人教版九年级数学上册周周练(24.2)
人教版九年级数学上册周周测:第二十四章 圆周周测5(24.3—24.4)【精品】

第二十四章 圆周周测5一、选择题(共10小题,每小题3分,共30分)1.正八边形的每个内角为( )A .120°B .135°C .140°D .144°2.下列正多边形中,既是轴对称图形,又是中心对称图形的是( )A .正三角形B .正方形C .正五边形D .正七边形3.正五边形的中心角是( )A .108°B .90°C .72°D .60°4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC .若∠ABC =120°,OC =3,则弧BC 的长为( )A .πB .2πC .3πD .5π5.如图,正六边形ABCDEF 中,AB =2,点P 是ED 的中点,连接AP ,则AP 的长为( )A .32B .4C .13D .116.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( )A .21B .1C .23D .27.一个圆锥的侧面积是底面积的2倍,则该圆锥的侧面展开图的扇形圆心角等于( )A .90°B .120°C .150°D .180°8.如图,已知⊙O 的半径为13.弦AB =10,CD =24,则图中阴影部分的面积是( )A .π4169B .π3169C .π2169D .不能确定9.如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径长是( )A .π225B .13πC .25πD .π22510.蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,△ABC 的顶点都在格点上.设定AB 边如图所示,则△ABC 是直角三角形的个数有( )A .4个B .6个C .8个D .10个二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是__________12.一个扇形的半径为8 cm ,弧长为π316cm ,则扇形的圆心角为__________ 13.如图,△ABC 为⊙O 的内接三角形,AB =1,∠C =30°,则⊙O 的内接正方形的面积为______14.如图,⊙P 与轴切与点O ,点P 的坐标为(0,1),点A 在⊙P 上,且在第一象限,∠APO =120°,⊙P 沿轴正方向滚动.当点A 第一次落在轴上时,点A 的横坐标为________(结果保留π)15.如图,在△ABC 中,CA =CB =2,∠ACB =90°,以AB 的中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为__________16.如图,扇形OAB 中,∠AOB =60°,扇形半径为4,点C 在弧AB 上,CD ⊥OA ,垂足为D .当△OCD 的面积最大时,图中阴影部分的面积为__________三、解答题(共8题,共72分)17.(本题8分)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,求这个圆锥的底面半径18.(本题8分)如图,圆内接正五边形ABCDE中,对角线AC与BD相交于点P,求∠APB 和∠BDC的度数19.(本题8分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD =120°(1) 求证:CD是⊙O的切线(2) 若⊙O的半径为2,求图中阴影部分的面积20.(本题8分)如图,已知菱形ABCD的边长为1.5 cm,B、C两点在扇形AEF的弧EF上,求弧BC的长度及圆中阴影部分的面积21.(本题8分)如图,已知△ABC的三个顶点的坐标分别为A(5,4)、B (1,0)、C(6,0)(1) 将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出A的对应点A1的坐标(2) 先将△ABC向下平移3个单位,然后绕原点顺时针旋转90°,直接写出A点运动轨迹的路径长.22.(本题10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作⊙O,使⊙O经过点A和点D(1) 判断直线BC与⊙O的位置关系,并说明理由(2) 若AC=3,∠B=30°①求⊙O的半径②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分面积(结果保留根号和π)23.(本题10分)如图,在正方形ABCD中,AD=2,E是AB的中点.将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处,再将线段AF绕点F 顺时针旋转90°得线段FG,连接EF、CG(1) 求证:EF∥CG(2) 求点C、点A在旋转过程中形成的弧AC,弧AG与线段CG所围成的阴影部分的面积24.(本题12分)如图,⊙O的直径AB=4,AC是弦,沿AC折叠劣弧AC,记折叠后的劣弧为AmC(1) 如图1,当弧AmC经过圆心O时,求AC的长(2) 如图2.当弧AmC与AB相切于A时①画出弧AmC所在圆的圆心P②求AC的长(3) 如同3,设弧AmC与直径AB交于D,DB=,试用的代数式表示AC_________(直接写出结果)。
九年级数学上册第二十四章《圆》周滚动练(24.3-24.4)试题新人教版(2021年整理)

2018年秋九年级数学上册第二十四章《圆》周滚动练(24.3-24.4)试题(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋九年级数学上册第二十四章《圆》周滚动练(24.3-24.4)试题(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋九年级数学上册第二十四章《圆》周滚动练(24.3-24.4)试题(新版)新人教版的全部内容。
周滚动练(24.3~24。
4)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.(莱芜中考)如图,AB是☉O的直径,直线DA与☉O相切于点A,DO交☉O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为(C)A。
46°B。
47° C.48° D.49°2。
从一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边心距是(C)A.5B.10C.5 D。
103.(遵义中考)如图,半圆的圆心为O,直径AB的长为12,C为半圆上一点,∠CAB=30°,的长是(D)A.12πB.6πC.5πD.4π4。
扇形的弧长为20π cm,面积为240π cm2,那么扇形的半径是(C)A。
6 cm B.12 cmC。
24 cm D.28 cm5。
(达州中考)如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B',则图中阴影部分的面积是(B)A.12πB.24πC。
6πD。
36π6。
如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(有阴影部分)面积之和为S2,则=(A) A。
人教版九年级上册数学 24章复习题含答案。

24.1垂直于弦的直径1. 在⊙O 中,AB 为弦,AB OC ⊥于点C ,交⊙O 于点D ,若5=AO ,2=CD ,则弦AB 的长为( )A.4B.6C.8D.102.如图,⊙O 的弦AB 垂直平分半径OC ,则四边形OACB ( ) A.是正方形 B.是长方形 C.是菱形 D.以上答案都不对3.设P 为半径6cm 的圆内的一点,它到圆心的距离为3.6cm,则经过点P 的最短弦的长度是 ( ).A .4.8cmB .7.2cmC .6.4cmD .9.6cm4.在直径是20cm 的⊙O 中,∠AOB 是60°,那么弦AB 的弦心距是( )5.若圆的半径3,圆中一条弦为52,则此弦中点到弦所对劣弧的中点的距离为 .6.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如右图所示,已知AB =16m ,半径OA =10m ,高度CD 为_____m.7.圆中一弦把和它垂直的直径分成3 cm 和4 cm 两部分,则这条弦长为________. 8.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示, 则这个小孔的直径是 mm.9.已知:如图,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且BF AE =.求证:OF OE =.10.已知:如图, ⊙O 的直径CD 垂直弦AB 于P , 且PA =4cm, PD =2cm .AB 第2题图第6题图DBAO CBA 8mm第8题图求:⊙O的半径长.11.如图,已知:⊙O中,弦AB与弦CD互相垂直,垂足为E,又AE=3,EB=7,求O点到CD的距离.12.已知:如图,AB,CD是⊙O的弦,且AB⊥CD于H,A H=4,B H=6,C H=3,D H=8.求:⊙O 的半径.13. 如图弓形的弦AB=6cm,弓形的高是1cm,求其所在圆的半径.14.某机械传动装置在静止时如图所示,连杆PB与B的运动所形成的⊙O交于点A,测量得PA=4cm,AB=8cm,⊙O的半径是5cm,求点P到圆心O 的距离.人教版九年级数学 24.2 点和圆、直线和圆的位置关系一、选择题1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 2018·眉山如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于( )A.27° B.32° C.36° D.54°3. 在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B 在⊙A内,则实数a的取值范围是( )A.a>2 B.a>8C.2<a<8 D.a<2或a>84. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD5. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设( )A.∠A>45°,∠B>45° B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是 ( )A.3步B.5步C.6步D.8步7. 已知⊙O的半径为2,点P在⊙O内,则OP的长可能是( )A.1 B.2C.3 D.48. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定二、填空题9. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB.P为⊙C上的动点,∠APB=90°,则AB长的最大值为________.10. 已知在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则直线BC与⊙A 的位置关系是________.11. 如图,菱形ABOC的边AB,AC分别与☉O相切于点D,E,若点D是AB的中点,则∠DOE= .12. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A上,点________在⊙A外.13. (2019•河池)如图,PA、PB是的切线,A、B为切点,∠OAB=38°,则∠P=_______ ___.14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O 的半径为________.15. 如图,在扇形ABC中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为________.O16. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB 只有一个公共点,则R的取值范围是______________.三、解答题17. 2020·凉山州模拟如图,⊙O的直径AB=10 cm,弦BC=6 cm,∠ACB的平分线交⊙O 于点D,交AB于点E,P是AB延长线上一点,且PC=PE.(1)求证:PC是⊙O的切线;(2)求AC,AD的长.18. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.19. 已知:如图,在Rt△ABC中,∠C=90°,AC=8,AB=10.点P在AC上,AP=2.若⊙O的圆心在线段BP上,且⊙O与AB,AC分别切于点D,E.求:(1)△BAP的面积S;(2)⊙O的半径.人教版九年级数学 24.2 点和圆、直线和圆的位置关系课时训练-答案一、选择题1. 【答案】D[解析]∵AB为☉O的切线,∴∠OAB=90°.∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2. 【答案】A3. 【答案】C4. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】B二、填空题9. 【答案】1610. 【答案】相切11. 【答案】60°[解析]连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与☉O相切于点D,∴OD⊥AB.∵D是AB的中点,∴OD是AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∴∠AOD=∠AOB=30°,同理∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为60°.112. 【答案】O B,D C [解析] ∵四边形ABCD为正方形,∴AC⊥BD,AO=BO=CO=DO. 设AO=BO=x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x=22(负值已舍去),∴AO =22<1,AC =2>1,∴点O 在⊙A 内,点B ,D 在⊙A 上,点C 在⊙A 外.13. 【答案】76【解析】∵是的切线,∴, ∴,∴,∴,故答案为:76.14. 【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵BC与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】135° [解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.16. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD=12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB 相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.PA PB 、O PA PB PA OA =⊥,90PAB PBA OAP ∠=∠∠=︒,90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒180525276P ∠=︒-︒-︒=︒三、解答题17. 【答案】解:(1)证明:连接OC,如图所示.∵AB是⊙O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠EAC=90°-∠ABC,∠ABC=∠OCB,∴∠PCE=90°-∠OCB+45°=90°-(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.(2)连接BD,如图所示.在Rt△ACB中,AB=10 cm,BC=6 cm,∴AC=AB2-BC2=102-62=8(cm).∵∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=22AB=5 2(cm).18. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD ⊥l ,∴AD ∥OC ,∴∠DAC =∠ACO.∵OA =OC ,∴∠ACO =∠CAO ,∴∠DAC =∠CAO ,即AC 平分∠DAB.(2)如图②,连接BF.∵AB 是⊙O 的直径,∴∠AFB =90°,∴∠BAF =90°-∠B.∵∠AEF =∠ADE +∠DAE =90°+∠DAE ,又由圆内接四边形的性质,得∠AEF +∠B =180°,∴90°+∠DAE +∠B =180°, ∴∠DAE =90°-∠B ,∴∠BAF =∠DAE.19. 【答案】解:(1)∵∠C =90°,AC =8,AB =10,∴在Rt △ABC 中,由勾股定理,得BC =6,∴△BAP 的面积S =12AP ·BC =12×2×6=6. (2)连接OD ,OE ,OA.设⊙O 的半径为r ,则S △BAP =12AB ·r +12AP ·r =6r , ∴6r =6,解得r =1.故⊙O 的半径是1.24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,面积等于b,ab的值为()A.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC 内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究(2)如图②,在△ABC中,AB=BC,∠ABC=120∘,AC=6,求△ABC外接圆的半径及AB+BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD的人工湖,已知AD//BC,AD⊥AB,AB= 180m,BC=300m,AD>BC,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD内建一个湖心小岛P,并分别修建观光长廊PB和PC,且PB和PC相互垂直.为了容纳更多的游客,要使线段PB、PC之和尽可能的大.试问PB+PC是否存在最大值?若存在,请求出PB+PC的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,的值为()面积等于b,abA.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究 (2)如图②,在△ABC 中,AB =BC,∠ABC =120∘,AC =6,求△ABC 外接圆的半径及AB +BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD 的人工湖,已知AD//BC ,AD ⊥AB ,AB =180m ,BC =300m ,AD >BC ,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD 内建一个湖心小岛P ,并分别修建观光长廊PB 和PC ,且PB 和PC 相互垂直.为了容纳更多的游客,要使线段PB 、PC 之和尽可能的大.试问PB +PC 是否存在最大值?若存在,请求出PB +PC 的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)人教版 九年级数学 24.4 弧长和扇形面积一、选择题1. 如图在等边三角形ABC 中,将边AC 逐渐变成以BA 为半径的AC ︵,其他两边的长度不变,则∠ABC 的度数由60°变为( )图A .(180π)°B .(120π)°C .(90π)°D .(60π)°2. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A .2πB .4πC .12πD .24π3. (2020·聊城)如图,有一块半径为1m ,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( )A .41m B .43m C .415m D .23m 4. (2020·聊城)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点M ,连接OC ,DB ,如果OC∥DB ,OC =23,那么图中阴影部分的面积是( )A .πB .2πC .3πD .4π5. 2019·天水模拟 一个圆锥的轴截面是一个正三角形,则圆锥侧面展开图形的圆心角是( ) A .60° B .90° C .120° D .180°6. 用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A. 2 cm B .3 2 cm C .4 2 cm D .4 cm7. (2020·苏州)如图,在扇形OAB 中,已知90AOB ∠=︒,2OA =,过AB 的中点C作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )AM CBDA.1π-B.12π- C.12π-D.122π-8. 2018·黑龙江 如图在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 按逆时针方向旋转40°得到△ADE ,点B 经过的路径为弧BD ,则图阴影部分的面积为( )图A.143π-6B.259π C.338π-3D.33+π二、填空题9. (2020·湘潭)如图,在半径为6的⊙O 中,圆心角60AOB ︒∠=,则阴影部分面积为________.10. (2020·绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是______度.11. 如图所示,在△ABC 中,AB =BC =2,∠ABC =90°,则图中阴影部分的面积是________.12. 如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,AB =123,OP =6,则劣弧AB ︵的长为________.(结果保留π)13. 如图所示,有一直径是 2 米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC ,则:(1)AB 的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.14. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)15. (2020·新疆)如图,⊙O 的半径是2,扇形BAC 的圆心角为60°,若将扇形BAC 剪下转成一个圆锥,则此圆锥的底面圆的半径为____________.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 如图,AB 是半圆O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交半圆O 于点E ,连接CE.(1)判断CD 与半圆O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,半圆O 的半径为1,求图中阴影部分的面积.18. (2020·内江)如图,AB 是⊙O 的直径,C 是⊙O 上一点,ODBC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 是⊙O 的切线;(2)设OE 交⊙O 于点F ,若2DF BC ==,EF 的长; (3)在(2)的条件下,求阴影部分的面积.19. 如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上的点F 处,点C 落在点A 处,再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG. (1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.人教版 九年级数学 24.4 弧长和扇形面积 课时训练-答案一、选择题1. 【答案】A [解析] 设变形后的∠B =n °,AB =AC ︵的长=a .由题意可得n180π·a =a ,解得n =180π.2. 【答案】C [解析] 根据扇形的面积公式,S =120×π×62360=12π.故选C.3. 【答案】C 【解析】先利用弧长公式求得圆锥的底面半径,再利用勾股定理求圆锥的高.设圆锥形容器底面圆的半径为r ,则有2πr=180190⋅π,解得r =41,则圆锥的高为22)41(1-=415(m).4. 【答案】B【解析】借助圆的性质,利用等积转化求解阴影部分的面积.由垂径定理,得CM =DM ,∵OC ∥DB ,∴∠C =∠D ,又∵∠OMC =∠BMD ,∴△OMC ≌△BMD(ASA),∴OM =BM =21OB =21OC ,∴cos ∠COM =OC OM =21,∴∠COM =60°.∴S 阴影=S 扇形BOC =360)32(602⋅π=2π.5. 【答案】D6. 【答案】C [解析] 设纸帽底面圆的半径为r cm ,则2πr =120×π×6180,解得r =2.设圆锥的高为h cm ,由勾股定理得h2+r2=62,所以h2+22=62,解得h =4 2.7. 【答案】B【解析】本题考查了不规则图形面积的计算,连接OC ,由题意得∠DOC=∠BOC=45°,四边形OECD 为正方形,OC=2,由特殊角的三角函数得OE=OD=1,S 阴影=S 扇形OAB -S 正方形CEOD =290(2)360π⨯-12=2π-1,因此本题选B .8. 【答案】B [解析] ∵AB =5,AC =3,BC =4,∴AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形.由旋转的性质得,△ADE 的面积=△ABC 的面积,由图可知,阴影部分的面积=△ADE 的面积+扇形ADB 的面积-△ABC 的面积, ∴阴影部分的面积=扇形ADB 的面积=40π×52360=259π.二、填空题9. 【答案】6π【解析】本题考查了扇形面积的计算,解题的关键是熟记扇形面积的计算公式.阴影部分面积为26066360ππ⨯=,故答案为:6π.10. 【答案】100【解析】设圆心角的度数是n ,则2π×2.5=9180n π.解得n =100.11. 【答案】π-2 [解析] ∵在△ABC 中,AB =BC =2,∠ABC =90°,∴△ABC 是等腰直角三角形,∴S 阴影=S 半圆AB +S 半圆BC -S △ABC=12π×(22)2+12π×(22)2-12×2×2 =π-2.12. 【答案】 8π 【解析】∵AB 是小圆的切线,∴OP ⊥AB ,∴AP =12AB =6 3.如解图,连接OA ,OB ,∵OA =OB ,∴∠AOB =2∠AOP.在Rt △AOP 中,OA =OP 2+AP 2=12,tan ∠AOP =AP OP =636=3,∴∠AOP =60°.∴∠AOB =120°,∴劣弧AB 的长为120π·12180=8π.13. 【答案】(1)1 (2)14[解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2. ∵AB =AC ,AB2+AC2=BC2=2, ∴AB =1(米).(2)设所得圆锥的底面圆的半径为r 米. 根据题意,得2πr =90·π·1180,解得r =14.14. 【答案】6π [解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).15.【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接OA ,OB ,OC ,过点O 作OD ⊥AC 于点D .∵AB =AC ,OB =OC ,OA =OA ,所以△OAB ≌△OAC ,所以∠OAB =∠OAC =12∠BAC =12×60°=30°.在Rt △OAD 中,因为∠OAC =30°,OA =2,所以OD =1,AD 因为OD ⊥AC ,所以AC =2AD =BC l =60180×π×π.设此圆锥的底面圆的半径为r ,则r .16. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB -S △OAB)=2(90π×22360-12×2×2)=2π-4. 故答案为2π-4.三、解答题17. 【答案】解:(1)CD 与半圆O 相切.证明:∵AC 平分∠DAB ,∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA ,∴∠DAC =∠OCA ,∴OC ∥AD.∵AD ⊥CD ,∴OC ⊥CD.又∵OC 为半圆O 的半径,∴CD 与半圆O 相切.(2)连接OE.∵AC 平分∠DAB ,∴∠DAC =∠BAC ,∴EC ︵=BC ︵.又∵E 是AC ︵的中点,∴AE ︵=EC ︵=BC ︵,S 弓形AE =S 弓形CE ,∴∠BOC =∠EOC =60°.又∵OE =OC ,∴△OEC 是等边三角形,∴∠ECO =60°,CE =OC =1.由(1)得OC ⊥CD ,∴∠OCD =90°,∴∠DCE =30°,∴DE =12,DC =32, ∴S 阴影=S △DEC =12×12×32=38.18. 【答案】(1)证明:连接OC ,如图,∵OD ⊥BC ,∴CD=BD ,∴OE 为BC 的垂直平分线,∴EB=EC ,∴∠EBC=∠ECB ,∵OB=OC ,∴∠OBC=∠OCB ,∴∠OBC+∠EBC=∠OCB+∠ECB ,即∠OBE=∠OCE ,∵CE 为⊙O 的切线,∴OC ⊥CE ,∴∠OCE=90°, ∴∠OBE=90°,∴OB ⊥BE ,∴BE 与⊙O 相切.(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD 中,BD=12BC=∵OD2+BD2=OB2,∴222(2)R R -+=,解得R=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴在Rt △OBE 中,∠BEO=30º,OE=2OB=8,∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD ⊥BC 知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=OE=8,∴=S OBEC S S -阴影四边形扇形OBC =21120482360π⨯⨯ 163π=,【解析】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.(1)连接OC ,如图,根据垂径定理由OD ⊥BC 得到CD=BD ,则OE 为BC 的垂直平分线,所以EB=EC ,根据等腰三角形的性质得∠EBC=∠ECB ,加上∠OBC=∠OCB ,则∠OBE=∠OCE ;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE 与⊙O 相切;(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD ,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE ,利用EF=OE-OF 即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用=S OBEC S S 阴影四边形扇形OBC 代入数值即可求解.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC =AD =2,∠ABC =90°.∵△BEC 绕点B 逆时针旋转90°得△BFA ,∴△BFA ≌△BEC ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°,AF =CE ,∴∠AFB +∠FAB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG ,∴∠AFB +∠CFG =∠AFG =90°,AF =FG ,∴∠CFG =∠FAB =∠ECB ,CE =FG ,∴CE 綊FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG.(2)∵E 是AB 的中点,∴AE =BE =12AB. ∵△BFA ≌△BEC ,∴BF =BE =12AB =1, ∴AF =AB2+BF2= 5.由(1)知四边形EFGC 是平行四边形,FC 为其对角线,∴点G 到FC 的距离等于点E 到FC 的距离,即BE 的长,∴S 阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形FAG =90π·22360+12×2×1+12×(1+2)×1-90π·(5)2360=52-π4.。
2018年九年级数学上册第二十四章圆周滚动练24.2课件新版新人教版

解:( 1 )点A在圆上,B在圆外,点D在圆内. ( 2 )4.8.
15.( 12 分 )( 南充中考 )如图,在 Rt△ACB 中,∠ACB=90°,以 AC 为直径作☉O 交 AB 于点 D,E 为 BC 的中点,连接 DE 并延长交 AC 的延长线于点 F. ( 1 )求证:DE 是☉O 的切线; ( 2 )若 CF=2,DF=4,求☉O 直径的长.
11.如图,正方形 ABCD 的边长为 2,☉O 的直径为 AD,将正方形沿 EC 折叠,点 B 落在圆上的 F 点,则 BE 的长为
2 3
.
12.如图,在 Rt△ABC 中,∠C=90°,∠B=60°,内切圆 O 与边 AB,BC,CA 分别相切于点 D,E,F,则∠DEF 的度数为 75° .
1 2
17.( 14分 )如图,在△OAC中,以点O为圆心、OA长为半径作☉O,作OB⊥OC交☉O于点B,连接 AB交OC于点D,∠CAD=∠CDA. ( 1 )判断AC与☉O的位置关系,并证明你的结论; ( 2 )若OA=10,OD=2,求线段AC的长.
解:( 1 )AC是☉O的切线. ( 2 A,PB 与圆 O 相切,
∴PA=PB=6.
同理可得 AC=CE, BD=DE. △PCD 的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12. ( 2 )∵PA,PB 与圆 O 相切, ∴∠OAP=∠OBP=90°,∠P=50°. ∴∠AOB=360°-90°-90°-50°=130°. ������������ = ������������, 在 Rt△AOC 和 Rt△EOC 中, ������������ = ������������, ∴Rt△AOC≌Rt△EOC( HL ),∴∠AOC=∠COE, 同理可得∠DOE=∠BOD,∴∠COD= ∠AOB=65°.
九年级数学人教版(上册)周测(24.2)

A.① B.② C.③ D.④
4.如图,在平面直角坐标系中,点 A 在第一象限,⊙A 与 x 轴 交于 B(2,0),C(8,0)两点,与 y 轴相切于点 D,则点 A 的坐标是(A )
A.(5,4) B.(4,5) C.(5,3) D.(3,5)
5.如图,△ABC 的内切圆与三边分别相切于点 D,E,F,则 下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A= ∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°.其中正确的 个数是( B )
A.1 B.2 C.3 D.4
∴∠ODB=∠OBD. ∵AB=AC,∴∠ACB=∠OBD. ∴∠ODB=∠ACB.∴OD∥AC. ∴∠DEC=∠ODE=90°.∴DE⊥AC.
(2)四边形 ABFC 为菱形. 证明:∵AB 是⊙O 的直径,∴∠ADB=90°.
∴AD⊥BC.又∵AB=AC,∴DB=DC.
∵CF∥AB,∴∠BAD=∠CFD,∠ABD=∠FCD. ∴△ABD≌△FCD(AAS). ∴AB=CF.∴四边形 ABFC 为平行四边形. 又∵AB=AC, ∴四边形 ABFC 为菱形.
16.(13 分)如图,在△ABC 中,AB=AC,以 AB 为直径的⊙O 交边 BC 于点 D,切线 DE 交边 AC 于点 E,CF∥AB 交 AD 的延长 线于点 F,连接 BF 交⊙O 于点 G,连接 DG.求证:
(1)DE⊥AC. 证明:连接 OD, ∵DE 是⊙O 的切线,∴DE⊥OD. ∵OB=OD, ∴∠ODE=90°.
二、填空题(每小题 5 分,共 40 分) 6.正方形 ABCD 边长为 1,以点 A 为圆心, 2为半径作⊙A, 则点 C 在圆上(填“圆内”“圆外”或“圆上”).
第2周——2023-2024学年人教版数学九年级上册周周练(含答案)

第二周——2023-2024学年人教版数学九年级上册周周练考查范围:21.2.3~21.31.方程的解是( )A.-2B.1,-2C.-1,1D.-1,32.一元二次方程的解为( )A. B. C.且 D.或3.已知实数x满足,则的值是( )A.-2B.-2或6C.6D.6044.方程的解是( )A.,B.,C.,D.,5.已知一元二次方程的两根分别为,,则的值为( )A.-2B.2C.-1D.16.已知,是一元二次方程的两个实数根,下列结论错误的是( )A. B. C. D.7.电影《长津湖》上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达18亿元,将增长率记作x,则方程可以列为( )A.B.C.D.8.如图,有一张矩形纸片,长,宽,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是,求剪去的小正方形的边长.设剪去的小正方形的边长是,根据题意可列方程为( )A. B.C. D.9.以方程的两根分别为腰和底的等腰三角形的周长为__________.10.《新课程标准》将劳动从综合实践活动课中独立出来,劳动教育已纳入人才培养全过程.某校积极实施,建设校园农场.如图,该矩形农场长,宽,要求在农场内修筑同样宽的道路(图中阴影部分),余下部分作为试验田,且使试验田的面积为.若设道路的宽为,那么可列方程为___________(化为一般形式).11.已知方程的两根分别为,,则_______.12.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件. (1)设每件童装降价x元时,每天可销售_______________件,每件盈利____________元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.答案以及解析1.答案:C解析:或,故选:C.2.答案:D解析:,,或解得,.故选:D.3.答案:C解析:设,则方程变形为:,即,或6,即或6;当时,此方程无实数根(舍),当时,满足题意.故选:C.4.答案:B解析:,,,或,,故选B.5.答案:B解析:一元二次方程的两根分别为,,.6.答案:D解析:、是一元二次方程的两个实数根,这里,,,,所以方程有两个不相等的实数根,即,故A选项正确,不符合题意;,故B选项正确,不符合题意;,故C选项正确,不符合题意;,故D选项错误,符合题意,故选D.7.答案:D解析:设增长率记作x,则第二天的票房为,第三天的票房为,由题意得:,故选D.8.答案:B解析:剪去的小正方形的边长是,则纸盒底面的长为,宽为,根据题意,得.故选B.9.答案:7解析:解方程,得,,当1为腰,3为底时,不能构成等腰三角形;当3为腰,1为底时,能构成等腰三角形,周长为.故周长为7. 10.答案:解析:题图经过平移可转化为下图.根据题意,得,整理得.11.答案:13解析:根据题意得,,则.12.答案:(1);(2)每件童装降价20元时,平均每天赢利1200元(3)不可能平均每天赢利2000元,理由见解析解析:(1)设每件童装降价x元时,每天可销售件,每件盈利元,故答案为:,;(2)依题可得:,,,,,扩大销售量,增加利润,,答:每件童装降价20元时,平均每天赢利1200元;(3)根据题意得:,,,原方程无解.答:不可能平均每天赢利2000元.。
人教版九年级数学上册周周测:第二十四章 圆周周测5(24.3—24.4)【精品】
第二十四章 圆周周测5一、选择题(共10小题,每小题3分,共30分)1.正八边形的每个内角为( )A .120°B .135°C .140°D .144°2.下列正多边形中,既是轴对称图形,又是中心对称图形的是( )A .正三角形B .正方形C .正五边形D .正七边形3.正五边形的中心角是( )A .108°B .90°C .72°D .60°4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC .若∠ABC =120°,OC =3,则弧BC 的长为( )A .πB .2πC .3πD .5π5.如图,正六边形ABCDEF 中,AB =2,点P 是ED 的中点,连接AP ,则AP 的长为( )A .32B .4C .13D .116.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( )A .21B .1C .23D .27.一个圆锥的侧面积是底面积的2倍,则该圆锥的侧面展开图的扇形圆心角等于( )A .90°B .120°C .150°D .180°8.如图,已知⊙O 的半径为13.弦AB =10,CD =24,则图中阴影部分的面积是( )A .π4169B .π3169C .π2169D .不能确定9.如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径长是( )A .π225B .13πC .25πD .π22510.蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,△ABC 的顶点都在格点上.设定AB 边如图所示,则△ABC 是直角三角形的个数有( )A .4个B .6个C .8个D .10个二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是__________12.一个扇形的半径为8 cm ,弧长为π316cm ,则扇形的圆心角为__________ 13.如图,△ABC 为⊙O 的内接三角形,AB =1,∠C =30°,则⊙O 的内接正方形的面积为______14.如图,⊙P 与x 轴切与点O ,点P 的坐标为(0,1),点A 在⊙P 上,且在第一象限,∠APO =120°,⊙P 沿x 轴正方向滚动.当点A 第一次落在x 轴上时,点A 的横坐标为________(结果保留π)15.如图,在△ABC 中,CA =CB =2,∠ACB =90°,以AB 的中点D 为圆心,作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________16.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在弧AB上,CD⊥OA,垂足为D.当△OCD的面积最大时,图中阴影部分的面积为__________三、解答题(共8题,共72分)17.(本题8分)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,求这个圆锥的底面半径18.(本题8分)如图,圆内接正五边形ABCDE中,对角线AC与BD相交于点P,求∠APB 和∠BDC的度数19.(本题8分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°(1) 求证:CD是⊙O的切线(2) 若⊙O的半径为2,求图中阴影部分的面积20.(本题8分)如图,已知菱形ABCD的边长为1.5 cm,B、C两点在扇形AEF的弧EF上,求弧BC的长度及圆中阴影部分的面积21.(本题8分)如图,已知△ABC的三个顶点的坐标分别为A(5,4)、B (1,0)、C(6,0) (1) 将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出A的对应点A1的坐标(2) 先将△ABC向下平移3个单位,然后绕原点顺时针旋转90°,直接写出A点运动轨迹的路径长.22.(本题10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作⊙O,使⊙O经过点A和点D(1) 判断直线BC与⊙O的位置关系,并说明理由(2) 若AC=3,∠B=30°①求⊙O的半径②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分面积(结果保留根号和π)23.(本题10分)如图,在正方形ABCD中,AD=2,E是AB的中点.将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处,再将线段AF绕点F 顺时针旋转90°得线段FG,连接EF、CG(1) 求证:EF∥CG(2) 求点C、点A在旋转过程中形成的弧AC,弧AG与线段CG所围成的阴影部分的面积24.(本题12分)如图,⊙O的直径AB=4,AC是弦,沿AC折叠劣弧AC,记折叠后的劣弧为AmC(1) 如图1,当弧AmC经过圆心O时,求AC的长(2) 如图2.当弧AmC与AB相切于A时①画出弧AmC所在圆的圆心P②求AC的长(3) 如同3,设弧AmC与直径AB交于D,DB=x,试用x的代数式表示AC_________(直接写出结果)。
人教版九年级数学上册周周测:第二十四章 圆周周测5(24.3—24.4)【精品】
第二十四章 圆周周测5一、选择题(共10小题,每小题3分,共30分)1.正八边形的每个内角为( )A .120°B .135°C .140°D .144°2.下列正多边形中,既是轴对称图形,又是中心对称图形的是( )A .正三角形B .正方形C .正五边形D .正七边形3.正五边形的中心角是( )A .108°B .90°C .72°D .60°4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC .若∠ABC =120°,OC =3,则弧BC 的长为( )A .πB .2πC .3πD .5π5.如图,正六边形ABCDEF 中,AB =2,点P 是ED 的中点,连接AP ,则AP 的长为( )A .32B .4C .13D .116.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( )A .21B .1C .23D .27.一个圆锥的侧面积是底面积的2倍,则该圆锥的侧面展开图的扇形圆心角等于( )A .90°B .120°C .150°D .180°8.如图,已知⊙O 的半径为13.弦AB =10,CD =24,则图中阴影部分的面积是( )A .π4169B .π3169C .π2169D .不能确定9.如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径长是( )A .π225B .13πC .25πD .π22510.蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,△ABC 的顶点都在格点上.设定AB 边如图所示,则△ABC 是直角三角形的个数有( )A .4个B .6个C .8个D .10个二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是__________12.一个扇形的半径为8 cm ,弧长为π316cm ,则扇形的圆心角为__________ 13.如图,△ABC 为⊙O 的内接三角形,AB =1,∠C =30°,则⊙O 的内接正方形的面积为______14.如图,⊙P 与x 轴切与点O ,点P 的坐标为(0,1),点A 在⊙P 上,且在第一象限,∠APO =120°,⊙P 沿x 轴正方向滚动.当点A 第一次落在x 轴上时,点A 的横坐标为________(结果保留π)15.如图,在△ABC 中,CA =CB =2,∠ACB =90°,以AB 的中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为__________16.如图,扇形OAB 中,∠AOB =60°,扇形半径为4,点C 在弧AB 上,CD ⊥OA ,垂足为D .当△OCD 的面积最大时,图中阴影部分的面积为__________三、解答题(共8题,共72分)17.(本题8分)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,求这个圆锥的底面半径18.(本题8分)如图,圆内接正五边形ABCDE中,对角线AC与BD相交于点P,求∠APB 和∠BDC的度数19.(本题8分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD =120°(1) 求证:CD是⊙O的切线(2) 若⊙O的半径为2,求图中阴影部分的面积20.(本题8分)如图,已知菱形ABCD的边长为1.5 cm,B、C两点在扇形AEF的弧EF上,求弧BC的长度及圆中阴影部分的面积21.(本题8分)如图,已知△ABC的三个顶点的坐标分别为A(5,4)、B (1,0)、C(6,0)(1) 将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出A的对应点A1的坐标(2) 先将△ABC向下平移3个单位,然后绕原点顺时针旋转90°,直接写出A点运动轨迹的路径长.22.(本题10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作⊙O,使⊙O经过点A和点D(1) 判断直线BC与⊙O的位置关系,并说明理由(2) 若AC=3,∠B=30°①求⊙O的半径②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分面积(结果保留根号和π)23.(本题10分)如图,在正方形ABCD中,AD=2,E是AB的中点.将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处,再将线段AF绕点F 顺时针旋转90°得线段FG,连接EF、CG(1) 求证:EF∥CG(2) 求点C、点A在旋转过程中形成的弧AC,弧AG与线段CG所围成的阴影部分的面积24.(本题12分)如图,⊙O的直径AB=4,AC是弦,沿AC折叠劣弧AC,记折叠后的劣弧为AmC(1) 如图1,当弧AmC经过圆心O时,求AC的长(2) 如图2.当弧AmC与AB相切于A时①画出弧AmC所在圆的圆心P②求AC的长(3) 如同3,设弧AmC与直径AB交于D,DB=x,试用x的代数式表示AC_________(直接写出结果)。
【精品】人教版九年级数学上册周周测:第二十四章 圆周周测5(24.3—24.4)
第二十四章 圆周周测5一、选择题(共10小题,每小题3分,共30分)1.正八边形的每个内角为( )A .120°B .135°C .140°D .144°2.下列正多边形中,既是轴对称图形,又是中心对称图形的是( )A .正三角形B .正方形C .正五边形D .正七边形3.正五边形的中心角是( )A .108°B .90°C .72°D .60°4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC .若∠ABC =120°,OC =3,则弧BC 的长为( )A .πB .2πC .3πD .5π5.如图,正六边形ABCDEF 中,AB =2,点P 是ED 的中点,连接AP ,则AP 的长为( )A .32B .4C .13D .116.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( )A .21B .1C .23D .27.一个圆锥的侧面积是底面积的2倍,则该圆锥的侧面展开图的扇形圆心角等于( )A .90°B .120°C .150°D .180°8.如图,已知⊙O 的半径为13.弦AB =10,CD =24,则图中阴影部分的面积是( )A .π4169B .π3169C .π2169D .不能确定9.如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径长是( )A .π225B .13πC .25πD .π22510.蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,△ABC 的顶点都在格点上.设定AB 边如图所示,则△ABC 是直角三角形的个数有( )A .4个B .6个C .8个D .10个二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是__________12.一个扇形的半径为8 cm ,弧长为π316cm ,则扇形的圆心角为__________ 13.如图,△ABC 为⊙O 的内接三角形,AB =1,∠C =30°,则⊙O 的内接正方形的面积为______14.如图,⊙P 与x 轴切与点O ,点P 的坐标为(0,1),点A 在⊙P 上,且在第一象限,∠APO =120°,⊙P 沿x 轴正方向滚动.当点A 第一次落在x 轴上时,点A 的横坐标为________(结果保留π)15.如图,在△ABC 中,CA =CB =2,∠ACB =90°,以AB 的中点D 为圆心,作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________16.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在弧AB上,CD⊥OA,垂足为D.当△OCD的面积最大时,图中阴影部分的面积为__________三、解答题(共8题,共72分)17.(本题8分)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,求这个圆锥的底面半径18.(本题8分)如图,圆内接正五边形ABCDE中,对角线AC与BD相交于点P,求∠APB 和∠BDC的度数19.(本题8分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°(1) 求证:CD是⊙O的切线(2) 若⊙O的半径为2,求图中阴影部分的面积20.(本题8分)如图,已知菱形ABCD的边长为1.5 cm,B、C两点在扇形AEF的弧EF上,求弧BC的长度及圆中阴影部分的面积21.(本题8分)如图,已知△ABC的三个顶点的坐标分别为A(5,4)、B (1,0)、C(6,0) (1) 将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出A的对应点A1的坐标(2) 先将△ABC向下平移3个单位,然后绕原点顺时针旋转90°,直接写出A点运动轨迹的路径长.22.(本题10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作⊙O,使⊙O经过点A和点D(1) 判断直线BC与⊙O的位置关系,并说明理由(2) 若AC=3,∠B=30°①求⊙O的半径②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分面积(结果保留根号和π)23.(本题10分)如图,在正方形ABCD中,AD=2,E是AB的中点.将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处,再将线段AF绕点F 顺时针旋转90°得线段FG,连接EF、CG(1) 求证:EF∥CG(2) 求点C、点A在旋转过程中形成的弧AC,弧AG与线段CG所围成的阴影部分的面积24.(本题12分)如图,⊙O的直径AB=4,AC是弦,沿AC折叠劣弧AC,记折叠后的劣弧为AmC(1) 如图1,当弧AmC经过圆心O时,求AC的长(2) 如图2.当弧AmC与AB相切于A时①画出弧AmC所在圆的圆心P②求AC的长(3) 如同3,设弧AmC与直径AB交于D,DB=x,试用x的代数式表示AC_________(直接写出结果)。
人教版 九年级上册数学 24.2---24.3复习题(含答案)
24.2 点和圆、直线和圆的位置关系一、选择题(本大题共10道小题)1. 下列直线中,一定是圆的切线的是()A.与圆有公共点的直线B.垂直于圆的半径的直线C.到圆心的距离等于半径的直线D.经过圆的直径一端的直线2. 下列说法中,正确的是()A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线3. 如图,P是⊙O外一点,OP交⊙O于点A,OA=AP.甲、乙两人想作一条经过点P且与⊙O相切的直线,其作法如下:甲:以点A为圆心,AP长为半径画弧,交⊙O于点B,则直线BP即为所求.乙:过点A作直线MN⊥OP,以点O为圆心,OP长为半径画弧,交射线AM于点B,连接OB,交⊙O于点C,直线CP即为所求.对于甲、乙两人的作法,下列判断正确的是()A.甲正确,乙错误B.乙正确,甲错误C.两人都正确D.两人都错误4. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定5. 如图,AB为⊙O的切线,切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6. 如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()A.DE=DO B.AB=ACC.CD=DB D.AC∥OD7.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠A OD的度数为( )A. 70°B. 35°C.20°D. 40°8. 2020·黄石模拟如图,在平面直角坐标系中,A(-2,2),B(8,2),C(6,6),点P为△ABC的外接圆的圆心,将△ABC绕点O逆时针旋转90°,点P的对应点P′的坐标为()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)9. 如图,数轴上有A,B,C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外、⊙O内、⊙O上,则原点O的位置应该在()图A.点A与点B之间靠近点AB.点A与点B之间靠近点BC.点B与点C之间靠近点BD.点B与点C之间靠近点C10. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.8二、填空题(本大题共7道小题)11. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.12. 如图,∠APB=30°,⊙O的半径为1 cm,圆心O在直线PB上,OP=3 cm,若⊙O沿BP方向移动,当⊙O与直线PA相切时,圆心O移动的距离为__________.13. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.14. 如图,⊙O 的半径为1,正方形ABCD 的对角线长为6,OA =4.若将⊙O 绕点A 按顺时针方向旋转360°,则在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .4次C .5次D .6次15. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).16.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连接PM ,以点P 为圆心,PM 长为半径作⊙P .当⊙P 与正方形ABCD 的边相切时,BP 的长为________.17. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共4道小题)18. 如图,点O在∠APB的平分线上,⊙O与P A相切于点C.求证:直线PB与⊙O相切.19.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD的延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.20. 在Rt△ABC中,∠C=90°,AB=13,AC=5.(1)以点A为圆心,4为半径的⊙A与直线BC的位置关系是________;(2)以点B为圆心的⊙B与直线AC相交,求⊙B的半径r的取值范围;(3)以点C为圆心,R为半径的⊙C与直线AB相切,求R的值.21. 如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.求证:直线DM是⊙O的切线.人教版九年级数学24.2 点和圆、直线和圆的位置关系同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】C[解析] 对于甲的作法:连接OB,如图①.∵OA=AP,∴OP为⊙A的直径,∴∠OBP=90°,即OB⊥PB,∴PB为⊙O的切线,∴甲的作法正确.对于乙的作法:如图②,∵MN ⊥OP ,∴∠OAB =90°.在△OAB 和△OCP 中,⎩⎨⎧OA =OC ,∠AOB =∠COP ,OB =OP ,∴△OAB ≌△OCP ,∴∠OAB =∠OCP =90°,即OC ⊥PC , ∴PC 为⊙O 的切线, ∴乙的作法正确.4. 【答案】B5. 【答案】D[解析] ∵AB 为⊙O 的切线,∴∠OAB =90°.∵∠ABO =36°,∴∠AOB =90°-∠ABO =54°. ∴∠ADC =12∠AOB =27°.故选D.6. 【答案】A7.【答案】D 【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B =20°,∴∠AOD =∠B +∠BDO =2∠B =2×20°=40°.8. 【答案】A9. 【答案】C[解析] 如图.10. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB 的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.二、填空题(本大题共7道小题)11. 【答案】3<r<5[解析] 连接BD.在Rt△ABD中,AB=4,AD=3,则BD=32+42=5.由题图可知3<r<5.12. 【答案】1 cm或5 cm[解析] 当⊙O与直线PA相切时,点O到直线PA的距离为1 cm.∵∠APB=30°,∴PO=2 cm,∴圆心O移动的距离为3-2=1(cm)或3+2=5(cm).13. 【答案】t=2或-1≤t<1[解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当点O到直线l的距离OC=1时,直线l与半圆O相切,设直线l与y轴交于点D,则OD=2,即t= 2.当直线过点A时,把A(-1,0)代入直线l的解析式,得t=y-x=1.当直线过点B时,把B(1,0)代入直线l的解析式,得t=y-x=-1.即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.14. 【答案】B[解析] ∵正方形ABCD 的对角线长为6,∴它的边长为3 2.如图,⊙O 与正方形ABCD 的边AB ,AD 只有一个公共点的情况各有1次,与边BC ,CD 只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现4次.15. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确. 补全⊙O ,延长CE 交⊙O 于点F . ∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵. 又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵, ∴∠CAP =∠ACP ,∴AP =CP . ∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°, ∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点, ∴点P 为Rt △ACQ 的外心,故③正确.16. 【答案】3或4 3 [解析] 如图①,当⊙P 与CD 边相切时,设PC =PM =x .在Rt △PBM 中,∵PM2=BM2+BP2,∴x2=42+(8-x)2,∴x=5,∴PC=5,∴BP=BC-PC=8-5=3.如图②,当⊙P与AD边相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形,∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,BP=82-42=4 3.综上所述,BP的长为3或4 3.17. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB与⊙M′相交.三、解答题(本大题共4道小题)18. 【答案】证明:如图,连接OC,过点O作OD⊥PB于点D.∵⊙O与P A相切于点C,∴OC⊥P A.∵点O在∠APB的平分线上,OC⊥P A,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.19. 【答案】解:(1)证明:如图,连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠OAC=∠OCA=30°.又∵AP=AC,∴∠P=∠OCA=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A.又∵OA是⊙O的半径,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OD=OA.∵PD=5,∴2OA=2PD=2 5,∴⊙O的直径为2 5.20. 【答案】解:(1)∵AC⊥BC,而AC>4,∴以点A为圆心,4为半径的⊙A与直线BC相离.故答案为相离.(2)BC=AB2-AC2=12.∵BC⊥AC,∴当⊙B 的半径大于BC 的长时,以点B 为圆心的⊙B 与直线AC 相交,即r >12.(3)如图,过点C 作CD ⊥AB 于点D . ∵12CD ·AB =12AC ·BC ,∴CD =5×1213=6013.即当R =6013时,以点C 为圆心,R 为半径的⊙C 与直线AB 相切.21. 【答案】证明:如图,作直径DG ,连接BG .∵点E 是△ABC 的内心,∴AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠G =∠BAD ,∠BDM =∠DAC ,∴∠BDM =∠G .∵DG 为⊙O 的直径,∴∠GBD =90°,∴∠G +∠BDG =90°,∴∠BDM +∠BDG =90°,即∠MDG =90°.又∵OD 是⊙O 的半径,∴直线DM 是⊙O 的切线.24.3正多边形和圆一、选择题1.如图,四边形ABCD 是⊙O 的内接四边形,AB 为⊙0直径,点C 为劣弧BD 的中点,若∠DAB=40°,则∠ABC=( ).A .140°B .40°C .70°D .50° 2.如图,圆O 是△ABC 的外接圆,连接OA 、OC ,∠OAC =20°,则∠ABC 的度数为( )A .140°B .110°C .70°D .40° 3.如图,已知△ABC 为⊙O 的内接三角形,AB >AC .E 为BAC 的中点,过E 作EF ⊥AB 于F .若AF =1,AC =4,∠C =60°,则⊙O 的面积是( )A .8πB .10πC .12πD .18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD与等边△ACE,连接BE、CD,BE的延长线与CD交于点F,下列结论:(1)BE=CD ;(2)AF平分∠EAC ;(3)∠BFD=60°;(4)AF+FD=BF 其中正确的有()A.1个B.2个C.3个D.4个7.正方形ABCD中,对角线AC、BD交于O,Q为CD上任意一点,AQ交BD于M,过M作MN⊥AM交BC于N,连AN、QN.下列结论:①MA=MN;②∠AQD=∠AQN;③S△AQN=1 2 S五边形ABNQD;④QN是以A为圆心,以AB为半径的圆的切线.其中正确的结论有()A.①②③④B.只有①③④C.只有②③④D.只有①②8.如图,在菱形ABCD中,点P是BC边上一动点,连结AP,AP的垂直平分线交BD于点G,交AP于点E,在P点由B点到C点的运动过程中,∠APG的大小变化情况是( )A.变大B.先变大后变小C.先变小后变大D.不变9.如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.755B.5C5D35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD 内接于⊙O,点E 是弧AB 上的一动点(不与点A 、B 重合),点F 是弧BC 上的一点,连接OE ,OF ,分别与交AB ,BC 于点G ,H ,且∠EOF=90°,连接GH ,有下列结论:①弧AE=弧BF ;②△OGH 是等腰直角三角形;③四边形OGBH 的面积随着点E 位置的变化而变化;④△GBH 周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt △ABC 中,∠BAC =90°,BC =5,AB =3,点D 是线段BC 上一动点,连接AD ,以AD 为边作△ADE ∽△ABC ,点N 是AC 的中点,连接NE ,当线段NE 最短时,线段CD 的长为_____.14.如图,四边形ABCD 内接于⊙O ,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下列结论:①AM =MN ;②MP =12BD ;③BN +DQ =NQ ;④+AB BN BM为定值2.一定成立的是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD 是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD 内接于⊙O ,AB =AD ,则∠ACD ∠ACB (填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD 中,AB =BC =2,等边角∠ABC =120°,等补对角线BD 与等边垂直,求CD 的长.19. 定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC 中,AB=2,BC=52,AC=3,D 为平面内一点,以A 、B 、C 、D 四点为顶点构成的四边形为“完美四边形”,若DA ,DC 的长是关于x 的一元二次方程x 2-(m+3)x+14(5m 2-2m+13)=0(其中m 为常数)的两个根,求线段BD 的长度.(3)如图2,在“完美四边形”EFGH 中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH 面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C .①若86PA PB ==,,求AB 的长②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,2AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形;(2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 11312.①②④13.411014.6415.①②③④16.17.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4.19.(1)正方形、矩形;(2)3;(3)49.20.(1)略;(2)43π 21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)AP ≥(2)QAP ∠为定值,QAP ∠=30°;(3)14,0)Q ,24,0)Q ,3(0)Q -,4,0)Q。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周周练(24.2)
(时间:45分钟满分:100分)
一、选择题(每小题3分,共24分)
1.圆的半径为5 cm,圆心到一条直线的距离是7 cm,则直线与圆()
A.有两个公共点B.有一个公共点
C.没有公共点D.公共点个数不定
2.下列说法中,正确的是()
A.三点确定一个圆
B.三角形的外心到三角形三边的距离相等
C.三角形有且只有一个外接圆
D.圆有且只有一个内接三角形
3.直线和圆没有公共点,则直线和圆的位置关系是()
A.相交B.相切
C.相离D.无法确定
4.(厦门中考)如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切
于点D,则该圆的圆心是()
A.线段AE的中垂线与线段AC的中垂线的交点
B.线段AB的中垂线与线段AC的中垂线的交点
C.线段AE的中垂线与线段BC的中垂线的交点
D.线段AB的中垂线与线段BC的中垂线的交点
5.(吉林中考)如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为
()
A.40°B.50°
C.80°D.100°
6.如图,已知PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()
A.70°
B.50°
C.40°
D.20°
7.在△ABC中,I是内心,∠BIC=115°,则∠A的度数为()。