固相微萃取技术..

合集下载

固相微萃取技术

固相微萃取技术
• 纤维及其涂层的研制
作为样品预处理过程,SPME是靠纤维对分析物的吸 附、吸收和解吸来完成的,所以萃取头是SPME装置 的核心,他决定了整个方法的灵敏性、结果可信度和 分析范围。 国内外学者的研究成果主要体现在: ➢ 1、纤维 ➢ 2、涂层 ➢ 3、涂层技术
• 纤维固相微萃取应用后的后续分析仪器
态分析中的应用 ➢ 固相微萃取技术在其他方面的应用
固相微萃取技术的特点与不足
• 特点
• 不足
工艺举例
结语
谢谢!
➢ 1、纤维SPME-GC ➢ 2、纤维SPME-HPLC ➢ 3、SPME-光谱 ➢ 4、SPME-CE
纤维固体微萃取的应用
➢ 固相微萃取技术在环境分析领域中的应用 ➢ 固相微萃取技术在食品检测领域中的应用 ➢ 固相微萃取技术在医药卫生领域中的应用 ➢ 固相微萃取技术在化工领域中的应用 ➢ 固相微萃取技术在金属及准金属化合物形
目录
固相微萃取技术概况 纤维固相微萃取理论 纤维固相微萃取技术的发展现状 纤维固相微萃取的应用 固相微萃取技术的特点与不足 工艺举例 结语
固相微萃取技术概况
• 发展概况
• 装置
• 操作过程
纤维固相微萃取理论
• 基本原理
• 影响维固体微萃取技术的发展现状

固相微萃取技术

固相微萃取技术

萃取时间
萃取时间即待测物在各相达到平衡的时间,是
由涂层厚度及理化性质、分配系数、扩散速率、 样品基质等多种因素决定的。涂层对待测物的 吸附初始是一段快速吸附期,随后会进人一个 平台期,吸附速度减慢。一般分析挥发性有机 物时,10min左右可达到平衡,而对于复杂的 基质或半挥发性有机物时,平衡所需时间会延 长30~60分钟。为保证分析工作有良好的重现 性,应严格控制萃取时间的一致性。
环境检测中的应用
有报道称,SPME技术对于各种农药、除草 剂、灭菌剂残留,挥发性碳化合物、苯及其 同系物、多环芳烃、芳香胺化合物和酚类化 合物等环境污染物的测定,都具有较宽的线 性范围和较高的灵敏度。对一些重金属污染 物的应用也有报道。
食品检测方面的应用
SPME法在食品检测中的作用主要是评价 食品营养价值,监测各种食品添加剂含量, 测定芳香剂和香料含量以及食品中农药、 杀虫剂、除草剂等有害物质的残留等。
无机盐效应及pH值影响
样品中加人无机盐,可增加样品体系的离子浓度, 使待测物溶解度降低,从而增加分配系数,提高萃 取效率和分析灵敏度。但过高的盐浓度会增加体系 的粘度,影响扩散速度,产生负效应。 适当调节体系pH值,可防止液体试样中待测物质离 子化,使其处于分子状态,增加亲脂性,降低溶解 度,提高萃取效率。对于弱酸、弱碱性化合物,pH 值会直接影响其存在形态,因此,体系pH值的调节 很有必要。
医药卫生领域的应用
SPME方法已逐渐成为生理、病理、毒理学 领域重要的检测手段。在临床检验中应用 SPME萃取血、尿等样本中药物及代谢产物、 醇类物质、农药残留等成分进行检测。 SPME技术还可用于分析唾液、粪便等样品 中的药物及其代谢产物。
其它领域的应用
SPME在日用品有害物质的质量监测,纺织品 中偶氮染料的测定,建材中甲醛的分析以及烟 叶中有机酸含量的分析等各个方面都被广泛应 用。

色谱科supelco 固相微萃取

色谱科supelco 固相微萃取

色谱科Supelco固相微萃取一、概述色谱科(Supelco)是美国Sigma-Aldrich公司旗下的一个部门,主要致力于提供高质量的色谱产品和技术解决方案。

在色谱科的产品线中,固相微萃取(Solid Phase Microextraction, SPME)是一项重要的技术。

本文将对色谱科Supelco固相微萃取技术进行介绍,以及其在实际应用中的优势和发展前景。

二、固相微萃取概述1. 定义:固相微萃取是一种基于吸附分离原理的前处理技术,利用固相微萃取针(SPME fiber)将目标物质浓缩在针端上,达到富集和分离的作用。

2. 原理:SPME技术主要依赖于固相萃取材料对目标化合物的亲和力,通过吸附和解吸过程实现分析物质的富集和提取。

3. 类型:根据不同的固相材料和萃取方式,固相微萃取可分为直接固相微萃取、头空间固相微萃取、固相柱微萃取等不同类型。

三、色谱科Supelco固相微萃取技术1. 产品线:色谱科Supelco在固相微萃取领域拥有多种产品,包括SPME fiber、SPME针、SPME萃取仪等,涵盖了不同应用需求。

2. 技术优势:a. 高选择性:SPME fiber材料具有不同的亲和性,可选择性地提取目标化合物,减少干扰物质的干扰。

b. 高灵敏度:SPME技术能够将目标物质集中在针端,使样品预处理更为简化,提高了后续分析的灵敏度。

c. 环保节能:SPME技术可以在无需有机溶剂的情况下完成萃取和浓缩,符合绿色分析化学的发展理念。

3. 应用领域:色谱科Supelco固相微萃取技术在环境监测、食品安全、生物医学、药物分析等领域得到了广泛的应用,并取得了显著的效果。

四、色谱科Supelco固相微萃取技术的发展前景1. 技术改进:随着色谱科Supelco在固相微萃取领域的持续投入,技术不断改进,产品性能和稳定性得到了提升。

2. 专业定制:色谱科Supelco可以根据客户的具体需求,提供个性化的固相微萃取解决方案,满足复杂样品分析的要求。

固相微萃取技术

固相微萃取技术

一:概述固相微萃取(Solid Phase Microextraction, SPME)是九十年代兴起并迅速发展的新型的、环境友好的样品前处理技术,无需有机溶剂,操作也很简便。

该技术使用的是一支携带方便的萃取器,适于室内使用和野外的现场取样分析,也易于进行自动操作。

这对样品数量多、操作周期短的常规分析极为重要,不仅省时省力,而且对提高方法的准确度和重现性有重要意义。

该技术在一个简单过程中同时完成了取样、萃取和富集,是对液体样品中痕量有机污染物萃取方面的重要贡献。

SPME基本原理SPME方法包括吸附和解吸两步。

吸附过程中待测物在样品及石英纤维萃取头外涂渍的固定相液膜中平衡分配,遵循相似相溶原理。

这一步主要是物理吸附过程,可快速达到平衡。

如果使用液态聚合物涂层,当单组分单相体系达到平衡时,涂层上吸附的待测物的量与样品中待测物浓度线性相关。

解吸过程随SPME后续分离手段的不同而不同。

对于气相色谱(GC),萃取纤维插入进样口后进行热解吸,而对于液相色谱(LC),则是通过溶剂进行洗脱。

SPME有两种萃取方式,一种是将萃取纤维直接暴露在样品中的直接萃取法,适于分析气体样品和洁净水样中的有机化合物。

另一种是将纤维暴露于样品顶空中的顶空萃取法,广泛适用于废水、油脂、高分子量腐殖酸及固体样品中挥发、半挥发性的有机化合物的分析。

SPME技术评价和应用研究SPME萃取待测物后可与气相色谱、液相色谱联用进行分离。

使用的检测器可以是质谱(MS)、氢火焰离子化检测器(FID)、火焰光度检测器(FPD)、电子捕获检测器(ECD)、原子发射光谱检测器(AED)等,方法的最低检测限可达 ng 甚至 pg 水平。

对水中长链的有机脂肪酸也可达到1×10-12g。

根据样品体积、待测物种类和性质以及涂层厚度的不同,一次萃取操作的提取水平,对于血样中的有机磷农药为0.03%-10. 6%, 而对于BTEX类化合物(苯、甲苯、乙基苯,二甲苯),提取水平在1%-20%之间。

14第十一章 固相微萃取技术 SPME详解

14第十一章 固相微萃取技术 SPME详解
② 在水溶液中加入NaCl,Na2SO4等可增强水溶液的离子强 度,减少被分离有机物的溶解度,使分配系数增大提高分析 灵敏度。 ③ 控制溶液的酸度也可改变被分离物在水中的溶解度。例如, 采用固相微萃取分离法分离脂肪酸时需要控制溶液较小的 pH值使溶液中脂肪酸主要是以分子形式存在,以降低溶解 度,增大分配系数,提高分离萃取效率。
气体萃取(顶空技术)
取样品基质(液体和固体)上方的气相部分进行色谱分析。 用途:痕量高挥发性物质的分析测定,气体是挥发性物质的最 理想的溶剂。
分类
静态顶空过程
静态顶空:在一个密闭的容器中,样品与样品上方气体逐渐达到平衡。
分类
动态顶空过程
捕集阱中捕集浓缩。
连续气体萃取方法,经捕集浓缩后进行测定:
原理是基于待测物质在样品及微型萃取涂层中的
平衡分配进行萃取。不要求将待测组分全部分离 出来,而是通过样品与固相涂层间的平衡来达到
分离。
通过控制萃取纤维的长度、厚度,取样时间,调 节酸碱度、温度等萃取参数,实现痕量组分的可重现性、准确测定。
以Fiber-SPME为例
固相微萃取装置由手柄和萃取头或纤维头两部分组成。萃取头
为一根1cm 长,涂上不同色谱固定相或吸附剂的熔融石英纤维, 可在不锈钢套管内伸缩。 5
SPME的优点


(1 ) 不使用有机溶剂萃取,降低了成本,避免了二次污染; (2) 操作时间短,从萃取进样到分析结束不足1h; (3) 样品用量少,几mL—几十mL; (4) 操作简便,可减少待测组分的挥发损失 ; (5) 检测限达 μg/L—ng/L水平; (6) 适于挥发性有机物、半挥发性有机物及不具挥发性的 有机物。
用流动的气体将样品中的挥发性成分“吹扫”出来,再用一个捕集器将吹出来的物 质吸附下来。关闭吹扫气,由切换阀将捕集器接入GC,然后经热解吸将样品送入GC进 行。

固相微萃取法

固相微萃取法

固相微萃取法固相微萃取法是一种新型的样品前处理技术,它将传统的液液萃取方法简化为一步操作,具有操作简便、时间短、灵敏度高、选择性好等优点。

本文将从以下几个方面详细介绍固相微萃取法。

一、固相微萃取法的基本原理固相微萃取法是利用固定在小柱或膜上的吸附剂对样品中的目标物进行富集和分离。

其基本原理是,将样品溶解于适当的溶剂中,通过注射器或自动进样器将样品进入吸附柱或吸附膜中,在适当条件下使目标物质被吸附在柱或膜上,然后用洗脱剂将目标物质洗出,并进行分析。

二、固相微萃取法的优点1. 操作简便:只需将样品加入到吸附柱或膜中即可完成富集和分离过程,省去了传统液液萃取方法复杂的步骤。

2. 时间短:整个富集和分离过程只需几分钟至几十分钟不等。

3. 灵敏度高:由于富集的目标物质被高度净化和富集,所以检测灵敏度得到大幅提高。

4. 选择性好:通过选择不同的吸附剂,可以实现对不同化合物的选择性富集和分离。

5. 可靠性高:固相微萃取法不受样品矩阵的影响,因此在复杂矩阵中也能实现目标物质的富集和分离。

三、固相微萃取法的应用1. 环境监测:固相微萃取法可用于水、土壤、空气等环境样品中有机污染物的富集和分离。

2. 食品安全:固相微萃取法可用于食品中农药、兽药、食品添加剂等有害物质的检测。

3. 药物分析:固相微萃取法可用于药物血浆、尿液等生物样品中药物代谢产物的富集和分离。

4. 化学分析:固相微萃取法可用于化学反应体系中产生的有机产物或催化剂残留等有害成分的富集和分离。

四、固相微萃取法与其他技术的比较1. 与传统液液萃取法相比,固相微萃取法操作简便、时间短、灵敏度高、选择性好。

2. 与固相萃取法相比,固相微萃取法使用的吸附剂量更少,富集时间更短,且不需要使用大量有机溶剂。

3. 与固相微萃取法相比,固相微萃取-气相色谱/质谱联用技术具有更高的灵敏度和更好的分离效果。

五、总结固相微萃取法作为一种新型的样品前处理技术,在环境监测、食品安全、药物分析、化学分析等领域得到了广泛应用。

固相微萃取与顶空进样技术在食品分析中的应用

固相微萃取与顶空进样技术在食品分析中的应用

“固相微萃取技术”的由来
固相微萃取技术(solid-phase microextraction, SPME)是1990 年由加拿大学者Pawliszyn 和他的 合作者首创,并于近10余年间迅速 发展和完善的样品制备新技术。
SPME的原理
SPME是依据有机化合物能吸附在 涂于石英细丝表面的色谱固定相 上,且被吸附的分析物在GC的进 样口遇热可定量解吸的原理而设计 的技术 。依据类似的原理,HPLC 流动相将分析物冲洗到液相色谱柱 中,SPME也可用于HPLC分析。
萃取头涂层对于分析物要有较强的萃取能力,能 在较短时间内达到吸附平衡,热解吸时分析物能 迅速从萃取头上解吸,由于解吸通常在高温下进 行,因此,所选萃取头必须有良好的热稳定性。
搅拌棒吸附萃取
搅拌棒吸附萃取(SBSE)是1999年出现的 一种新型的固相微萃取方法。在萃取过程 中,外面涂有聚二甲基硅氧烷涂层的搅拌 子在水相基质中不断吸附低浓度的分析物
分析苹果香气的相应测定条件(续)
通过SPME测定监控牛奶的风味变化
牛奶的HS-SPME-GC/MS分析条件
SPME测定杀菌方式引起的牛奶挥发性组分的变化
SPME测定杀菌方式引起的 牛奶挥发性组分的变化(续)
主成分分析法(PCA)处理从SPME分析所获数据
PA、PB Pasteurized milk
引自 胡国栋等, 第十四次全国色谱学术报告会文集,无锡,2003.482-484.
2003年,我们再度优化了各种操作条件,以GC/MS和GC获得了啤酒41种香味 化合物确切定性结果,它包括14种酯类、12种醇类、8种酸类、3种醛类、 2种酚类、1种含硫化合物和1种含氧杂环化合物 。
➢ 酯类:乙酸乙酯,乙酸异丁酯,乙酸异戊酯,己酸乙酯,乙 酸己酯,乳酸乙 ➢ 酯,辛酸乙酯,乙酸辛酯,癸酸乙酯,苯乙酸乙酯,乙酸苯乙酯,月桂酸乙 ➢ 酯,丁酸-β-苯乙酯,邻苯二甲酸二异丁酯

固相微萃取

固相微萃取

有机氯农药
管内固相微萃取(in-细管的内表面,可采用气相色谱毛细管
优点:毛细管柱方便易得,使用寿命长,内径小涂层薄,样
品扩散快,平衡时间短。
In-tube-SPME-GC联用方式
热解析:用注射器将样品溶液注入毛细管柱,萃 取平衡后将水吹出,然后用石英压接头将萃取柱与分 析柱连接,放入气相色谱仪炉箱中热解吸。这种方法
盐的作用和溶液酸度的影响
① 由于被分离物质在固相和液相之间的分配 系数受基体性质的影响,当基体变化时分配系 数也会改变。
② 在水溶液中加入NaCl,Na2SO4等可增强水 溶液的离子强度,减少被分离有机物的溶解度, 使分配系数增大提高分析灵敏度。 ③ 控制溶液的酸度也可改变被分离物在水中的 溶解度。
与气相色谱或高效液相色谱仪联用样品前处理技术。
固相微萃取装置

最初的SPME是将高分 子材料均匀涂渍在硅 纤维上 ,形成圆柱形 的涂层,根据相似相溶 原理进行萃取的。
与SPE 相比SPME具有以下优点:
(1 ) 不使用有机溶剂萃取,降低了成本,避免了二次污 染; (2) 操作时间短,从萃取进样到分析结束不足1h; (3) 样品用量少,几mL—几十mL; (4) 操作简便,可减少待测组分的挥发损失 ; (5) 检测限达 μg/L—ng/L水平;
(6) 适于挥发性有机物、半挥发性有机物及不具挥发性
的有机物。
利用特殊的固相对分析组分的吸
附作用,将组分从试样基质中萃 取出来,并逐渐富集,完成试样前
处理过程。
当萃取体系处于动态平衡状态时,待测物的富集量: n = kvfvsc0/(kvf+vs) 由于芯片上固定液的总体积 (Vf) 仅几十微升,远远地 小于水相的体积 (Vs),而多数有机待测物的 k值并不大, 容易满足Vf <<Vs的条件,因此简化为 n = kvfc0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优点:萃取、净化、浓缩、进样功能于一体,具有操作简单、 所需时间短、无需溶剂、用样量少、选择性强、容易实现自 动化以及易于与色谱、电泳等高效分离检测手段联用等 与SPE法相比,SPME法具有萃取相用量更少、对待测物的 选择性更高、溶质更易洗脱等特点
原理
SPME的萃取机制就是待测物的样品基质和萃取介 质(涂层)间的分配。固相微萃取装置由在微量进 样器中插入一段涂有萃取相的石英纤维构成,当萃 取达到平衡时,进入萃取相的分析物的量为:
N=KfsV1CoV2/(KfsV1+V2)
其中,Co为萃取前分析物在样品中的浓度;Kfs为分 析物在萃取相和试样间的分配系数; V1 为萃取相 的体积;V2为样品的体积。
SPME对有机物的萃取符合“相似相溶”原 则,不同的涂层萃取不同的待测物。非极性 涂层如聚二甲基硅氧烷(PDMS),对非极性物 质如烃类效果良好;极性涂层如聚丙烯酸脂 (PA),对极性物质如苯酚和羧酸类的吸附非 常有效;但在直接SPME中,极性涂层如要 从水中萃取极性化合物,它对待测物的亲和 力必须大于水对待测物的亲和力,否则效果 很差。
固相萃取技术概述
一、固相萃取的原理
• 固相萃取(Solid Phase Extraction,SPE)就 是利用固体吸附剂将液体样品中的目标化合物 吸附,与样品的基体和干扰化合物分离,然后 再用洗脱液洗脱或加热解吸附,达到分离和富 集目标化合物的目的。
பைடு நூலகம்
二、固相萃取的优点
(1) 简单、快速和简化了样品预处理操作步骤 , 缩短了预处理时间。 (2) 处理过的样品易于贮藏、运输 ,便于实验室 间进行质控。 (3) 操作条件温和,适应的pH范围广。 (4) 不出现乳化现象 ,提高了分离效率。 (5) 仅用少量的有机溶剂 ,降低了成本。 (6) 易于与其他仪器联用 ,实现自动化在线分析。
2、吸附剂的活化
在萃取样品之前要用适当的溶剂淋洗固相萃 取柱,使吸附剂保持湿润,有利于吸附剂和目 标物质相互作用,提高回收率。 对于正相固相萃取采用的极性吸附剂,通常 用目标物所在的有机溶剂(样品基体)进行淋 洗;对于反相固相萃取采用的弱极性或非极性 吸附剂,通常用水溶性有机溶剂进行淋洗活化。
3、上样
固相萃取的分类
• 按照操作的不同,固相萃取可分为离线萃 取和在线萃取。
• 离线萃取是指萃取过程完成后再使用一 些分析手段进行分析;在线萃取出现于 80年代,萃取和分析同步完成,可靠性、 重现性、以及操作性能和工作效率都得 到很大程度的提高。
四、固相萃取的操作步骤
• 典型的固相萃取一般分为四个基本步骤: 1、吸附剂的选择 • 目标物的最佳保留(即最佳吸附)取决于目标 物极性与吸附剂极性的相似程度,两者极性越 相似,则保留越好(即吸附越好)。 • 选择固相萃取中的固定相吸附剂时,要尽量选 择与目标物极性和样品溶剂极性相似的吸附剂。 • 当目标物极性适中时,正、反相固相萃取都可 使用。 • 吸附剂的选择还受样品溶剂洗脱强度的制约。
五、固相萃取应用
• 固相萃取可用于环境化学、食品、医药 卫生、临床化学、生物化学、法医学等 领域中复杂目标物样品微量或痕量的分 离、富集和分析,具有非常广泛的应用。
固相微萃取(Solid phase MicroExtraction SPME)
固相微萃取是在固相萃取基础上发展起来的,吸收了固相 萃取的优点,摒弃了其需要柱填充物和使用溶剂洗脱解吸附 的弊病,只要一支类似进样器的固相微萃取装置即可完成全 部前处理,通过色谱进样口提供能量完成解吸附和进样 。
反相固相萃取
• 反相固相萃取所用的吸附剂和目标化合 物通常是非极性的或较弱极性的,反相 萃取过程中目标物质的碳氢键与吸附剂 表面官能团产生非极性作用(包括范德华 力或色散力),使得极性溶剂中的非极性 以及弱极性的物质在吸附剂表面吸附、 富集。
离子交换固相萃取
• 离子交换固相萃取又可分为强阳离子固 相萃取和强阴离子固相萃取两种,作用机 理都是目标物质的带电荷基团同吸附剂 表面的带电基团发生离子静电吸引,从而 实现吸附分离。
固相微萃取的装置
SPME装置略似进样器,典型的SPME装置见右图。特制 不锈钢穿透针A为中空结构,纤维固定针B和萃取纤维C 能在其中移动,熔融石英纤维C上面涂布用于萃取的固 定相,柱塞D控制固定针B的移动使纤维C伸出或退回穿 透针中。当纤维暴露在样品中时,涂层可从液态-气态 基质中吸附萃取待测物。吸附完毕后,萃取纤维C退回 到穿透针中被保护起来,己富集了待测物的纤维可直接 转移到仪器(气相色谱仪,液相色谱仪等)进样口,通过 仪器进样口的能量解吸附,然后进行分离分析。
三、 固相萃取的分类
• 按照选用吸附剂的不同,固相萃取可分为 正相固相萃取、反相固相萃取和离子交 换固相萃取。
正相固相萃取
• 正相固相萃取所用的吸附剂是极性的,目标化 合物的极性官能团与吸附剂表面的极性官能团 之间相互作用,从而使溶解于非极性溶剂中的 极性物质在吸附剂表面吸附、富集。 • 其极性作用包括了氢键、π-π键相互作用、偶 极-偶极相互作用和偶极-诱导偶极作用等。
• 在选择固相萃取分离模式和吸附剂时,要考虑 以下几点:
①目标物在极性或非极性溶剂中的溶解度; ②目标物有无可能离子化,从而决定是否采用离子交 换固相萃取; ③目标物有无可能与吸附剂形成共价键,如果能形成 共价键,再洗脱时有可能会遇到麻烦; ④非目标物与目标物在吸附剂上的竞争程度,这关系 到目标物与干扰化合物能否很好地分离。
将液态或溶解后的固态样品倒入活化后的固相萃 取柱,然后利用抽真空,加压或离心的方法使样品 流经吸附剂进行吸附。
4、洗涤和洗脱
• 先用较弱的溶剂将弱保留的干扰化合物 洗掉,再用较强的溶剂将目标物洗脱下 来加以收集。
• 方法:真空或离心 • 将淋洗液或洗脱液流过吸附剂.在多数情况下, 使目标物保留在吸附剂上,最后用强溶剂洗脱, 更有利于样品的净化. • 在选择对目标物吸附很弱或不吸附,而对干扰 化合物有较强吸附的吸附剂时,可先让目标物 淋洗下来加以收集,让干扰化合物保留在吸附 剂上,从而实现两者的分离。
相关文档
最新文档