金属酞菁配合物的热稳定性_詹梦雄
金属酞菁

金属酞菁金属酞菁配合物是一类独特的二维p-π共轭大环体系物质,具有很好的热稳定性和化学稳定性。
过去几十年的研究表明:酞菁由于其比较特殊的结构特点,显示出良好的二阶和三阶非线性光学性质[3,4],以酞菁为母体的非线性光学材料的开发和应用范围越来越广泛。
目前,酞菁环内已经和70 多种金属或非金属结合而得到不同中心原子的酞菁配合物[5],而且,在酞菁的苯环上也能方便地引入多种取代基,从而通过对内部中心原子和外围取代基的化学修饰,可以得到不同光学性能的新材料。
紫外-可见光谱由于金属酞菁配合物在多种有机溶剂中的溶解性很差,研究选择浓硫酸来溶解它们。
通过表3 可以知道,所有合成的金属酞菁配合物300~900 nm 的紫外-可见区内都有两个较强的吸收溶剂不仅会影响酞菁的π-π* 跃迁能级,还会影响到金属离子内层电子的跃迁能级。
溶剂不仅会影响酞菁的π-π* 跃迁能级,还会影响到金属离子内层电子的跃迁能级。
研究表明:过渡金属离子影响酞菁的π-共轭时涉及一些电荷转移机理。
其中包括金属离子-配体(d-π) 电荷转移机理、配体-金属离子(π-d)电荷转移机理和金属-金属(d-d)电荷转移机理。
这些电荷转移机理将在HOMO-LUMO 之间产生新的能级差,从而改变酞菁的光电性能[15,16]。
铁,钴,镍,铜作为过渡金属元素,也存在上述电荷转移机理,由于本研究用溶液法测量,所以可以不考虑d-d 电荷转移机理。
但是随着原子序数的增加,金属离子的d 电子也相应增加。
在电荷转移过程中,原子序数大的金属离子与酞菁环之间的d-π电子共轭水平也要比原子序数低的金属离子的共轭水平高一些。
所以随着金属的原子序数的增加,酞菁环的紫外吸收也会发生红移。
金属离子与酞菁环平面的扭曲程度、即非共面程度越高,越有利于酞菁环上电子云的流动,从而更容易使电子发生跃迁。
d 轨道的电子与酞菁环上的大π共轭电子之间的再共轭。
所以随着原子序数的增加,过渡金属离子的d 电子也会增加,从而加强了整个金属酞菁体系的电子共轭程度、提高了其非d 轨道的电子与酞菁环上的大π共轭电子之间的再共轭。
金属酞菁的合成及表征

金属酞菁的合成及表征摘要:以邻苯二甲酸酐、无水CoCl2、尿素为原料,以(NH4)2MoO4为催化剂,采用金属模版法合成酞菁钴,提纯后,产物再用紫外可见光谱进行表征。
关键词:酞菁钴提纯紫外可见光谱一. 前言:酞菁类化合物是四氮大环配体的重要种类,具有高度共轭π体系。
他能与金属离子形成金属酞菁配合物,其分子结构式如图。
这类配合物具有半导体、光电导、光化学反应活性、荧光、光记忆等特性。
金属酞菁是近年来广泛研究的经典金属类大环配合物中的一类,其基本结构和天然金属卟啉相似,具有良好的热稳定性,因此金属酞菁在光电转换、催化活性小分子、信息存储、生物模拟及工业染料等方面有重要的应用。
金属酞菁的合成方法主要是模版法,即通过简单配体单元与中心金属离子的配位作用,然后再结合成金属大环配合物,金属离子起模版作用。
二.实验部分:A.主要试剂、仪器邻苯二甲酸酐尿素钼酸铵无水CoCl2 煤油无水乙醇2%盐酸蒸馏水台秤研钵三颈瓶(250ml)空气冷凝管圆底烧瓶铁架台玻璃棒可控温电热套电炉抽滤装置B.实验步骤1. 称取邻苯二甲酸酐5.6g,尿素9.0g和钼酸铵0.5g与研钵中研细后加入0.9g无水氯化钴,混匀后马上移入250ml三颈瓶中,加入70ml煤油,加热(190℃)回流2h左右,在溶液由蓝色变为紫红色后停止加热,冷却至70℃左右,加入10~15ml无水乙醇稀释后趁热抽滤。
2. 将滤饼加入2%盐酸煮沸后趁热抽滤,再将滤饼加入去离子水煮沸后抽滤,滤饼再加入碱液煮沸抽滤,重复上述步骤2~3次,直至滤液接近无色。
3. 将产品放在表面皿上在70℃真空干燥6h,干燥好后取少量样品溶于二甲基亚砜中,做紫外可见光谱分析。
三.结果与讨论:A.原料:邻苯二甲酸酐5.6g,尿素9.0g,钼酸铵0.5g,0.9g无水氯化钴产品:酞菁钴2.00g 产率:50.3%B.现象分析1. 在回流过程中空气冷凝管和三颈瓶的上部出现了白色的结晶,但是溶液却一直沸腾,触摸三颈瓶上部发现温度很低。
金属酞菁

实验六金属酞菁配合物的合成及光谱性质研究一实验目的(1)通过合成酞菁金属配合物,掌握这类大环配合物的一般合成方法,了解金属模板反应在无机合成中应用。
(2)进一步熟练掌握配合物合成中的常规操作方法和技能。
二实验原理金属酞菁的合成自由酞菁(H2Pc)的分子结构见图1(a)。
它是四氮大环配体的重要种类,具有高度共轭π体系。
它能与金属离子形成金属酞菁配合物(MPc),其分子结构式如图1(b)。
这类配合物具有半导体、光电导、光化学反应活性、荧光、光存储等特性。
金属酞菁是近年来广泛研究的经典金属大环配合物中的一类,其基本结构和天然金属卟啉相似,且具有良好的热稳定性和化学稳定性,因此金属酞菁在光电转换、催化活化小分子、信息储存、气敏传感器、生物模拟及工业染料等方面有重要的应用。
N N HNNNHNN NNNNNNNN NMM = Cu,Co,Ni,Zn,Pb,Pda b图1 酞菁配合物的结构示意图金属酞菁的合成一般有以下两种方法:①通过金属模板反应来合成,即通过简单配体单元与中心金属离子的配位作用,然后再结合形成金属大环配合物。
这里的金属离子起着一种模板作用;②与配合物的经典合成方法相似,即先采用有机合成的方法制得并分离出自由的有机大环配体,然后再与金属离子配位,合成得到金属大环配合物。
其中模板反应是主要的合成方法。
金属酞菁配合物的合成的方法主要有以下几种途径(以2价金属M为例)。
(1) 中心金属的置换MX + LiPcMPc + 2LiX(2) 以邻苯二甲腈为原料MX n +CNCN4MPc℃300溶 剂(3) 以邻苯二甲酸酐、尿素为原料ΔMX n +CoCo4MPc℃300O+ CO(NH 2)2200 ~424(4) 以2-氰基苯甲酸胺为原料M +CNCONH 24MPc + H 2O℃250Δ本实验按反应(2)制备金属酞菁,原料为金属盐、邻苯二甲腈,催化剂为1,8-二氮杂双环[5,4,0]十一-7-烯(DBU)。
四羧基酞菁铁(Ⅲ)的合成及催化氧化硫化氢的研究

而且硫化物在燃烧后 产生 的硫 氧化 物 ( 如S O ) 是 大气环 境
主要 的 污 染 源 之 一 , 是形 成 酸 雨 的 直 接 原 因 , 因此 , 开 展 脱 硫
工艺的研究具有 十分重要 的意义。
金属酞菁是具有高度共轭 的大环配合物 , 由于酞 菁的结
1 . 3 催 化 原 理 及 测 试 方 法
1 . 3 . 1 四羧基 酞菁 铁催 化 氧化硫 化 氢的 反应原 理
2 H + S = H 2 S t
H2 s + 1 / 2 02= S + H2 0
人 工合 成金属酞菁衍生物 , 过去多用于模拟血红素 C方面的
研究 , 也有文献报道将 其用 于催化剂 方面 的研究 , 但 用 于研 究催化 氧化硫化物 的报道不 多 。预计随 着世 界各 国对 环
2 0 1 5年 9月
阴 山 学 刊
YI N S HAN AC ADE MI C J OURNAL
Se p. 2 01 5
2 9卷 第 4期
Vo 1 . 2 9 No . 4
四羧 基 酞 菁 铁 ( Ⅲ) 的合 成 及催 化 氧 化 硫 化 氢 的研 究
王 廷, 周 毅 , 刘 士美 , 马赫迪
收 稿 日期 : 2 0 1 内蒙古 高等 学校科 学研 究项 目( N J 1 0 1 6 5 ) , 包头市科技计 划项 目( 2 0 1 3 Z 2 0 1 0— 0 1 ) 。 作者简 介 : 王廷 ( 1 9 8 8~) , 山 东青 岛市人 , 在 读研 究生 , 研 究方向 : 稀土酞菁 配合物 的合 成及 性能研 究。 通讯作 者 : 周毅 ( 1 9 5 8一) , 教授 , 主要从 事金 属酞菁功能性配合物的研 究。
双核酞菁钴铁

双核酞菁钴铁双核酞菁钴铁是一种重要的过渡金属配合物,具有广泛的应用前景。
本文将介绍双核酞菁钴铁的合成方法、性质及其在催化、电化学和生物医学领域的应用。
1. 合成方法双核酞菁钴铁的合成可以通过溶液法或固相法进行。
其中,溶液法是最常用的合成方法之一。
一般来说,首先将钴和铁的盐溶解在溶剂中,然后加入酞菁配体,经过适当的反应条件,如温度、pH值等的控制,可以得到双核酞菁钴铁配合物。
此外,固相法也可以用于合成双核酞菁钴铁,通过固相反应使得钴和铁的原子与配体发生配位反应,最终得到目标产物。
2. 性质双核酞菁钴铁是一种具有双核结构的配合物,其结构中包含两个中心金属离子,分别是钴和铁。
双核酞菁钴铁的结构稳定,具有较高的热稳定性和溶解度。
此外,双核酞菁钴铁还具有较好的电子传递能力和催化活性,这使得它在催化和电化学领域具有重要应用价值。
3. 催化应用双核酞菁钴铁在催化领域具有广泛的应用。
以氧还原反应为例,双核酞菁钴铁作为催化剂可以有效地催化氧气的还原,具有较高的催化活性和选择性。
此外,双核酞菁钴铁还可以用于催化有机反应,如烯烃的氧化、羰基化等。
这些催化反应的进行,可以有效地提高反应效率和产物选择性。
4. 电化学应用双核酞菁钴铁在电化学领域也有重要的应用。
例如,双核酞菁钴铁可以作为电极材料,用于制备高性能的电化学传感器。
双核酞菁钴铁具有较好的电子传递能力和电催化活性,可以在电化学传感器中实现对目标物质的高灵敏度检测。
此外,双核酞菁钴铁还可以用于制备超级电容器等电化学储能器件,具有较高的能量密度和循环稳定性。
5. 生物医学应用双核酞菁钴铁在生物医学领域也展现出了广阔的应用前景。
例如,双核酞菁钴铁可以用作磁共振成像(MRI)的对比剂,通过配位结构中的金属离子,使其具有较好的磁性性能,从而在MRI中实现对生物组织的高对比度成像。
此外,双核酞菁钴铁还可以用于荧光成像和光动力疗法等生物医学领域,具有潜在的肿瘤诊疗应用价值。
双核酞菁钴铁作为一种重要的过渡金属配合物,具有广泛的应用前景。
固相法合成铜酞菁及热稳定性分析

Abstract Copper phthalocyanine was synthesized by solid phase reaction.In the reaction process,phthalic an- hydride,urea and cupric chloride were USed as raw materials;ammonium molybdate and boric acid were used as catalysts. Copper phthalocyanines were characterized by thermogravimetry.The result indicated that the process of solid phase reac— tion was simple and feasible.The thermostability of copper phthalocyanine depended on its own structure and had nothing to do with the catalysts used in the reaction.
(2)采用固相法合成铜酞菁,生产工艺简单易行。 (3)铜酞菁的热稳定性好,分解温度高达400℃,且主要取 决于本身的结构,而与催化剂的类型无关。
参考文献
图2以钼酸铵为催化剂所得铜酞菁TG、DTG曲线
综上可知,以硼酸、钼酸铵为催化剂合成的两种铜酞菁的 热稳定性均很好,热分解温度相近,都是在400℃左右时开始 失重,765℃左右失重速率达到最大,765℃后以稳定的速率失 重。说明铜酞菁的环状结构在400℃时开始被破坏并有挥发 性物质放出,765q;(2时该过程基本完成。而765℃后质量的减
(上接第32页)
α-四(3-羧基苯氧基)酞菁钴的合成、表征及光催化降解亚甲基蓝

α-四(3-羧基苯氧基)酞菁钴的合成、表征及光催化降解亚甲基蓝潘玲玲;陈伟;单秋杰;吴迪【摘要】以3-硝基邻苯二甲腈为原料合成了α-四(3-羧基苯氧基)酞菁钴,利用IR、UV-Vis、LC-MS和C H N元素分析对催化剂进行了表征.在室温条件下,研究了催化剂用量和H2O2浓度对亚甲基蓝降解效果的影响.当催化剂用量为0.6 g/L、H2O2浓度为6 mmol/L时,80 min后亚甲基蓝的脱色率均可达98.7%.脱色过程符合一级动力学特征,速率常数k=0.039 min-1.重复试验3次,脱色效果可达85%.%A-tetra (3-carboxyl phenoxy) phthalocyanine cobalt was synthesized by 3-nitrophthalonitrile. The catalysts were characterized by IR, UV-Vis, LC-MS and C H N element analysis. The effect of the dos?age of the catalyst and H2O2 concentration on degradation of methylene blue were studiedat room tempera?ture. When the catalyst dosage was 0.6 g/L and H2O2 concentration was 6 mmol/L, methylene blue decoloriza?tion rate could reach 98.7% in 80 min. The degradation reaction obeyed first-order dynamic equation, and the rate constant k=0.039 min-1. Repeat the experiment three times, decoloring effect could reach 85%.【期刊名称】《印染助剂》【年(卷),期】2017(034)007【总页数】4页(P16-19)【关键词】金属酞菁;光催化;亚甲基蓝;反应动力学【作者】潘玲玲;陈伟;单秋杰;吴迪【作者单位】齐齐哈尔大学化学与化学工程学院,黑龙江齐齐哈尔 161006;齐齐哈尔大学化学与化学工程学院,黑龙江齐齐哈尔 161006;齐齐哈尔大学化学与化学工程学院,黑龙江齐齐哈尔 161006;齐齐哈尔大学化学与化学工程学院,黑龙江齐齐哈尔 161006【正文语种】中文【中图分类】TQ426;TQ314水资源污染是当今社会面临的一个严峻问题,如何有效地处理工业废水已成为环境领域的重要问题[1-2]。
新型取代金属酞菁配合物的合成、表征及与血清白蛋白的相互作用的开题报告

新型取代金属酞菁配合物的合成、表征及与血清白蛋白的相互作用的开题报告一、问题背景和研究目的金属酞菁配合物是一类具有广泛应用前景的发光材料,其发光特性、稳定性等方面具有优越性。
然而,由于其毒性和不良生物相容性等问题,已引起人们的越来越多关注。
因此,开发新型取代金属酞菁配合物,以避免这些问题,成为了当前的研究热点之一。
本研究旨在合成新型取代金属酞菁配合物,并以血清白蛋白为模型研究其与生物分子的相互作用机制,为其在生物医学领域应用提供实验支持和理论依据。
二、研究内容1. 合成新型取代金属酞菁配合物,以铜和锌为中心金属离子;2. 通过核磁共振、质谱、紫外-可见光谱等技术对所合成的金属酞菁配合物进行表征;3. 以血清白蛋白为模型研究新型配合物与生物分子的相互作用机制,并评价其对血清白蛋白的结构和功能的影响;4. 比较新型配合物与常用金属酞菁配合物的生物相容性。
三、研究意义1. 本研究开发的新型取代金属酞菁配合物拥有更佳的生物相容性和安全性,有望成为生物医学领域新型的药物载体;2. 通过对新型配合物与血清白蛋白的相互作用机制研究,有可能揭示这种配合物对蛋白质功能的影响,为开发新型多功能药物提供理论依据;3. 本研究可促进新型金属酞菁配合物及其生物医学应用的研究,对推动化学、生物学、医学等交叉学科的发展具有积极推动作用。
四、研究方法1. 合成新型取代金属酞菁配合物,以铜和锌为中心金属离子;2. 通过核磁共振、质谱、紫外-可见光谱等技术对所合成的金属酞菁配合物进行表征;3. 制备血清白蛋白溶液,并通过荧光光谱、圆二色谱、静态光散射等技术对新型配合物与血清白蛋白的相互作用进行研究;4. 测定新型配合物对血清白蛋白结构和功能的影响,并与常用金属酞菁配合物进行比较;5. 对新型金属酞菁配合物的生物相容性进行评价。
五、预期结果1. 成功合成新型取代金属酞菁配合物,并对其进行充分表征;2. 揭示新型配合物与血清白蛋白相互作用的机制,并评价其对蛋白质结构和功能的影响;3. 比较新型配合物与常用金属酞菁配合物的特性和生物相容性;4. 提供新型取代金属酞菁配合物在生物医学领域应用的实验支持和理论基础。