(22,0,-2),BE →=⎝⎛⎭⎫23,b ,23,DE →=⎝⎛⎭⎫23,-b ,23,从而PC →·BE →=0,PC →·DE →=0,故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BED .(2)解 AP →=(0,0,2),AB →=(2,-b,0).设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP →=0,m ·AB →=0,即2z =0且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC →=0,n ·BE →=0,即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b ,2. 因为二面角A -PB -C 为90°,所以面P AB ⊥面PBC , 故m ·n =0,即b -2b=0,故b =2, 于是n =(1,-1,2),DP →=(-2,-2,2),所以cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12, 所以〈n ,DP →〉=60°.因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°.思维升华 用空间向量求解立体几何问题,主要是通过建立坐标系或利用基底表示向量坐标,通过向量的计算求解位置关系及角的大小,二面角是历年高考的考查热点,平面的法向量是解题中的一个重点,还要注意二面角的范围.在如图所示的几何体中,底面ABCD 为菱形,∠BAD =60°,AA 1綊DD 1綊CC 1∥BE ,且AA 1=AB ,D 1E ⊥平面D 1AC ,AA 1⊥底面ABCD .(1)求二面角D 1-AC -E 的大小;(2)在D 1E 上是否存在一点P ,使得A 1P ∥平面EAC ,若存在,求D 1P PE的值,若不存在,说明理由.解 (1)设AC 与BD 交于O ,如图所示建立空间直角坐标系Oxyz ,设AB =2,则A (3,0,0),B (0,-1,0),C (-3,0,0),D (0,1,0),D 1(0,1,2),设E (0,-1,t ),t >0,则ED 1→=(0,2,2-t ),CA →=(23,0,0),D 1A →=(3,-1,-2).∵D 1E ⊥面D 1AC ,∴D 1E ⊥CA ,D 1E ⊥D 1A ,∴⎩⎪⎨⎪⎧ ED 1→·CA →=0,ED 1→·D 1A →=0,解得t =3,∴E (0,-1,3), ∴AE →=(-3,-1,3),设平面EAC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·CA →=0,m ·AE →=0,∴⎩⎪⎨⎪⎧x =0,-3x -y +3z =0, 令z =1,y =3,m =(0,3,1).又平面D 1AC 的法向量ED 1→=(0,2,-1),∴cos 〈m ,ED 1→〉m ·ED 1→|m |·|ED 1→|=22. 所以所求二面角的大小为45°.(2)假设存在点P 满足题意.设D 1P →=λPE →=λ(D 1E →-D 1P →),得D 1P →=λ1+λD 1E →=(0,-2λ1+λ,λ1+λ), A 1P →=A 1D 1→+D 1P →=(-3,1,0)+(0,-2λ1+λ,λ1+λ) =(-3,1-2λ1+λ,λ1+λ) ∵A 1P ∥平面EAC ,∴A 1P →⊥m , ∴-3×0+3×(1-2λ1+λ)+1×λ1+λ=0, 解得λ=32, 故存在点P 使A 1P ∥面EAC ,此时D 1P ∶PE =3∶2.(时间:80分钟)1.如图所示,在边长为5+2的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.解 设圆锥的母线长为l ,底面半径为r ,高为h ,由已知条件得⎩⎪⎨⎪⎧ l +r +2r =(5+2)×22πr l =π2, 解得r =2,l =42,S =πrl +πr 2=10π,h =l 2-r 2=30,V =13πr 2h =230π3.2.如图,在四棱台ABCD -A1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .证明 (1)方法一 因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以D 1D ⊥BD .又因为AB =2AD ,∠BAD =60°,在△ABD 中,由余弦定理得BD 2=AD 2+AB 2-2AD ·AB cos 60°=3AD 2,所以AD 2+BD 2=AB 2,因此AD ⊥BD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,故AA 1⊥BD .方法二 因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以BD ⊥D 1D .如图,取AB 的中点G ,连接DG ,在△ABD 中,由AB =2AD 得AG =AD .又∠BAD =60°,所以△ADG 为等边三角形,因此GD =GB ,故∠DBG =∠GDB .又∠AGD =60°,所以∠GDB =30°,故∠ADB =∠ADG +∠GDB =60°+30°=90°,所以BD ⊥AD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A .又AA 1⊂平面ADD 1A ,故AA 1⊥BD .(2)如图,连接AC ,A 1C 1,设AC ∩BD =E ,连接EA 1,因为四边形ABCD 为平行四边形,所以EC =12AC . 由棱台定义及AB =2AD =2A 1B 1知A 1C 1∥EC 且A 1C 1=EC ,所以四边形A 1ECC 1为平行四边形,因此CC 1∥EA .又EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,所以CC 1∥平面A 1BD .3.如图,四棱锥P —ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面P AD ;(2)若P A =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P —ABCD 的体积.(1)证明 因为P A ⊥平面ABCD ,CE ⊂平面ABCD ,所以P A ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD .又P A ∩AD =A ,所以CE ⊥平面P AD .(2)解 由(1)可知CE ⊥AD .在Rt △ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1.又因为AB =CE =1,AB ∥CE ,所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52. 又P A ⊥平面ABCD ,P A =1,所以V 四棱锥P —ABCD =13S 四边形ABCD ·P A =13×52×1=56. 4.(2012·山东)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.(1)证明 因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,所以∠ADC =∠BCD =120°.又CB =CD ,所以∠CDB =30°,因此∠ADB =90°,即AD ⊥BD .又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ⊂平面AED ,所以BD ⊥平面AED .(2)解 方法一 由(1)知AD ⊥BD ,所以AC ⊥BC .又FC ⊥平面ABCD ,因此CA ,CB ,CF两两垂直.以C 为坐标原点,分别以CA ,CB ,CF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.不妨设CB =1,则C (0,0,0),B (0,1,0),D ⎝⎛⎭⎫32,-12,0,F (0,0,1). 因此BD →=⎝⎛⎭⎫32,-32,0,BF →=(0,-1,1). 设平面BDF 的一个法向量为m =(x ,y ,z ),则m ·BD →=0,m ·BF →=0,所以x =3y =3z ,取z =1,则m =(3,1,1).由于CF →=(0,0,1)是平面BDC 的一个法向量,则cos 〈m ,CF →〉=m ·CF →|m ||CF →|=15=55, 所以二面角F -BD -C 的余弦值为55. 方法二 如图,取BD 的中点G ,连接CG ,FG ,由于CB =CD ,因此CG ⊥BD .又FC ⊥平面ABCD ,BD ⊂平面ABCD ,所以FC ⊥BD .由于FC ∩CG =C ,FC ,CG ⊂平面FCG ,所以BD ⊥平面FCG ,故BD ⊥FG ,所以∠FGC 为二面角F -BD -C 的平面角.在等腰三角形BCD 中,由于∠BCD =120°,因此CG =12CB .又CB =CF , 所以GF =CG 2+CF 2=5CG ,故cos ∠FGC =55, 因此二面角F -BD -C 的余弦值为55. 5.(2012·北京)如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小; (3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.(1)证明 ∵AC ⊥BC ,DE ∥BC ,∴DE ⊥AC .∴DE ⊥A 1D ,DE ⊥CD ,∴DE ⊥平面A 1DC .∴DE ⊥A 1C .又∵A 1C ⊥CD ,∴A 1C ⊥平面BCDE .(2)解 如图所示,以C 为坐标原点,建立空间直角坐标系Cxyz , 则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·A 1B →=0,n ·BE →=0.又A 1B →=(3,0,-23),BE →=(-1,2,0),∴⎩⎪⎨⎪⎧ 3x -23z =0,-x +2y =0.令y =1,则x =2,z =3, ∴n =(2,1,3).设CM 与平面A 1BE 所成的角为θ.∵CM →=(0,1,3),∴sin θ=|cos 〈n ,CM →〉|=⎪⎪⎪⎪⎪⎪n ·CM →|n |·|CM →|=48×4=22.∴CM 与平面A 1BE 所成角的大小为π4. (3)解 线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ′,y ′,z ′),则m ·A 1D →=0,m ·DP →=0.又A 1D →=(0,2,-23),DP →=(p ,-2,0),∴⎩⎪⎨⎪⎧ 2y ′-23z ′=0,px ′-2y ′=0.令x ′=2,则y ′=p ,z ′=p 3, ∴m =⎝⎛⎭⎫2,p ,p 3. 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0,即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.∴线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.6.如图,在五面体ABCDEF 中,F A ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD . (1)求异面直线BF 与DE 所成的角的大小;(2)证明:平面AMD ⊥平面CDE ;(3)求二面角A -CD -E 的余弦值.(1)解 如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =1,依题意得B (1,0,0),C (1,1,0),D (0,2,0),E (0,1,1),F (0,0,1),M ⎝⎛⎭⎫12,1,12. BF →=(-1,0,1),DE →=(0,-1,1),于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12·2=12. 所以异面直线BF 与DE 所成的角的大小为60°.(2)证明 由AM →=⎝⎛⎭⎫12,1,12,CE →=(-1,0,1),AD →=(0,2,0),可得CE →·AM →=0,CE →·AD →=0. 因此,CE ⊥AM ,CE ⊥AD .又AM ∩AD =A ,故CE ⊥平面AMD .而CE ⊂平面CDE ,所以平面AMD ⊥平面CDE .(3)解 设平面CDE 的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧ u ·CE →=0,u ·DE →=0.于是⎩⎪⎨⎪⎧-x +z =0,-y +z =0. 令x =1可得u =(1,1,1). 又由题设,平面ACD 的一个法向量为v =(0,0,1).所以cos u ,v =u ·v |u ||v |=0+0+13×1=33. 因为二面角A -CD -E 为锐角,所以其余弦值为33.。
【步步高】江苏专用高考数学二轮复习 专题限实规范训练4 文 苏教版
专题四立体几何(时间∶120分钟满分∶160分)一、填空题(本大题共14小题,每小题5分,共70分)1.(2010·湖南)图中的三个直角三角形是一个体积为20 cm3的几何体的三视图,则h=________cm.2.已知m,n是不重合的直线,α,β是不重合的平面,有下列命题:①若α∩β=n,m∥n,则m∥α,m∥β;②若m⊥α,m⊥β,则α∥β;③若m∥α,m⊥n,则n⊥α;④若m⊥α,n⊂α,则m⊥n,其中所有真命题的序号是________.3.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为________.4.有一棱长为a的正方体骨架,其内放置一气球,使其充气且尽可能地大(仍保持为球的形状),则气球表面积的最大值为________.5.如图所示,用平行于AD且过BC的平面BCFE截长方体,得到几何体ABCD-A1EFD1,设AB=BC=5,B1E=4,其主视图的面积为6,则其左视图的面积为________.6.α、β是两个不同的平面,m、n是平面α及β之外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α,以其中三个论断作为条件,剩余的一个论断作为结论,写你认为正确的一个命题______________.7.已知平面α⊥β,α∩β=l,P是空间一点,且P到平面α、β的距离分别是1、2,则点P到l的距离为________.8.已知几何体的三视图(如图),则该几何体的体积为______________.9.已知各顶点都在同一个球面上的正四棱锥高为3,体积为6,则这个球的表面积是________.10.如图,设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别为B、D.若增加一个条件,就能推出BD⊥EF.现有:①AC⊥β;②AC与α,β的夹角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.那么上述几个条件中能成为增加条件的是________(填上你认为正确的所有答案序号).11.如图,在直三棱柱ABC-A1B1C1中,BB1=2,∠ABC=90°,E、F分别为AA1、C1B1的中点,沿棱柱的表面从E到F两点最短路径的长度是 .12.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为____________.13.已知直线a,b和平面α,β,试利用上述元素并借助于它们之间的位置关系,构造出一个判断α∥β的真命题:______________________________________________________.14.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为____________.二、解答题(本大题共6小题,共90分)15.(14分)(2010·安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB.16.(14分)如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=3,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E-PAD的体积;(2)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(3)证明:无论点E在边BC的何处,都有PE⊥AF.17.(14分)如图:四棱锥P-ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,AB=1,AD=2,E、F分别为PC和BD的中点.(1)证明:EF∥面PAD;(2)证明:面PDC⊥面PAD;(3)求四棱锥P-ABCD的体积.18.(16分)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA =PD ,求证:平面PQB ⊥平面PAD ;(2)点M 在线段PC 上,PM =tPC ,试确定实数t 的值,使得PA ∥平面MQB .19.(16分)四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥平面ABCD ,PA =AD =CD =2AB=2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定点N 的位置;若不 存在,请说明理由.20.(16分)(2010·北京)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .答案1.42.②④3.73πa 2 4.2πa 2 5.10 6.可填①③④⇒②与②③④⇒①中的一个7. 5 8.423 9. 16π 10.①③12.8 3 13. a ⊥α,a ⊥β⇒α∥β14.8 315.(1)证明 如图(1),设AC 与BD 交于点G ,则G 为AC 的中点,连接EG ,GH .又H 为BC 的中点,∴GH 綊12AB .又EF 綊12AB ,∴EF 綊GH .∴四边形EFHG 为平行四边形.∴EG ∥FH .而EG ⊂平面EDB ,∴FH ∥平面EDB .(2)证明 由四边形ABCD 为正方形,有AB ⊥BC . 图(1)又EF ∥AB ,∴EF ⊥BC .而EF ⊥FB ,∴EF ⊥平面BFC ,∴EF ⊥FH ,∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC .∴FH ⊥平面ABCD .∴FH ⊥AC .又FH ∥EG ,∴AC ⊥EG .又AC ⊥BD ,EG ∩BD =G ,∴AC ⊥平面EDB .16.(1)解 三棱锥E -PAD 的体积V =13PA ·S △ADE =13PA ·(12·AD ·AB )=36.(2)解 当点E 为BC 的中点时,EF 与平面PAC 平行.∵在△PBC 中,E 、F 分别为BC 、PB 的中点,∴EF ∥PC ,又EF ⊄平面PAC ,PC ⊂平面PAC ,∴EF ∥平面PAC .(3)证明 ∵PA ⊥平面ABCD ,BE ⊂平面ABCD ,∴BE ⊥PA ,又BE ⊥AB ,AB ∩PA =A ,AB ,PA ⊂平面PAB ,∴BE ⊥平面PAB .又AF ⊂平面PAB ,∴AF ⊥BE .又PA =AB =1,点F 是PB 的中点,∴PB ⊥AF ,又∵PB ∩BE =B ,PB ,BE ⊂平面PBE ,∴AF ⊥平面PBE .∵PE ⊂平面PBE ,∴AF ⊥PE .17.(1)证明 如图,连接AC ,∵ABCD 为矩形且F 是BD 的中点,∴AC 必经过F ,又E 是PC 的中点,所以EF ∥AP ,∵EF 在面PAD 外,AP 在面PAD 内,∴EF ∥面PAD .(2)证明 ∵面PAD ⊥面ABCD ,CD ⊥AD ,面PAD ∩面ABCD =AD ,∴CD ⊥面PAD ,∴CD ⊥AP .∵AP ⊥PD ,PD 和CD 是相交直线,∴AP ⊥面PCD ,又AP 在面PAD 内,所以面PDC ⊥面PAD .(3)解 作PH ⊥AD 于H ,∵△PAD 为等腰直角三角形,∠APD =90°,AD =2,∴PH =12AD =1.又面PAD ⊥面ABCD ,∴PH ⊥面ABCD ,即PH 为棱锥P -ABCD 的高.S ABCD =2×1=2.∴V P -ABCD =13×2×1=23. 18.(1)证明 底面ABCD 为菱形,∠BAD =60°,Q 为AD 的中点,所以AD ⊥QB ,又PA =PD ,则PQ ⊥AD ,所以AD ⊥平面PQB ,而AD ⊂面PAD ,∴平面PQB ⊥平面PAD .(2)解 连接AC ,交QB 于O 点,连接OM ,BM ,QM ,若使得PA ∥平面MQB ,则PA ∥OM ,∵PM =tPC ,∴AO =tAC ,在底面菱形ABCD 中,可得t =13.19.(1)证明 取PD 中点E ,连接EM 、AE ,∴EM 綊12CD ,而AB 綊12CD ,∴EM 綊AB .∴四边形ABME 是平行四边形.∴BM ∥AE .∵AE ⊂平面APD ,BM ⊄平面APD ,∴BM ∥平面PAD .(2)解析 ∵PA ⊥平面ABCD ,∴PA ⊥AB .而AB ⊥AD ,∴AB ⊥平面PAD ,∴AB ⊥PD .∵PA =AD ,E 是PD 的中点,∴PD ⊥AE .∴PD ⊥平面ABME .作MN ⊥BE ,交AE 于点N .∴MN ⊥平面PBD .易知△BME ∽△MEN .而BM =AE =2,EM =12CD =1,由EN EM =EM BM ,得EN =EM2BM =12=22,∴AN =22.即点N 为AE 的中点.20.证明 (1)如图,设AC 与BD 交于点G .因为EF ∥AG ,且EF =1,AG =12AC =1,所以四边形AGEF 为平行四边形.所以AF ∥EG .因为EG ⊂平面BDE ,AF ⊄平面BDE ,所以AF ∥平面BDE . (2)连接FG .因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF. 所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.。
高考数学二轮复习大题规范天天练 星期四 第四周 Word版含解析
星期四(函数与导数) 年月日
函数与导数知识(命题意图:考查函数的极值点及函数的零点(或方程根)的问题) (本小题满分分)已知函数()=,()=-.
()求()的单调区间和极值点;
()是否存在实数,使得函数()=
++()有三个不同的零点?若存在,求出的取值范围;若不存在,请说明理由. 解()′()=+(>),
由′()>得>,′()<得<<,
∴()在上单调递减,在上单调递增,
()的极小值点为=.
()假设存在实数,使得函数()=++()有三个不同的零点,
即方程++-=有三个不等实根,
令φ()=++-,
φ′()=+-==,
由φ′()>得<<或>,
由φ′()<得<<,
∴φ()在(,)上单调递增,(,)上单调递减,(,+∞)上单调递增,
所以φ()的极大值为φ()=-+,φ()的极小值为φ()=-++.要使方程++-=有三个不等实根,则函数φ()的图象与轴要有三个交点,
根据φ()的图象可知必须满足+<,))解得<<-,
∴存在实数,使得方程++()=有三个不等实根,
实数的取值范围是<<- .。
2015步步高理科数学4.2
§4.2 同角三角函数基本关系及诱导公式1. 同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α. 2. 下列各角的终边与角α的终边的关系3.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.( × )(2)六组诱导公式中的角α可以是任意角.( × )(3)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.( × ) (4)已知sin θ=m -3m +5,cos θ=4-2m m +5,其中θ∈[π2,π],则m <-5或m ≥3.( × )(5)已知θ∈(0,π),sin θ+cos θ=3-12,则tan θ的值为-3或-33.( × )(6)已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是-13.( √ )2. 已知sin(π-α)=log 814,且α∈(-π2,0),则tan(2π-α)的值为( ) A .-255B.255C .±255D.52答案 B解析 sin(π-α)=sin α=log 814=-23,又α∈(-π2,0),得cos α=1-sin 2α=53, tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255.3. 若tan α=2,则2sin α-cos αsin α+2cos α的值为________.答案 34解析 原式=2tan α-1tan α+2=34.4. 已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. 答案 -23解析 sin ⎝⎛⎭⎫α-2π3=sin ⎣⎡⎦⎤-π2-⎝⎛⎭⎫π6-α =-sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. 5. 已知函数f (x )=⎩⎪⎨⎪⎧2cos π3x ,x ≤2 000,x -15,x >2 000,则f [f (2 015)]=________.答案 -1解析 ∵f [f (2 015)]=f (2 015-15)=f (2 000), ∴f (2 000)=2cos 2 000π3=2cos 23π=-1.题型一 同角三角函数关系式的应用例1 (1)已知cos(π+x )=35,x ∈(π,2π),则tan x =________.(2)已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43B.54C .-34D.45思维启迪 (1)应用平方关系求出sin x ,可得tan x ; (2)把所求的代数式中的弦转化为正切,代入可求. 答案 (1)43(2)D解析 (1)∵cos(π+x )=-cos x =35,∴cos x =-35.又x ∈(π,2π),∴sin x =-1-cos 2x =-1-(-35)2=-45,∴tan x =sin x cos x =43. (2)sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=sin 2θcos 2θ+sin θcos θcos 2θ-2sin 2θcos 2θ+1=tan 2θ+tan θ-2tan 2θ+1=22+2-222+1=45.思维升华 (1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.(1)已知1+sin x cos x =-12,那么cos xsin x -1的值是( )A.12B .-12C .2D .-2(2)已知tan θ=2,则sin θcos θ=________. 答案 (1)A (2)25解析 (1)由于1+sin x cos x ·sin x -1cos x =sin 2x -1cos 2x =-1,故cos x sin x -1=12.(2)sin θcos θ=sin θ·cos θsin 2θ+cos 2θ=tan θtan 2θ+1=222+1=25. 题型二 诱导公式的应用例2 (1)已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值; (2)已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-72π的值. 思维启迪 (1)将π6+α看作一个整体,观察π6+α与5π6-α的关系.(2)先化简已知,求出cos α的值,然后化简结论并代入求值. 解 (1)∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π, ∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33,即cos ⎝⎛⎭⎫5π6-α=-33. (2)∵cos(α-7π)=cos(7π-α) =cos(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-72π =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫72π-α =sin α·tan ⎝⎛⎭⎫π2-α =sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=sin α·cos αsin α=cos α=35.思维升华 熟练运用诱导公式和基本关系式,并确定相应三角函数值的符号是解题的关键.另外,切化弦是常用的规律技巧.(1)已知sin ⎝⎛⎭⎫α+π12=13,则cos ⎝⎛⎭⎫α+7π12的值为________. (2)已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.答案 (1)-13 (2)-916解析 (1)cos ⎝⎛⎭⎫α+7π12=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π12+π2 =-sin ⎝⎛⎭⎫α+π12=-13. (2)∵方程5x 2-7x -6=0的根为-35或2,又α是第三象限角,∴sin α=-35,∴cos α=-1-sin 2α=-45,∴tan α=sin αcos α=-35-45=34,∴原式=cos α(-sin α)sin α·cos α·tan 2α=-tan 2α=-916.题型三 三角函数式的求值与化简例3 (1)已知tan α=13,求12sin αcos α+cos 2α的值;(2)化简:tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)sin (-π-α).思维启迪 三角函数式的化简与求值,都是按照从繁到简的形式进行转化,要认真观察式子的规律,使用恰当的公式. 解 (1)因为tan α=13,所以12sin αcos α+cos 2α=sin 2α+cos 2α2sin αcos α+cos 2α=tan 2α+12tan α+1=23. (2)原式=-tan α·cos α·(-cos α)cos (π+α)·(-sin (π+α))=tan α·cos α·cos α-cos α·sin α=sin αcos α·cos α-sin α=-1.思维升华 在三角函数式的求值与化简中,要注意寻找式子中的角,函数式子的特点和联系,可以切化弦,约分或抵消,减少函数种类,对式子进行化简.(1)若α为三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形(2)已知tan α=2,sin α+cos α<0, 则sin (2π-α)·sin (π+α)·cos (π+α)sin (3π-α)·cos (π-α)=________.答案 (1)D (2)-255解析 (1)∵(sin α+cos α)2=1+2sin αcos α=49,∴sin αcos α=-518<0,∴α为钝角.故选D.(2)原式=-sin α·(-sin α)·(-cos α)sin α·(-cos α)=sin α,∵tan α=2>0,∴α为第一象限角或第三象限角. 又sin α+cos α<0,∴α为第三象限角, 由tan α=sin αcos α=2, 得sin α=2cos α代入sin 2α+cos 2α=1, 解得sin α=-255.方程思想在三角函数求值中的应用典例:(5分)已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.思维启迪 利用同角三角函数基本关系,寻求sin θ+cos θ,sin θ-cos θ和sin θcos θ的关系. 规范解答解析 方法一 因为sin θ+cos θ=713,θ∈(0,π),所以(sin θ+cos θ)2=1+2sin θcos θ=49169,所以sin θcos θ=-60169.由根与系数的关系,知sin θ,cos θ是方程x 2-713x -60169=0的两根,所以x 1=1213,x 2=-513.因为θ∈(0,π),所以sin θ>0,cos θ<0. 所以sin θ=1213,cos θ=-513.所以tan θ=sin θcos θ=-125.方法二 同法一,得sin θcos θ=-60169,所以sin θcos θsin 2θ+cos 2θ=-60169. 弦化切,得tan θtan 2θ+1=-60169, 即60tan 2θ+169tan θ+60=0,解得tan θ=-125或tan θ=-512.又θ∈(0,π),sin θ+cos θ=713>0,sin θcos θ=-60169<0. 所以θ∈(π2,3π4),所以tan θ=-125.方法三 解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713sin 2θ+cos 2θ=1得,⎩⎨⎧sin θ=1213cos θ=-513或⎩⎨⎧sin θ=-513cos θ=1213(舍).故tan θ=-125.答案 -125温馨提醒 三种解法均体现了方程思想在三角函数求值中的应用.利用已知条件sin θ+cos θ=713和公式sin 2θ+cos 2θ=1可列方程组解得sin θcos θ,sin θ-cos θ,也可以利用一元二次方程根与系数的关系求sin θ、cos θ.各解法中均要注意条件θ∈(0,π)的运用,谨防产生增解.方法与技巧同角三角恒等变形是三角恒等变形的基础,主要是变名、变式.1. 同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2. 三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x 化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sinθcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝⎛⎭⎫1+1tan 2θ=tan π4=…. 失误与防范1. 利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐. 特别注意函数名称和符号的确定.2. 在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 3. 注意求值与化简后的结果一般要尽可能有理化、整式化.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. α是第四象限角,tan α=-512,则sin α等于( )A.15B .-15C.513D .-513答案 D解析 ∵tan α=sin αcos α=-512,∴cos α=-125sin α,又sin 2α+cos 2α=1,∴sin 2α+14425sin 2α=16925sin 2α=1.又sin α<0,∴sin α=-513.2. 已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) A .-32B.32C .-12D.12答案 D解析 因为α和β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.3. 已知sin(π-α)=-2sin(π2+α),则sin α·cos α等于( )A.25B .-25C.25或-25D .-15答案 B解析 由sin(π-α)=-2sin(π2+α)得sin α=-2cos α,所以tan α=-2,∴sin α·cos α=sin α·cos αsin 2α+cos 2α=tan α1+tan 2α=-25,故选B.4. 已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝⎛⎭⎫-25π3的值为 ( )A.12B .-12C.32D .-32答案 A解析 ∵f (α)=sin αcos α-cos α·(-tan α)=cos α,∴f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3 =cos ⎝⎛⎭⎫8π+π3=cos π3=12. 5. 已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}答案 C解析 当k =2n (n ∈Z )时, A =sin (2n π+α)sin α+cos (2n π+α)cos α=2;当k =2n +1(n ∈Z )时,A =sin (2n π+π+α)sin α+cos (2n π+π+α)cos α=-2.故A 的值构成的集合为{-2,2}. 二、填空题6. 化简:sin ⎝⎛⎭⎫α+3π2·tan (α+π)sin (π-α)=________.答案 -1解析 原式=-cos α·tan αsin α=-sin αsin α=-1.7. 如果cos α=15,且α是第一象限的角,那么cos(α+3π2)=________.答案265解析 ∵cos α=15,α为第一象限角,∴sin α=1-cos 2α=1-(15)2=265,∴cos(α+3π2)=sin α=265.8. 化简:sin 2(α+π)·cos (π+α)·cos (-α-2π)tan (π+α)·sin 3(π2+α)·sin (-α-2π)=________.答案 1解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1. 三、解答题9. 已知sin θ=45,π2<θ<π. (1)求tan θ的值;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. 解 (1)∵sin 2θ+cos 2θ=1,∴cos 2θ=925. 又π2<θ<π,∴cos θ=-35. ∴tan θ=sin θcos θ=-43. (2)由(1)知,sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857. 10.已知sin θ,cos θ是关于x 的方程x 2-ax +a =0(a ∈R )的两个根,求cos 3(π2-θ)+sin 3(π2-θ)的值.解 由已知原方程的判别式Δ≥0,即(-a )2-4a ≥0,∴a ≥4或a ≤0.又⎩⎪⎨⎪⎧sin θ+cos θ=a sin θcos θ=a ,(sin θ+cos θ)2=1+2sin θcos θ, 则a 2-2a -1=0,从而a =1-2或a =1+2(舍去),因此sin θ+cos θ=sin θcos θ=1- 2.∴cos 3(π2-θ)+sin 3(π2-θ)=sin 3θ+cos 3θ =(sin θ+cos θ)(sin 2θ-sin θcos θ+cos 2θ)=(1-2)[1-(1-2)]=2-2.B 组 专项能力提升(时间:25分钟,满分:43分)1. 已知sin θ=-13,θ∈(-π2,π2),则sin(θ-5π)sin(32π-θ)的值是 ( ) A.229B .-229C .-19D.19答案 B解析 ∵sin θ=-13,θ∈(-π2,π2), ∴cos θ=1-sin 2θ=223. ∴原式=-sin(π-θ)·(-cos θ)=sin θcos θ=-13×223=-229. 2. 当0<x <π4时,函数f (x )=cos 2x cos x sin x -sin 2x的最小值是 ( )A.14B.12 C .2 D .4 答案 D解析 当0<x <π4时,0<tan x <1, f (x )=cos 2x cos x sin x -sin 2x =1tan x -tan 2x, 设t =tan x ,则0<t <1,y =1t -t 2=1t (1-t )≥1[t +(1-t )2]2=4. 当且仅当t =1-t ,即t =12时等号成立. 3. 已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 答案 0解析 cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ =-cos ⎝⎛⎭⎫π6-θ=-a .sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a , ∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 4. 已知f (x )=cos 2(n π+x )·sin 2(n π-x )cos 2[(2n +1)π-x ](n ∈Z ). (1)化简f (x )的表达式; (2)求f (π2 014)+f (503π1 007)的值. 解 (1)当n 为偶数,即n =2k (k ∈Z )时,f (x )=cos 2(2k π+x )·sin 2(2k π-x )cos 2[(2×2k +1)π-x ]=cos 2x ·sin 2(-x )cos 2(π-x )=cos 2x ·(-sin x )2(-cos x )2=sin 2x ;当n 为奇数,即n =2k +1(k ∈Z )时,f (x )=cos 2[(2k +1)π+x ]·sin 2[(2k +1)π-x ]cos 2{[2×(2k +1)+1]π-x }=cos 2[2k π+(π+x )]·sin 2[2k π+(π-x )]cos 2[2×(2k +1)π+(π-x )]=cos 2(π+x )·sin 2(π-x )cos 2(π-x )=(-cos x )2sin 2x (-cos x )2=sin 2x ,综上得f (x )=sin 2x .(2)由(1)得f (π2 014)+f (503π1 007) =sin 2π2 014+sin 21 006π2 014 =sin 2π2 014+sin 2(π2-π2 014) =sin 2π2 014+cos 2π2 014=1. 5. 已知在△ABC 中,sin A +cos A =15. (1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.解 (1)∵sin A +cos A =15,① ∴两边平方得1+2sin A cos A =125, ∴sin A cos A =-1225. (2)由sin A cos A =-1225<0,且0<A <π, 可知cos A <0,∴A 为钝角,∴△ABC 是钝角三角形.(3)∵(sin A -cos A )2=1-2sin A cos A =1+2425=4925, 又sin A >0,cos A <0,∴sin A -cos A >0,∴sin A -cos A =75.② ∴由①,②可得sin A =45,cos A =-35, ∴tan A =sin A cos A =45-35=-43.。
【步步高】(广东专用)2015届高考数学二轮复习 专题突破训练四 第1讲 等差数列和等比数列 理(含
第1讲 等差数列和等比数列考情解读 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.1.a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.等差数列和等比数列等差数列 等比数列定义 a n -a n -1=常数(n ≥2) a na n -1=常数(n ≥2) 通项公式a n =a 1+(n -1)da n =a 1q n -1(q ≠0)判定方法(1)定义法(2)中项公式法:2a n +1=a n +a n +2(n ≥1)⇔{a n }为等差数列(3)通项公式法:a n =pn +q (p 、q为常数)⇔{a n }为等差数列 (4)前n 项和公式法:S n =An 2+Bn (A 、B 为常数)⇔{a n }为等差数列 (5){a n }为等比数列,a n >0⇔{log a a n }为等差数列(1)定义法(2)中项公式法:a 2n +1=a n ·a n +2(n ≥1)(a n ≠0)⇔ {a n }为等比数列(3)通项公式法:a n =c ·q n (c 、q 均是不为0的常数,n ∈N *)⇔{a n }为等比数列(4){a n }为等差数列⇔{aa n }为等比数列(a >0且a ≠1)性质(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m +a n =a p +a q(2)a n =a m +(n -m )d(3)S m ,S 2m -S m ,S 3m -S 2m ,…,仍成等差数列(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q (2)a n =a m qn -m(3)等比数列依次每n 项和(S n ≠0)仍成等比数列前n 项和S n =n a 1+a n2=na 1+n n -12d(1)q ≠1,S n =a 11-q n 1-q =a 1-a n q 1-q(2)q =1,S n =na 1热点一 等差数列例1 (1)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( ) A .21 B .24 C .28 D .7(2)设等差数列{a n }的前n 项和为S n ,若-1<a 3<1,0<a 6<3,则S 9的取值X 围是________. 思维启迪 (1)利用a 1+a 7=2a 4建立S 7和已知条件的联系;(2)将a 3,a 6的X 围整体代入. 答案 (1)C (2)(-3,21)解析 (1)由题意可知,a 2+a 6=2a 4,则3a 4=12,a 4=4,所以S 7=7×a 1+a 72=7a 4=28.(2)S 9=9a 1+36d =3(a 1+2d )+6(a 1+5d ) 又-1<a 3<1,0<a 6<3,∴-3<3(a 1+2d )<3,0<6(a 1+5d )<18, 故-3<S 9<21.思维升华 (1)等差数列问题的基本思想是求解a 1和d ,可利用方程思想; (2)等差数列的性质①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②S m ,S 2m -S m ,S 3m -S 2m ,…,仍成等差数列; ③a m -a n =(m -n )d ⇔d =a m -a n m -n(m ,n ∈N *); ④a n b n =A 2n -1B 2n -1(A 2n -1,B 2n -1分别为{a n },{b n }的前2n -1项的和).(3)等差数列前n 项和的问题可以利用函数的性质或者转化为等差数列的项,利用性质解决.(1)已知等差数列{a n },满足a 3=1,a 8=6,则此数列的前10项的和S 10=________.(2)在等差数列{a n }中,a 5<0,a 6>0且a 6>|a 5|,S n 是数列的前n 项的和,则下列说法正确的是( )A .S 1,S 2,S 3均小于0,S 4,S 5,S 6…均大于0B .S 1,S 2,…S 5均小于0,S 6,S 7,…均大于0C .S 1,S 2,…S 9均小于0,S 10,S 11…均大于0D .S 1,S 2,…S 11均小于0,S 12,S 13…均大于0 答案 (1)35 (2)C解析 (1)因为a 1+a 10=a 3+a 8=7, 所以S 10=a 1+a 10×102=a 3+a 8×102=7×102=35.(2)由题意可知a 6+a 5>0,故S 10=a 1+a 10×102=a 5+a 6×102>0,而S 9=a 1+a 9×92=2a 5×92=9a 5<0,故选C.热点二 等比数列例2 (1)(2014·某某)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =_____________________.(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n 等于( )A .4n -1B .4n-1 C .2n -1D .2n-1思维启迪 (1)列方程求出d ,代入q 即可;(2)求出a 1,q ,代入化简. 答案 (1)1 (2)D解析 (1)设等差数列的公差为d ,则a 3=a 1+2d ,a 5=a 1+4d ,∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1, ∴q =a 3+3a 1+1=a 1-2+3a 1+1=1. (2)∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q 2q +q 3=2,∴q =12,代入①得a 1=2,∴a n =2×(12)n -1=42n ,∴S n =2×1-12n1-12=4(1-12n ),∴S n a n=41-12n42n =2n-1,故选D. 思维升华 (1){a n }为等比数列,其性质如下:①若m 、n 、r 、s ∈N *,且m +n =r +s ,则a m ·a n =a r ·a s ; ②a n =a m qn -m;③S n ,S 2n -S n ,S 3n -S 2n 成等比数列(q ≠-1). (2)等比数列前n 项和公式S n =⎩⎪⎨⎪⎧na 1q =1,a 11-q n 1-q=a 1-a n q1-q q ≠1.①能“知三求二”;②注意讨论公比q 是否为1;③a 1≠0.(1)已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11等于( ) A .1 B .2 C .4 D .8(2)在等比数列{a n }中,a 1+a n =34,a 2·a n -1=64,且前n 项和S n =62,则项数n 等于( ) A .4 B .5 C .6 D .7 答案 (1)D (2)B解析 (1)∵a 4-2a 27+3a 8=0,∴2a 27=a 4+3a 8,即2a 27=4a 7,∴a 7=2,∴b 7=2,又∵b 2b 8b 11=b 1qb 1q 7b 1q 10=b 31q 18=(b 7)3=8,故选D.(2)设等比数列{a n }的公比为q ,由a 2a n -1=a 1a n =64,又a 1+a n =34,解得a 1=2,a n =32或a 1=32,a n =2.当a 1=2,a n =32时,S n =a 11-q n 1-q =a 1-a n q 1-q =2-32q1-q =62,解得q =2.又a n =a 1q n -1,所以2×2n -1=2n =32,解得n =5.同理,当a 1=32,a n =2时,由S n =62,解得q=12.由a n =a 1q n -1=32×(12)n -1=2,得(12)n -1=116=(12)4,即n -1=4,n =5.综上,项数n 等于5,故选B.热点三 等差数列、等比数列的综合应用例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,某某数λ的取值X 围.思维启迪 (1)利用方程思想求出a 1,代入公式求出a n 和S n ;(2)将恒成立问题通过分离法转化为最值.解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4,∴a n =5-n ,从而S n =n 9-n2.(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m =4[1-12m]1-12=8[1-(12)m],∵(12)m随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n 9-n2=-12(n 2-9n )=-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ,则10<4+λ,得λ>6.即实数λ的取值X 围为(6,+∞). 思维升华 等差(比)数列的综合问题的常见类型及解法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)等差数列、等比数列与函数、方程、不等式等的交汇问题,求解时用等差(比)数列的相关知识,将问题转化为相应的函数、方程、不等式等问题求解即可.已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求证:1b 1+1b 2+1b 3+…+1b n <12.(1)解 ∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得a n =S n -S n -1=2a n -2a n -1,∴a na n -1=2, ∴数列{a n }是首项为12,公比为2的等比数列,∴a n =12×2n -1=2n -2.(2)证明 b n =(log 2a 2n +1)×(log 2a 2n +3)=log 222n +1-2×log 222n +3-2=(2n -1)(2n +1),1b n =12n -1×12n +1=12(12n -1-12n +1), 1b 1+1b 2+1b 3+…+1b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1)<12(n ∈N *). 即1b 1+1b 2+1b 3+…+1b n <12.1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.等差、等比数列的单调性 (1)等差数列的单调性 d >0⇔{a n }为递增数列,S n 有最小值. d <0⇔{a n }为递减数列,S n 有最大值. d =0⇔{a n }为常数列.(2)等比数列的单调性 当⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S n n}仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}仍为等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…,成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q . (4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等比数列,其公差为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等差数列,公差为k 2d . 5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起. (2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的充要条件是b 2=ac .真题感悟1.(2014·大纲全国)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 答案 C解析 数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.2.(2014·)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 ∵a 7+a 8+a 9=3a 8>0,∴a 8>0. ∵a 7+a 10=a 8+a 9<0,∴a 9<-a 8<0. ∴数列的前8项和最大,即n =8. 押题精练1.已知等比数列{a n }的前n 项和为S n ,则下列一定成立的是( ) A .若a 3>0,则a 2 013<0 B .若a 4>0,则a 2 014<0 C .若a 3>0,则a 2 013>0 D .若a 4>0,则a 2 014>0 答案 C解析 因为a 3=a 1q 2,a 2 013=a 1q2 012,而q 2与q2 012均为正数,若a 3>0,则a 1>0,所以a 2 013>0,故选C.2.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值X 围为________. 答案 (-8,-7)解析 a n =a +(n -1)×1=n +a -1,所以b n =1+a n a n =n +a n +a -1,因为对任意的n ∈N *,都有b n ≥b 8成立,即n +a n +a -1≥8+a 8+a -1(n ∈N *)恒成立,即n -8a +7n +a -1≤0(n ∈N *),则有⎩⎪⎨⎪⎧a +7<0,1-a <9,解得-8<a <-7.3.设各项均为正数的数列{a n }的前n 项和为S n ,满足a 2n +1=4S n +4n +1,n ∈N *,且a 2,a 5,a 14恰好是等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式;(2)记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,(T n +32)k ≥3n -6恒成立,某某数k 的取值X 围.解 (1)当n ≥2时,由题设知4S n -1=a 2n -4(n -1)-1, ∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, ∴a 2n +1=a 2n +4a n +4=(a n +2)2, ∵a n >0,∴a n +1=a n +2.∴当n ≥2时,{a n }是公差d =2的等差数列. ∵a 2,a 5,a 14构成等比数列,∴a 25=a 2·a 14,(a 2+6)2=a 2·(a 2+24),解得a 2=3, 由条件可知,4a 1=a 22-5=4,∴a 1=1, ∵a 2-a 1=3-1=2,∴{a n }是首项a 1=1,公差d =2的等差数列. ∴等差数列{a n }的通项公式为a n =2n -1. ∵等比数列{b n }的公比q =a 5a 2=2×5-13=3,∴等比数列{b n }的通项公式为b n =3n.(2)T n =b 11-q n 1-q =31-3n 1-3=3n +1-32,∴(3n +1-32+32)k ≥3n -6对任意的n ∈N *恒成立,∴k ≥2n -43n 对任意的n ∈N *恒成立,令=2n -43n ,--1=2n -43n -2n -63n -1=-22n -73n, 当n ≤3时,>-1; 当n ≥4时,<-1.∴()max =c 3=227,∴k ≥227.(推荐时间:60分钟)一、选择题1.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q 等于( ) A .3 B .4 C .5 D .6 答案 B解析 ∵3S 3=a 4-2,3S 2=a 3-2,两式相减得3a 3=a 4-a 3,∴a 4=4a 3,∴q =a 4a 3=4. 2.设等差数列{a n }的前n 项和为S n ,若2a 6=6+a 7,则S 9的值是( ) A .27 B .36 C .45 D .54 答案 D解析 由2a 6=6+a 7得a 5=6,所以S 9=9a 5=54.故选D.3.设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于( ) A .3 B .4 C .5 D .6 答案 C解析 由已知得,S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =-2,又S m =a 1-a m q1-q=-11,故a 1=-1,又a m =a 1·qm -1=-16,代入可求得m =5.4.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11 答案 B解析 ∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62·d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∴a 8-3=0,a 8=3.故选B. 5.数列{a n }满足a 1=2,a n =a n +1-1a n +1+1,其前n 项积为T n ,则T 2 014等于( )A.16B .-16 C .6 D .-6 答案 D 解析 由a n =a n +1-1a n +1+1得a n +1=1+a n 1-a n ,而a 1=2,所以a 2=-3,a 3=-12,a 4=13,a 5=2,则数列是以4为周期,且a 1a 2a 3a 4=1,所以T 2 014=(a 1a 2a 3a 4)503a 1a 2=1503×2×(-3)=-6,故选D. 6.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,a 2 011),则OP →·OQ →等于( )A .2 011B .-2 011C .0D .1 答案 A解析 由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011. 二、填空题7.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________. 答案 3解析 设等比数列{a n }的公比为q ,由已知,得⎩⎪⎨⎪⎧a 1+a 1q 2=8,a 1q 4+a 1q 6=4,解得q 4=12.又a 9+a 11=a 1q 8+a 3q 8=(a 1+a 3)q 8=8×(12)2=2,a 13+a 15=a 1q 12+a 3q 12=(a 1+a 3)q 12=8×(12)3=1,所以a 9+a 11+a 13+a 15=2+1=3.8.(2014·某某)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=______.答案 50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.9.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________.答案 6解析 设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n n -12×2=n 2-12n =(n -6)2-36, 故当n =6时,S n 取最小值.10.已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________.答案 2×⎝ ⎛⎭⎪⎫32n -1⎩⎪⎨⎪⎧ 2 n =1,⎝ ⎛⎭⎪⎫32n -2 n ≥2解析 由a n +1=12(a 1+a 2+…+a n ) (n ∈N *),可得a n +1=12S n ,所以S n +1-S n =12S n ,即S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32,所以S n =2×⎝ ⎛⎭⎪⎫32n -1, 由此得a n =⎩⎪⎨⎪⎧ 2 n =1,⎝ ⎛⎭⎪⎫32n -2 n ≥2.三、解答题11.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列. (1)解 设成等差数列的三个正数分别为a -d ,a ,a +d .依题意,得a -d +a +a +d =15.解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54. 所以b n =b 1·q n -1=54·2n -1=5·2n -3, 即数列{b n }的通项公式b n =5·2n -3.(2)证明 由(1)得数列{b n }的前n 项和S n =541-2n 1-2=5·2n -2-54, 即S n +54=5·2n -2. 所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2. 因此{S n +54}是以52为首项,2为公比的等比数列. 12.若数列{b n }对于n ∈N *,都有b n +2-b n =d (常数),则称数列{b n }是公差为d 的准等差数列,如数列{},若=⎩⎪⎨⎪⎧ 4n -1,n 为奇数,4n -9,n 为偶数,则数列{}是公差为8的准等差数列.设数列{a n }满足a 1=a ,对于n ∈N *,都有a n +a n +1=2n .(1)求证:{a n }为准等差数列;(2)求{a n }的通项公式及前20项和S 20.(1)证明 ∵a n +1+a n =2n ,①∴a n +2+a n +1=2n +2.②由②-①得a n +2-a n =2(n ∈N *),∴{a n }是公差为2的准等差数列.(2)解 已知a 1=a ,a n +1+a n =2n (n ∈N *),∴a 1+a 2=2,即a 2=2-a .∴由(1)可知a 1,a 3,a 5,…,成以a 为首项,2为公差的等差数列,a 2,a 4,a 6,…,成以2-a 为首项,2为公差的等差数列.∴当n 为偶数时,a n =2-a +(n 2-1)×2=n -a , 当n 为奇数时,a n =a +(n +12-1)×2=n +a -1,∴a n =⎩⎪⎨⎪⎧ n +a -1,n 为奇数,n -a ,n 为偶数.S 20=a 1+a 2+…+a 19+a 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2×1+2×3+…+2×19=2×1+19×102=200. 13.(2013·某某)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解 (1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18.即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q 1+q +q 2=-18, 解得⎩⎪⎨⎪⎧ a 1=3,q =-2. 故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3[1--2n ]1--2=1-(-2)n .假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,得n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考中档大题规范练(四)
——概率与统计
(推荐时间:70分钟)
1.(2014·湖南)某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:
(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ).
其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 解 (1)甲组研发新产品的成绩为 1,1,1,0,0,1,1,1,0,1,0,1,1,0,1, 其平均数为x 甲=1015=23
;
方差为s 2
甲=
115⎣⎡⎦⎤⎝
⎛⎭⎫1-232×10+⎝⎛⎭⎫0-232×5=2
9.
乙组研发新产品的成绩为 1,0,1,1,0,1,1,0,1,0,0,1,0,1,1, 其平均数为x 乙=915=3
5
;
方差为s 2
乙=
115⎣⎡⎦⎤⎝
⎛⎭⎫1-352×9+⎝⎛⎭⎫0-352×6=6
25.
因为x 甲>x 乙,s 2甲<s 2
乙,
所以甲组的研发水平优于乙组. (2)记事件E ={恰有一组研发成功}.
在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b )共7个. 故事件E 发生的频率为715.
将频率视为概率,
则得所求概率为P (E )=7
15.
即恰有一组研发成功的概率为7
15
.
2.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.
(1)求点P (x ,y )在直线y =x -2上的概率; (2)求点P (x ,y )满足y 2<2x 的概率. 解 每枚骰子出现的点数都有6种情况, 所以基本事件总数为6×6=36(个).
(1)记“点P (x ,y )在直线y =x -2上”为事件A , 则事件A 有4个基本事件:(3,1),(4,2),(5,3),(6,4), 所以P (A )=436=1
9
.
(2)记“点P (x ,y )满足y 2<2x ”为事件B ,
则事件B 有12个基本事件:(1,1),(2,1),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3), 所以P (B )=1236=1
3
.
3.甲、乙两人各射击一次,击中目标的概率分别是23和3
4.假设两人射击是否击中目标,相互
之间没有影响;每人各次射击是否击中目标,相互之间也没有影响. (1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(3)假设某人连续2次未击中目标,则中止其射击,则乙恰好射击5次后被中止射击的概率是多少?
解 (1)甲至少一次未击中目标的概率为 P 1=P 1(1)+P 1(2)+P 1(3)+P 1(4) =1-P 1(0)=1-(23)4(13)0=65
81.
(2)甲射击4次恰击中2次的概率为 P 2=C 24(23)2(13)2
=827
,
乙射击4次恰击中3次的概率为 P 3=C 34(34)3×14=2764, 由乘法公式,所求概率
P =P 2·P 3=827×2764=1
8
.
(3)乙恰好5次停止射击,则最后两次未击中,前三次都击中或第一与第二次恰有一次击中,第三次必击中,故所求概率为 P =(34)3(14)2+C 12
(34)2(14)3=451 024
. 4.(2014·辽宁)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
(1)根据表中数据,面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:
P (
2
≥k ) 解 (1)将2×22
=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(60×10-20×10)270×30×80×20
=
100
21
≈4.762. 因为4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.
(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}.
其中a i 表示喜欢甜品的学生,i =1,2;b j 表示不喜欢甜品的学生,j =1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.
用A 表示“3人中至多有1人喜欢甜品”这一事件,则事件A ={(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}. 事件A 是由7个基本事件组成,因而P (A )=710
.
5.某市日前提出,要提升市民素质和城市文明程度,促进经济发展有大的提速,努力实现“幸
福全市”的共建共享.现随机抽取50位市民,对他们的幸福指数进行统计分析,得到如下分布表:
(1)求这50(2)以这50人为样本的幸福指数来估计全市市民的总体幸福指数,若从全市市民(人数很多)任选3人,记ξ表示抽到幸福级别为“非常幸福或幸福”市民的人数,求ξ的分布列. (3)从这50位市民中,先随机选一个人,记他的幸福指数为m ,然后再随机选另一个人,记他的幸福指数为n ,求n <m +60的概率P .
解 (1)记E (X )表示这50位市民幸福指数的数学期望,则E (X )=1
50(90×19+60×21+30×7
+0×3)=63.6.
(2)ξ的可能取值为0,1,2,3. P (ξ=0)=C 03(45)0(15)3=1
125; P (ξ=1)=C 13(45)1(15)2=12125; P (ξ=2)=C 23(45)2(15)1=48125; P (ξ=3)=C 33(45)3(15)0=64125. 所以ξ的分布列为
(3)基本事件的总数为A 250满足条件n <m +60的有如下各种情况:
①满足m =0时,n =0,30的事件数为:A 13A 19,
②满足m =30时,n =0,30,60的事件数为:A 17A 130,③满足m =60时,n =0,30,60,90的事件数为:A 121A 149
④满足m =90时,n =0,30,60,90的事件数为:A 119A 149, 所以P =A 13A 19+A 17A 130+A 121A 149+A 119A 1
49
A 250
=
3×9+7×30+21×49+19×4950×49
=2 197
2 450. 6.(2014·江苏)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完
全相同.
(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P . (2)从盒中一次随机取出4个球,其中红球、黄球、绿球的
个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数.求X 的分布列和数学期望E (X ).
解 (1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,
所以P =C 24+C 23+C 2
2C 2
9=6+3+1
36=518
, 即取出的2个球颜色相同的概率为5
18.
(2)随机变量X 所有可能的取值为2,3,4.
{X =4}表示的随机事件是“取到的4个球是4个红球”, 故P {X =4}=C 44
C 49=1126
;
{X =3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,
故P (X =3)=C 34C 15+C 33C 16
C 4
9=20+6126=1363
; 于是P (X =2)=1-P (X =3)-P (X =4)=1-1363-1126=11
14.
所以随机变量X 的分布列如下表
因此随机变量X 的数学期望 E (X )=2×1114+3×1363+4×1126=20
9
.。