流体流动控制方程

合集下载

4-2流体流动的控制方程 - N-S及欧拉方程

4-2流体流动的控制方程 - N-S及欧拉方程

牛顿型流体的控制方程
N-S方程 方程
∂ 2u ∂ 2u ∂ 2u ∂u 1 ∂p ∂u ∂u ∂u 2 + 2 + 2 = +ν fx − ∂t + u ∂x + v ∂y + w ∂z ρ ∂x ∂x ∂y ∂z ∂ 2 v ∂ 2 v ∂ 2 v ∂v 1 ∂p ∂v ∂v ∂v f y− +ν 2 + 2 + 2 = + u + v + w ρ ∂y ∂x ∂y ∂z ∂t ∂x ∂y ∂z ∂ 2 w ∂ 2 w ∂ 2 w ∂w 1 ∂p ∂w ∂w ∂w fz − +ν 2 + 2 + 2 = ∂x ∂t + u ∂x + v ∂y + w ∂z ρ ∂z ∂y ∂z
牛顿型流体的控制方程
重力场中理想流体的伯努利方程(能量方程) 重力场中理想流体的伯努利方程(能量方程)
2 2 U1 p U2 p2 + 1 + z1 = + + z2 2g ρg 2g ρg
U p + + z = con st 2g ρg
2
牛顿型流体的控制方程
重力场中理想流体的伯努利方程 位置水头 压强水头 测压管水头 速度水头 总水头
z
p ρg
p z+ ρg
U2 2g
U2 p H0 = + +z 2g ρg
流体仿真与应用型流体的控制方程
不可压缩流体, 不可压缩流体,根据连续方程
∂u k =0 ∂x k
∂ (ρui ) ∂ (ρui u j ) ∂p ∂ ∂ui µ + = ρf i − + ∂x ∂t ∂x j ∂xi ∂x j j

流体流动的基本方程

流体流动的基本方程

4)运动粘度
v

单位: SI制:m2/s; 物理单位制:cm2/s,用St表示。
1St 100cSt 104 m 2 / s
关于黏度的讨论
① 黏度是流体的重要物理性质之一,可由实验测定 ② 常见流体的黏度值可由相关手册中查取;当缺乏实验数据 时,还可由经验公式计算 ③ 一般气体的黏度值远小于液体的黏度值 ④ 流体的黏度是温度T的函数 气体:T↑,黏度↑ 液体:T↑,黏度↓
运动流体的流速、压强、密度等有关物理量 稳态流动: 仅随位置而改变,而不随时间而改变 上述物理量不仅随位置而且随时间变化的流 非稳态流动: 动。
三、牛顿粘性定律与流体的粘度
1. 牛顿粘性定律
流体的内摩擦力:运动着的流体内部相邻两流体层间的作 用力。又称为粘滞力或粘性摩擦力。 ——流体阻力产生的来源
一、流量与流速
1、流量
单位时间内流过管道任一截面的流体量,称为流量。 若流量用体积来计量,称为体积流量VS;单位为:m3/s。 若流量用质量来计量,称为质量流量mS;单位:kg/s。 体积流量和质量流量的关系是: mS VS
2、流速
单位时间内流体在流动方向上流过的距离,称为流速u。
VS 单位为:m/s。数学表达式为: u A
mS u1 A11 u2 A2 2
若流体为不可压缩流体
uA 常数
VS
mS

u1 A1 u2 A2
uA 常数
——一维稳态流动的连续性方程
对于圆形管道,
2 2 u1 d1 u2 d 2 4 4
u1 d 2 u2 d 1
?
⑤ 流体的黏度值一般不随压力而变化
流体的分类: 按流体流动时应力与速度梯度之间的关系,流体可分为 牛顿型流体: 服从牛顿粘性定律的流体, 应力与速度梯度成正比例关 系 非牛顿型流体:不服从牛顿粘性定律的流体 , 应力与速度梯度不满足正 比例关系

1.3.1流体流动及其基本方程

1.3.1流体流动及其基本方程
黏度
二、流体流动的基本方程
流体动力学主要研究流体流动过程中流速、压力等物理量的变化规 律,研究所采用的基本方法是通过守恒原理(包括质量守恒、能量守恒 及动量守恒)进行质量、能量及动量衡算,获得物理量之间的内在联系 和变化规律。
作衡算时,需要预先指定衡算的空间范围,称之为控制体,而包围 此控制体的封闭边界称为控制面。
(2)流动系统的机械能衡算方程
⒈机械能的转换与损失 流动系统中所包括的能量
动能
机械能
位能 压力能(流动功)
外功
内能和热
流体输送过程中各种机械能相互转换。 由于流体的黏性作用,流体输送过程中还消耗部分机械能,将其转化为流体的内能。
(2)流动系统的机械能衡算方程
⒉流体定态流动的机械能衡算式
假设流动为定态过程,由热力学第一定律可知
一、流体流动概述
流体流动体系分类
(3)绕流与封闭管道内的流动
流体流动的方式
流体的绕流流动
流体绕过一个浸没物体的流动称 为绕流,也称外部流动。例如,填充 床内流动,颗粒在流体中的沉降运动, 流体在管道中绕过障碍物的流动等。
在封闭管道内的流动
如果流体是在封闭管道内的流动, 且没有绕过障碍物,则将流体的流动 称之为封闭管道内的流动。
hf
适用条件: 不可压缩流体
对于理想流体,Σhf =0,若再无外功加入,则有:
gZ1
u12 2
p1
=
gZ2
u22 2
p2
工程伯努利 (Bernoulli)方程
二、流体流动的基本方程
伯努利方程的讨论
(1)伯努利方程的物理意义
由公式
gZ1
u12 2
p1
=
gZ2

第二节 流体流动的基本方程式

第二节  流体流动的基本方程式

第二节 流体流动的基本方程式化工厂中流体大多是沿密闭的管道流动,液体从低位流到高位或从低压流到高压,需要输送设备对液体提供能量;从高位槽向设备输送一定量的料液时,高位槽所需的安装高度等问题,都是在流体输送过程中经常遇到的。

要解决这些问题,必须找出流体在管内的流动规律。

反映流体流动规律的有连续性方程式与柏努利方程式。

1-2-1 流量与流速一、流量单位时间内流过管道任一截面的流体量称为流量。

若流体量用体积来计量,称为体积流量,以V s 表示,其单位为m 3/s ;若流体量用质量来计量,则称为质量流量,以w s 表示,其单位为kg/s 。

体积流量与质量流量的关系为:w s =V s ·ρ (1-16) 式中 ρ——流体的密度,kg/m 3。

二、流速单位时间内流体在流动方向上所流经的距离称为流速。

以u 表示,其单位为m/s 。

实验表明,流体流经管道任一截面上各点的流速沿管径而变化,即在管截面中心处为最大,越靠近管壁流速将越小,在管壁处的流速为零。

流体在管截面上的速度分布规律较为复杂,在工程计算中为简便起见,流体的流速通常指整个管截面上的平均流速,其表达式为: A V u s = (1-17)式中 A ——与流动方向相垂直的管道截面积,m 2。

流量与流速的关系为:w s =V s ρ=uA ρ (1-18) 由于气体的体积流量随温度和压强而变化,因而气体的流速亦随之而变。

因此采用质量流速就较为方便。

质量流速,单位时间内流体流过管路截面积的质量,以G 表示,其表达式为:ρρu A V A w G s s === (1-19)式中 G ——质量流速,亦称质量通量;kg/(m 2·s )。

必须指出,任何一个平均值都不能全面代表一个物理量的分布。

式1-17所表示的平均流速在流量方面与实际的速度分布是等效的,但在其它方面则并不等效。

一般管道的截面均为圆形,若以d 表示管道内径,则 24d V u s π= 于是 uV d sπ4=(1-20) 流体输送管路的直径可根据流量及流速进行计算。

第三节流体流动的基本方程

第三节流体流动的基本方程

gZ1 u12
2

P1

We
gZ 2 u22 2
P2

hf
1) 柏努利方程的物理意义:在任一垂直流动方向的截面上,单位质 量流体的总机械能守恒,而每一种形式的机械能不一定相等,可以 相互转换;
2) 当流体静止时,u=0,Σhf=0,We=0,则柏努利方程变为静力学 方程,可见静力学方程式是柏努利方程的特例;
总费用
操作费
设备费
u适宜
u
u ↑→ d ↓ →设备费用↓ 流动阻力↑ →动力消耗↑ →操作费↑
均衡 考虑
一般,液体经济流速取0.5―3.0m/s,气体经济流速取10―30m/s
1.3.2 稳态流动与非稳态流动
稳态流动:流动系统中,各截面上的流体流速、压强、密度 等只是位置的函数,而不随时间变化的流动;
20%
P1
上式仍可用于计算。但此时式中ρ = ρm = ( ρ1+ ρ2 )/ 2,由此产生 误差≤5%。属工程所允许的误差范围。
1.3.5 柏努利方程的应用
1、应用柏努利方程解题要点 1)作图并确定衡算范围
根据题意画出流动系统的示意图,并指明流体的流动方向, 定出上下截面,以明确流动系统的衡算范围。
H

g
Z

u2 2

qe
We
注:在发生焓变的流动过程中: 由于
H gZ u2 2
及 H We
则:上式右简化为 △H = qe 或 H2 = H1 + qe
对于方程
U


P




u2 2


gZ

流体力学中的三大基本方程

流体力学中的三大基本方程

a 流体质点加速度 在三个坐标轴上的分量表示成:
ax
dx
dt
x
t
x
x
x
y
x
y
z
x
z
ay
d y
dt
y
t
x
y
x
y
y
y
z
y
z
az
dz
dt
z
t
x
z
x
y
z
y
z
z
z
⑷代入牛顿第二定律求得运动方程: 得x方向上的运动微分方程:
dx
dt
dxdydz
p x
dxdydz
fxdxdydz
单位体积流体的运动微分方程:
2 :单位重量流体所具有的动能;
2g
理解:质量为m微团以v 运动,具有mv2/2动能,若用 重量mg除之得v2/2g
三者之和为单位重量流体具有的机械能。
物理意义: 理想、不可压缩流体在重力场中作稳定 流动时,沿流线or无旋流场中流束运动 时,单位重量流体的位能,压力能和动 能之和是常数,即机械能是守恒的,且 它们之间可以相互转换 。
②物理意义:揭示了沿某一根流线运动着 的流体质点速度,位移和压强、密度四者 之间的微分关系。
3.1 伯努利方程积分形式
1.沿流线的积分方程:
gdz 1 dp d 0
2
2
gz
dP
C
设: const
2 gz p C
2
Or
z p 2 C
r 2g
——理想流体微元流束的伯努利方程。
①适用条件:理想流体、不可压缩性流体、稳定 流动、质量力只有重力,且沿某一根流线; ②任选一根流线上的两点:

流体流动的控制方程

流体流动的控制方程
第四讲
流体仿真与应用
牛顿型流体的控制方程
▼流体的本构关系
应力张量与变形速率张量之间的关系
▼斯托克斯对牛顿流体本构关系提出3条假设
①流体静止时,切应力为0,正应力为流体的静压强p,
即热力学平衡态压强。

②流体的物理性质仅随空间位置的改变而变化,与方位无
关,即流体具有各向同性的性质。

③流体的应力张量与变形速率张量呈线性关系。

流动现象及其数学模型的类别
▼流动现象分类
①按流态的不同,可分为层流和湍流。

②按流动速度的级别,可分为蠕动流、低速流、高速流、超
声速流、高超声速流。

③按流体受阻状况,分为自由流和剪切流。

④按流线形态,可分为直线流、旋转流与分离流。

⑤按参照物的尺度,可分为大尺度流、中尺度流、小尺度流
和微尺度流。

▼流动现象及控制方程的一般分类
流动现象恒定流非恒定流
非剪切流椭圆型抛物型
剪切流抛物型抛物型
▼关于抛物型方程定解条件
对于抛物型方程,需要在与二阶导数相关的自变量方向的两端给出定解条件,在与一阶导数相关的自变量方向上一端给出定解条件,另一端待定,方程才能定解。

▼初始条件——定解条件关于时间变量的,称为初始条件。

要求给出在记时开始的瞬间流场中各物理量的空间分布。

▼边界条件——定解条件关于空间变量的,称为边界条件。

▼不可压缩流体流动控制方程定解条件
○关于恒定流动,只需对流动区域提出边界条件。

○关于非恒定流动,在恒定流动的边界条件的基础上,给出初始时刻中各物理量的分布规律,即初始条件,就构成了非恒定流动的定解条件。

流体力学三大基本方程公式

流体力学三大基本方程公式流体力学是研究流体(液体和气体)行为的一门学科,而其中的三大基本方程就像是流体世界里的三位“大神”,每一个都有自己的风格和特点。

今天我们就来轻松聊聊这三大基本方程,看看它们是如何影响我们日常生活的。

1. 连续方程1.1 理论基础连续方程说的就是流体在流动时质量是守恒的,也就是说流体不会凭空消失或者出现。

这就好比你在喝饮料,吸管里的液体不管你怎么吸,它的总量始终不变。

你想,假如你吸得太快,吸管里液体都没了,那饮料可就喝不到了,真是要命!1.2 实际应用在现实生活中,这个方程的应用可广泛了。

比如,水管里流动的水,流量是一定的。

如果管道变窄,水速就会变快,简直就像是高速公路上的汽车,车道窄了,车速得加快才能不堵车。

你可以想象一下,如果这条“水路”被堵了,后果可就不堪设想,真是“水深火热”啊。

2. 纳维斯托克斯方程2.1 理论基础说到纳维斯托克斯方程,这可是流体力学里的“超级英雄”。

它描述了流体的运动,考虑了粘性、压力、速度等多个因素,就像一位全能运动员,无论是短跑、游泳,还是足球,样样精通!这个方程让我们能够预测流体的流动,简直就像是给流体穿上了“预测未来”的眼镜。

2.2 实际应用说到实际应用,纳维斯托克斯方程可是在天气预报、飞机设计等领域大显身手。

在气象学中,气象学家利用这个方程来模拟风暴、降雨等自然现象,真的是“未雨绸缪”,让我们提前做好准备。

想象一下,若是没有它,我们可能在大雨来临时还在悠哉悠哉地喝着茶,结果被“浇”了个透心凉。

3. 伯努利方程3.1 理论基础最后我们得提提伯努利方程,它可是流体动力学的明星。

简单来说,伯努利方程告诉我们,流体的压力和速度之间有着“爱恨交织”的关系。

流速快的地方,压力就低;流速慢的地方,压力就高。

这就像是你在一个热闹的派对上,越往外挤,周围的人越少,反而显得格外“安静”。

3.2 实际应用伯努利方程的应用那可是多得数不胜数,尤其是在飞行器设计上。

流动、传热及传质的控制方程

扩散方程适用于描述气体、液体和固体中的分子扩散过程,以及多孔介质中的扩散过程。
对流传质方程
01
对流传质方程是描述流体流动过程中物质传递的方程,它基于Fick第二定律和 Darcy定律。
02
对流传质方程的一般形式为:ρSc▽·vc = -▽P/ρ + ν▽²vc + (1/ρ)▽·(ρD▽c),其中 Sc是斯密特数,v是速度矢量,P是压力,ν是动力粘度,D是扩散系数,c是浓度。
有限元法在结构分析、固体力学、流体力学等领域有广泛应用。
有限体积法
01
02
03
有限体积法是一种求解偏微分方 程的数值方法,它将连续的求解 区域离散化为有限个小的体积单 元,并对每个体积单元构造近似 函数。
有限体积法特别适合处理流体动 力学问题,因为它能够很好地捕 捉到流体运动的特性,如速度和 压力的连续性。
熵守恒方程
总结词
描述流体熵在空间中的变化。
详细描述
熵守恒方程是热力学的基本方程之一,它表明在封闭系统中,流体的熵不会凭空产生或 消失。该方程基于熵增原理,表示流体在流场中单位时间内熵的增加等于流入该控制体
的净熵流量。
02 传热的控制方程
热传导方程
总结词
描述了物体内部热量的传递过程。
详细描述
热传导方程,也称为傅里叶定律,表 示在物体内部,温度梯度导致热量从 高温区域流向低温区域。该方程基于 能量守恒原理,并考虑了导热系数的 影响。
03
对流传质方程适用于描述流体流动过程中的物质传递过程,如化工、环境、食 品等领域中的流动和传递过程。
化学反应动力学方程
1
化学反应动力学方程是描述化学反应速率和反应 机理的数学模型。
2 3

流体的稳定流动伯努利方程


无热传导
理想流体假设中,流体被 视为无热传导的,即流体 的温度在整个流场中保持 一致。
流体的能量守恒原理
能量守恒
流体的能量守恒原理指出,在封闭系 统中,流体的总能量(包括动能和势 能)在流动过程中保持不变。
动能与势能转换
在流体的流动过程中,动能和势能之 间可以相互转换,但总能量保持不变 。
伯努利方程的推导过程
伯努利方程的重要性
01
描述流体稳定流动的规律
伯努利方程是流体力学中的基本方程,用于描述流体在稳定流动状态下
的压力、速度和密度等物理量的关系。
02 03
解决实际问题
在实际生产和生活中,许多问题都涉及到流体的流动,如管道输送、流 体机械、航空航天等。通过应用伯努利方程,可以解决这些实际问题, 提高生产效率和生活品质。
伯努利方程是流体力学中的基本方程,用于描述流体在稳 定流动状态下的压力、速度和位势之间的关系,是理解和 预测流体运动的关键。
广泛应用领域
伯努利方程在多个领域中都有应用,如航空航天、流体机 械、管道输送、气象学等,对于指导工程设计和优化流体 系统性能具有重要意义。
理论基石
作为流体力学的基础理论之一,伯努利方程为后续深入研 究流体动力学、湍流理论等提供了重要的理论支撑。
详细描述
流体静压强的计算公式为 P = ρgh,其中ρ为流体密度,g为重 力加速度,h为流体高度。该公式适用于计算液体在容器中的静 压强。
流体动压强的计算
总结词
流体动压强是指流体在运动状态下对物体表面产生的压力。
详细描述
流体动压强的计算公式为 P = ρv²/2,其中ρ为流体密度,v为流体速度。该公式适用于计算气体或液体在管道或 容器中的动压强。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体流动控制方程
流体流动控制方程是研究流体力学中流体运动的基本方程,它描述了流体在空间和时间上的变化规律。

流体流动控制方程是流体力学的重要基础,对于解决流体流动问题具有重要意义。

流体流动控制方程可以分为质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述了流体在流动过程中质量的守恒,即质量的流入等于质量的流出。

动量守恒方程描述了流体在流动过程中动量的守恒,即动量的变化等于受力的作用。

能量守恒方程描述了流体在流动过程中能量的守恒,即能量的流入等于能量的流出。

质量守恒方程是流体流动控制方程中的基本方程之一。

它可以用来描述流体在流动过程中质量的守恒。

质量守恒方程可以表示为:
∂ρ/∂t + ∇·(ρu) = 0
其中,ρ是流体的密度,u是流体的速度,∂/∂t表示对时间的偏导数,∇·表示散度运算符。

动量守恒方程是流体流动控制方程中的另一个基本方程。

它可以用来描述流体在流动过程中动量的守恒。

动量守恒方程可以表示为:ρ(∂u/∂t + u·∇u) = -∇p + μ∇^2u + ρg
其中,p是流体的压强,μ是流体的动力粘度,g是重力加速度。

能量守恒方程是流体流动控制方程中的最后一个基本方程。

它可以用来描述流体在流动过程中能量的守恒。

能量守恒方程可以表示为:ρC(∂T/∂t + u·∇T) = ∇·(k∇T) + Q
其中,C是流体的比热容,T是流体的温度,k是流体的热导率,Q 是单位体积单位时间内对流体的热量输入。

流体流动控制方程的求解可以通过数值方法或解析方法进行。

数值方法主要包括有限差分法、有限元法和有限体积法等。

解析方法主要是通过对方程进行适当的变换和假设,得到解析解。

流体流动控制方程在工程领域有着广泛的应用。

例如,在航空航天工程中,流体流动控制方程可以用来分析飞机的气动特性,优化飞机的设计;在能源工程中,流体流动控制方程可以用来研究流体在管道中的输送特性,提高能源的利用效率;在环境工程中,流体流动控制方程可以用来模拟大气和水体的运动,预测和防止污染物的扩散。

流体流动控制方程是研究流体力学中流体运动的基本方程。

通过对流体流动控制方程的求解,可以获得流体在流动过程中的各种特性和参数,为工程和科学研究提供理论基础。

流体流动控制方程的研究和应用将进一步推动流体力学领域的发展和进步。

相关文档
最新文档