运筹学第七章决策分析习题及答案
决策分析(含答案)优选全文

最新优选全文(可编辑修改)决策分析复习题(请和本学期的大纲对照,答案供参考)第一章一、选择题(单项选)1.1966年,R. A. Howard在第四届国际运筹学会议上发表( C )一文,首次提出“决策分析”这一名词,用它来反映决策理论的应用。
A.《对策理论与经济行为》B.《管理决策新科学》C.《决策分析:应用决策理论》D.《贝叶斯决策理论》2.决策分析的阶段包含两种基本方式:( A )A. 定性分析和定量分析B. 常规分析和非常规分析C. 单级决策和多级决策D. 静态分析和动态分析3.在管理决策中,许多管理人员认为只要选取满意的方案即可,而无须刻意追求最优的方案。
对于这种观点,你认为以下哪种解释最有说服力?( D )A.现实中不存在所谓的最优方案,所以选中的都只是满意方案B.现实管理决策中常常由于时间太紧而来不及寻找最优方案C.由于管理者对什么是最优决策无法达成共识,只有退而求其次D.刻意追求最优方案,常常会由于代价太高而最终得不偿失4.关于决策,正确的说法是(A )A.决策是管理的基础B.管理是决策的基础C.决策是调查的基础D.计划是决策的基础5.根据决策时期,可以将决策分为:(D )A.战略决策与战术决策 B. 定性决策与定量决策C. 常规决策与非常规决策D. 静态决策与动态决策6.我国五年发展计划属于(B)。
A.非程序性决策 B.战略决策 C.战术决策 D.确定型决策7.管理者的基本行为是(A)A.决策 B.计划 C.组织 D.控制8.管理的首要职能是(D)。
A.组织 B. 控制 C.监督 D. 决策9. 管理者工作的实质是(C)。
A.计划 B. 组织 C. 决策D.控制10. 决策分析的基本特点是(C )。
A.系统性 B. 优选性 C. 未来性 D.动态性二、判断题1.管理者工作的实质就是决策,管理者也常称为“决策者”。
(√)2.1944年,Von Neumann和Morgenstern从决策角度来研究统计分析方法,建立了贝叶斯(统计)决策理论。
运筹学第七章答案

[课后习题全解]7.2 解(1)建立数学模型(2)计算原理1)梯度法(最速下降法)a. 给定初始近似点不妨为(0,0,0),精度,不妨为,若则即为近似极小点.b. 若,求步长.并计算步长求法用近似最佳步长.c. 一般地,若,则即为所求的近似解;若则求步长,并确定下一个近似点如此继续,直至达到要求的精度为止.2)近似最佳步长求法由,求出步长.7.3 解(1)的海塞矩阵为知为严格凸函数,为凸函数,为凹函数,所以不是一个凸规划问题.(2)的海塞矩阵为则为严格凸函数,为凹函数,为凸函数,所以上述非线性规划不是凸规划.7.6 解计算结果如表7-2所示.表7-2迭代次数123由可知相邻两步的搜索方向正交.7.10 解 因为现从,开始于是故故得到极小值点7.12 解取由于,所以由得故由于故为近似极小点.7.13 解(1)用最速下降法(2)牛顿法得极小点(3)变尺度法得极小点7.15 解原非线性规划等同于(1)其作用约束的是所以得则有存在可行下降方向.(2)其作用约束的是所以即即(无可行解)不存在可行下降方向.(3)其作用约束的是所以所以存在可行下降方向.7.17 解(1)原式等同于写出目标函数和约束函数的梯度对第一个和第二个约束条件分别引入广义拉格朗日乘子,得点为,则有1)令,无解;2)令,解之得是点,目标函数值;3)令,解之得是点,目标函数值;4)令,则是点,,但不是最优. 此问题不是凸规划,故极小点1和5是最优点.(2)原式等同于写出目标函数和约束函数的梯度引入广义拉格朗日乘子,得点为,则有1)令,无解;2)令,则不是点;3)令,则不是点;4)令,则是点,目标函数值由于该非线性规划问题为凸规划,故是全局极小点.] 7.18 解这个非线性规划的条件为极大点是,但它不是约束条件的正则点.7.21 解构造惩罚函数由则的解为当时,;当时,.当时,趋于原问题的极小值. .7.22 解构造惩罚函数解得最优解为7.24 解构造障碍函数得最优解。
决策分析(含答案)

决策分析复习题(请和本学期的大纲对照,答案供参考)第一章一、选择题(单项选)1.1966年,R. A. Howard在第四届国际运筹学会议上发表( C )一文,首次提出“决策分析”这一名词,用它来反映决策理论的应用。
A.《对策理论与经济行为》B.《管理决策新科学》C.《决策分析:应用决策理论》D.《贝叶斯决策理论》2.决策分析的阶段包含两种基本方式:( A )A. 定性分析和定量分析B. 常规分析和非常规分析C. 单级决策和多级决策D. 静态分析和动态分析3.在管理决策中,许多管理人员认为只要选取满意的方案即可,而无须刻意追求最优的方案。
对于这种观点,你认为以下哪种解释最有说服力?( D )A.现实中不存在所谓的最优方案,所以选中的都只是满意方案B.现实管理决策中常常由于时间太紧而来不及寻找最优方案C.由于管理者对什么是最优决策无法达成共识,只有退而求其次D.刻意追求最优方案,常常会由于代价太高而最终得不偿失4.关于决策,正确的说法是(A )A.决策是管理的基础B.管理是决策的基础C.决策是调查的基础D.计划是决策的基础5.根据决策时期,可以将决策分为:(D )A.战略决策与战术决策 B. 定性决策与定量决策C. 常规决策与非常规决策D. 静态决策与动态决策6.我国五年发展计划属于(B)。
A.非程序性决策 B.战略决策 C.战术决策 D.确定型决策7.管理者的基本行为是(A)A.决策 B.计划 C.组织 D.控制8.管理的首要职能是(D)。
A.组织 B. 控制 C.监督 D. 决策9. 管理者工作的实质是(C)。
A.计划 B. 组织 C. 决策D.控制10. 决策分析的基本特点是(C )。
A.系统性 B. 优选性 C. 未来性 D.动态性二、判断题1.管理者工作的实质就是决策,管理者也常称为“决策者”。
(√)2.1944年,Von Neumann和Morgenstern从决策角度来研究统计分析方法,建立了贝叶斯(统计)决策理论。
运筹学2013年复习

0.1
0.14
0.12
0.26
0.14
0.4
0.16
0.56
0.2
0.76
0.14
0.9
0.1
1
0.04
运筹学:库存决策
E ( y ) (60 * 0.15 110 * 0.25) * 0.04 + (100 * 0.15 70 * 0.25) * 0.1 + (140 * 0.15 30 * 0.25) * 0.12 + 170 * 0.15 * 0.74 19.5 售报员每天的收益期望 为19.5元,一个月的收益期望 为585 元
可以开发
0.9 0.5 0.1
不可开发
0.1 0.5 0.9
运筹学:决策分析
解:
(1)先验分析,由设,利润与概率表为
P( )
i
d
i
j
d1d
1
d2
2
0.2 0.6 0.2
1
80
30 -20
20
20 20
2
3
E (d1 )=80×0.2+30×0.6+(-20) ×0.2=30万元;
E (d2 )=20万元。
运筹学:库存决策
Q
*
2C 3 R P ( ) C1 P R
2 * 1350* 260000* 600000 33868 45 * 0.24 * 340000
运筹学:库存决策
<习题4>
某报社为了扩大销售量,招聘了一大批固定零售售报员,为 了鼓励他们多卖报纸,报社采取的销售策略是:售报员每天 早上从报社设置的售报点以现金买进,每份0.35元,零售价 每份0.5元,利润归售报人所有,如果当天没有售完第二天早 上退还报社,报社按每份报纸0.1元退款,如果某人一个月 (按30天计算)累计订购了7000份,将获得150元的奖金。 某人应聘为售报员,开始他不知道每天应买进多少份报纸, 更不知道能否拿到奖金,报社发行部告诉他一个售报员以前 500天的售报统计数据如表: 问:(1)售报员每天应准备多少份报纸最佳,一个月的收益 的期望值多少? (2)他能否得到奖金,如果一定要得到奖金,一个月的收益 期望值是多少?
运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
《运筹学》 第七章决策分析习题及 答案

《运筹学》第七章决策分析习题及答案摸索题(1)简述决策的分类及决策的程序;(2)试述构成一个决策咨询题的几个因素;(3)简述确定型决策、风险型决策和不确定型决策之间的区不。
不确定型决策能否转化成风险型决策?(4)什么是决策矩阵?收益矩阵,缺失矩阵,风险矩阵,后悔值矩阵在含义方面有什么区不;(5)试述不确定型决策在决策中常用的四种准则,即等可能性准则、最大最小准则、折衷准则及后悔值准则。
指出它们之间的区不与联系;(6)试述效用的概念及其在决策中的意义和作用;(7)如何确定效用曲线;效用曲线分为几类,它们分不表达了决策者对待决策风险的什么态度;(8)什么是转折概率?如何确定转折概率?(9)什么是乐观系数,它反映了决策人的什么心理状态?判定下列讲法是否正确(1)不管决策咨询题如何变化,一个人的效用曲线总是不变的;(2)具有中间型效用曲线的决策者,对收入的增长和对金钞票的缺失都不敏锐;(3)考虑下面的利润矩阵(表中数字矩阵为利润)S 3 1 15 14 10 -3 S 417221012分不用以下四种决策准则求最优策略:(1)等可能性准则(2)最大最小准则(3)折衷准则(取=0.5)(4)后悔值准则。
某种子商店期望订购一批种子。
据已往体会,种子的销售量可能为500,1000,1500或2000公斤。
假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。
要求:(1)建立损益矩阵;(2)分不用悲观法、乐观法(最大最大)及等可能法决定该商店应订购的种子数;(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。
按照已往的资料,一家超级商场每天所需面包数(当天市场需求量)可能是下列当中的某一个:100,150,200,250,300,但其概率分布不明白。
如果一个面包当天卖不掉,则可在当天终止时每个0.5元处理掉。
新奇面包每个售价1.2元,进价0.9元,假设进货量限制在需求量中的某一个,要求(1)建立面包进货咨询题的损益矩阵;(2)分不用处理不确定型决策咨询题的各种方法确定进货量。
运筹学教程胡云权第五版决策分析

风险型决策分析
公司打算生产该护肤品5年。根据以往价格统计资料和市
场预测信息,该产品在今后5年内价格下跌的概率为0.1,保
持原价的概率为0.5,涨价的概率为0.4。通过估算,可得各
种方案在不同价格状态下的益损值如下表所示。
益损值表
单位(万元)
益损值
方案
状态(价格) 概率
跌价 0.1
原价 0.5
涨价 0.4
E(X)=∑ pixi
xi : 随机离散变量x的第i个取值, i=1,2,3…m;
pi : x=xi时的概率
E( A1) ? 0.3? 40 ? 0.6 ? 36 ? 0.1? (?16) ? 32 E( A2 ) ? 0.3? 36 ? 0.6 ? 30 ? 0.1? 15 ? 30.3 E( A3 ) ? 0.3? 30 ? 0.6 ? 25 ? 0.1? 20 ? 26.0
从它引出的分枝叫方 案分枝。分枝数量与
方案数量相同。
. 36 . -16
. 36
结果节点
不同行动方案在不同 自然状态下的结果注 明在结果节点的右端
. 30
. 15
. 30 . 25 . 20
风险型决策分析
(2)计算各行动方案的益损期望值,并将计算结果 标注在相应的状态节点上。
32
. 40
. 36
. -16
决策分析概述
决策环境
确定型决策 非确定型决策
风险型决策 不确定型决策
确定型决策
特征: (1)决策者的明确目标(收益大或损失小等); (2)确定的自然状态; (3)两个以上可供选择的行动方案; (4)不同行动方案在确定状态下的益损值可以计算出来。
【例】某公司管理层需要决策是否生产一种新产品。可以确 定的是,该产品上市后一定供不应求。经数据分析,该产 品的预期单价为 900元,单件可变成本 400元,生产所需固 定成本为50000元。
运筹学习题答案第七章共29页PPT资料

安徽大学管理学院
电话:5108157(H),5107443(O) E-mail: Hongwen9509_cnsina
洪文
运筹学教程
第七章习题解答
7.1 现有天然气站A,需铺设管道到用气单位E,
可中以间选加择压的站设 ,计各路线线路如的下费图用所已示标,在线Bl,段…旁,(单D位2各:点万是 元),试设计费用低的路线。
-
-
1
64
2
0 64 68 -
-
2
68
3
0 64 68 78 -
3
78
4
0 64 68 78 76 3
78
page 9 5/5/2020
School of Management
运筹学教程
第七章习题解答
状态(可能的 投资数)
0 1 2 3 4
工厂2 决策(分配资金)
01234
0
-
-
-
-
64 42 -
7.5 为保证某设备正常运转,需对串联工作的三
种不同零件Al,A2,A3,分别确定备件数量。若增加 备用零件的数量,可提高设备正常运转的可靠性,但
费用要增加,而总投资额为8千元。已知备用零件数与
它的可靠性和费用关系如表7-2l所示,求Al,A2,A3的 备用零件数量各为多少时,可使设备运转的可靠性最
运行模型后,1月生产5,2月生产6,最小费用为67。
page 7 5/5/2020
School of Management
运筹学教程
第七章习题解答
7.4 某公司有资金4万元,可向A,B,C三个项目 投资,已知各项目不同投资额的相应效益值如表7-20 所示,问如何分配资金可使总效益最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》第七章决策分析习题1.思考题(1)简述决策的分类及决策的程序;(2)试述构成一个决策问题的几个因素;(3)简述确定型决策、风险型决策和不确定型决策之间的区别。
不确定型决策能否转化成风险型决策?(4)什么是决策矩阵?收益矩阵,损失矩阵,风险矩阵,后悔值矩阵在含义方面有什么区别;(5)试述不确定型决策在决策中常用的四种准则,即等可能性准则、最大最小准则、折衷准则及后悔值准则。
指出它们之间的区别与联系;(6)试述效用的概念及其在决策中的意义和作用;(7)如何确定效用曲线;效用曲线分为几类,它们分别表达了决策者对待决策风险的什么态度;(8)什么是转折概率?如何确定转折概率?(9)什么是乐观系数,它反映了决策人的什么心理状态?2.判断下列说法是否正确(1)不管决策问题如何变化,一个人的效用曲线总是不变的;(2)具有中间型效用曲线的决策者,对收入的增长和对金钱的损失都不敏感;(3)3.考虑下面的利润矩阵(表中数字矩阵为利润)状态 E E E E E 52413方案18 12 8 -S 2 2 12 93 S 16 10 310115140 172210分别用以下四种决策准则求最优策略)等可能性准则(2)最大最小准则(3)折衷准则(取 =0.5)(4)后悔值准则。
4.某种子商店希望订购一批种子。
据已往经验,种子的销售量可能为500,1000,1500或2000公斤。
假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。
要求:(1)建立损益矩阵;(2)分别用悲观法、乐观法)建立后悔矩阵,并用3((最大最大)及等可能法决定该商店应订购的种子数;后悔值法决定商店应订购的种子数。
5.根据已往的资料,一家超级商场每天所需面包数(当天市场需求量)可能是下列当中的某一个:100,150,200,250,300,但其概率分布不知道。
如果一个面包当天卖不掉,则可在当天结束时每个0.5元处理掉。
新鲜面包每个售价1.2元,进价0.9元,假设进货量限制在需求量中的某一个,要求(1)建立面包进货问题的损益矩阵;(2)分别用处理不确定型决策问题的各种方法确定进货量。
6.有一个食品店经销各种食品,其中有一种食品进货价为每个3元,出售价是每个4元,如果这种食品当天卖不掉,每个就要损失0.8元,根据已往销售情况,这种食品每天销售1000,2000,3000个的概率分别为0.3,0.5和0.2,用期望值准则给出商店每天进货的最优策略。
7.一季节性商品必须在销售之前就把产品生产出来。
当需求量是D时,生产者生x件商品的利润(元)为:产2x0?x?D?f(x)??3D?xx?D?利润设D有5个可能的值:1000件。
2000件,3000件,4000件和5000件,并且它们的概率都是0.2 。
生产者也希望商品的生产量是上述5个值中的某一个。
问:(1)若生产者追求最大的期望利润,他应选择多大的生产量?(2)若生产者选择遭受损失的概率最小,他应生产多少产品?(3)生产者欲使利润大于或等于3000元的概率最大,他应选取多大的生产量?8.某决策者的效用函数可由下式表示:?x U(x)?1?e,0?x?10000元,x的值)如果决策者面临下列两份合同:(表中数字为获利概率 P=0.6P=0.4合0 6500 A(元)21同4000(元)4000问决策者应签哪份合同9.计算下列人员的效用值:(1)某甲失去500元时效用值为1,得到1000元时的效用值为10;有肯定得到5元与发生下列情况对他无差别:以概率0.3失去500元和概率0.7得到1000元,问某甲5元的效用值为多大?(2)某乙-10的效用值为0.1;200元的效用值为0.5,他自己解释肯定得到200元与以下情况无差别:0.7的概率失去10元和0.3的概率得到2000元,元的效用值为多大?2000问某乙.(3)某丙1000元的效用值为0;500元的效用值为-150,并且对以下事件上效用值无差别:肯定得到500元或0.8概率得到1000元和0.2概率失去1000元,则某丙失去1000元的效用值为多大?(4)某丁得到400元的效用值为120,失去100元的效用值为60,有肯定得到400元与发生下列情况对他无差别:以概率0.4失去100元和以概率0.6得到800元,则某丁得到800元的效用值为多大?10.甲先生失去1000元时效用值是50,得到3000元时效用值是120,并且对以下事件上效用值无差别:肯定得到100元或0.4概率失去1000元和0.6概率得到3000元。
乙先生在失去1000元与得到100元的效用值和甲先生相同,但他在以下事件上态度无差别:肯定得到100元或0.8概率失去1000元和0.2概率得到3000元。
问:(1)甲先生1000元的效用值为多大?(2)乙先生3000元的效用值为多大?(3)比较甲先生和乙先生对待风险的态度。
11.有一投资者,想投资建设一个新厂。
建厂有两个方案,一个是建大厂,另一个是建小厂。
根据市场对该厂预计生产的产品的需求调查,需求高的概率是0.5,需求一般的概率为0.3,需求低的概率是0.2,而每年的收入情况如下表:(单位:万元)状态 E (一E3E1) 低(般) 方案)=)=0.P(E P(E)=0P(E概率3210.2 .52(高)320 -建大厂) 100 60 (S155S (建小厂25)45按利润期望值准则,应取哪一种方案?2(1)(2)投资者认为按利润期望值准则进行决策风险太大,改用效用值准则进行决策.在对决策者进行了一系列询问后,得到以下结果:①损失20万元的效用值为0;获得100万元的效用值为100;且对以下事件效用值无差别:②肯定得25万元或0.5的概率得到100万元和0.5的概率失去20万元;③肯定得到60万元或0.75的概率得到100万元和0.25的概率失去20万元;④肯定得到45万元或0.6的概率得到100万元和0.4的概率失去20万元;⑤肯定得到55万元或0.7的概率得到100万元和0.3的概率失去20万元;要求建立效用值表,且由效用值期望值法确定最优策略。
试0元的效用值为-500,45元的效用值为600,100元的效用值为3000.某甲12.得到元或以概率PP ,使以下情况对他来说无差别:肯定得到600找出概率 500元。
元和以概率(1-P)失去3000万元去投资,有可能全部丧失掉或第二年获万元钱,可以拿出其中113.某人有2 万元。
4得用期望值法计算当全部丧失掉的概率最大为多少时该人投资仍然有利;1)(U(M)?M?50000如该人的效用函数为,重新计算全部丧失掉的概率最(2)大为多少时该人投资仍然有利。
14.某公司有10万元多余资金。
如用于开发某个项目估计成功率为95% ,成功时一年可获利15% ,但一旦失败,有全部丧失资金的危险。
如把资金存放到银行中,则可稳得年利4% 。
为获得更多的信息,该公司求助于咨询公司,咨询费为800元,但咨询意见只是提供参考。
拒过去咨询公司类似200例咨询意见实施结果如下表所示,试用决策树法分析:(1)该公司是否值得求助与咨询公司;(2)该公司多余资金该如何使用?实施结果投资成功投资失败合计咨询意见次 6次156次可以投资150 22次次4422不宜投资次次17220028合计《运筹学》第七章决策分析习题解答2.解:(1)?(2)?(3)√aa)最大最小准则采取方案2(3.解:最优策略为:(1)等可能性准则采取方案24aa。
)后悔值准则采取方案)折衷准则采取方案(4(3144.(1)益损矩阵如下表所示:销售 SSSS 43 1 2200015005001000150015001500 50015003000 10003000300001500150045004500 1500-3. A 20003000 0 3000 60002)悲观法:A ,订购500公斤;乐观法:A订购2000公斤,;等可能法:4(A或214A ,订购1000公斤或1500公斤。
3(3)后悔矩阵如下表所示:最大后悔 S S S S 4312值450A 01500 30004500103001503000 1500A 020 015030030001500A 304504500A 15003000 401000A或,即订购公斤或1500公斤。
按后悔值法商店应取决策为 A325.()益损矩阵如下表所示:1销 S S S SS54312售300250100 150200货进30 A30 30 100 30 30 4515010454545200606025601075754052504.30A 300--520559050(2)悲观法:A ,订购100个;乐观法(最大最大):A ,订购300个;折衷法51(取 =0.5):A 或A,订购100个或150个;等可能法:A ,订购200个;后悔312值法:A ,订购200个。
后悔矩阵如下表所示:3最大后悔 S S S S S 54231值A 0 15 30 45 60 60 145 30 A 2045 015 240 30 A40 2015 360 025 A 60 40 20480 8060 A 0.先求益损矩阵如下表:56S SS 312)S(SE期望值3000 2000 10002.SP() 05.03.0 A110001000100010001460*2002000200020001020300012006003000最优进货策略为个,利润期望200,每天进元14602.益损矩阵如下表:7.需求量S 3(件S S S S 期望值5241300 S)5000 1000) 20004000 E(0生产量(件)2002000 2000 2000A 1000200020001040034004000 40004000A 20001000206004200600030006000 3000A30500-4400*A8000 80002000400040 10001000-4004000A 50001000700050 02000(1)应选择A :生产4000件;4(2)生产1000,2000,3000件商品时,各种需求量条件均不亏本,损失的概率为0,均为最小;(3)由上表可以看出,应生产2000件或3000件。
8.应签合同B。
U(5)?0.3U(?500)?0.7U(1000)?7.3;).9(1U(200)?0.7U(?10)?0.3U(2000),U(2000)?1.433;)( 2U(500)?0.8U(1000)?0.2U(?1000),U(?1000)??750;( 3)U(400)?0.4U(?100)?0.6U(800),U(800)?160。