固相萃取技术

合集下载

固相萃取技术原理及应用

固相萃取技术原理及应用

固相萃取技术原理及应用固相萃取(Solid Phase Extraction,简称SPE)是一种常用的样品前处理技术,它基于静态或动态状态下,将待测物从溶液中富集到固定相材料表面上,并通过适当的洗脱剂将目标物质从固相材料中释放出来。

固相萃取技术主要包括固相萃取柱(SPE column)和固相微柱(SPE cartridge)两种形式,常用的固相材料有活性炭、硅胶、C18、环糊精等。

固相萃取技术的原理是基于相分离原理,通过合适的固相材料选择和操作条件控制,使目标物质与其他杂质分离,并实现富集和洗脱的目的。

固相材料通常具有特定的化学特性,可以选择性地吸附或排斥目标物质。

在固相萃取过程中,样品一般先通过固相材料进行进样,然后洗脱剂流过固相材料将目标物质洗脱出来。

最后,洗脱的目标物质可以进行进一步的分析。

1.环境监测:固相萃取技术可用于提取和富集环境样品中的有机污染物,如水体中的有机溶剂、土壤和废水中的挥发性有机物。

通过固相萃取技术,可以提高目标物质的浓度,减少后续分析的干扰。

2.生物医学:固相萃取技术在生物医学领域广泛用于提取和富集生物样品中的目标化合物,如血液、尿液、唾液等中的药物或代谢产物,对于药物代谢动力学、药物安全性评价和生物样品前处理具有重要意义。

3.农药残留:固相萃取技术可用于提取和富集农产品中的农药残留物,如蔬菜、水果、肉类等中的农药和其代谢产物。

固相萃取技术能够提高检测灵敏度和分析效率,对于农产品的质量控制和食品安全具有重要作用。

4.食品安全:固相萃取技术可用于提取和富集食品中的食品添加剂、防腐剂、香料等化学物质。

通过固相萃取技术,可以减少食品样品前处理的麻烦,提高检测的灵敏度和准确性,保障食品安全。

1.富集效果好:固相萃取技术通过选择性吸附目标物质,实现了目标物质的富集。

相比于其他分离技术,固相萃取技术具有更高的富集效率。

2.操作简便:固相萃取技术操作简单,只需在样品中加入固相材料,通过正压或负压将溶液通过固相材料,然后使用洗脱剂进行洗脱即可。

固相萃取技术原理与应用

固相萃取技术原理与应用

固相萃取技术原理与应用固相萃取(Solid Phase Extraction,简称SPE)是一种重要的分离纯化技术,广泛应用于环境监测、食品安全、药物分析等领域。

本文将介绍固相萃取技术的原理与应用。

一、固相萃取技术原理1.样品预处理:将待分析的样品溶解、稀释或提取,目的是将目标分析物从干扰物中分离出来。

2.选择适当的固相吸附剂:根据目标分析物的性质,选择合适的固相吸附剂。

常见的吸附材料有C18、C8、C2、环酰胺、硅胶等。

3.将样品通入固相吸附剂柱:将经过预处理的样品溶液通入固相柱中,待目标物质吸附在固相吸附剂上。

4.洗脱步骤:通过用洗脱溶剂洗脱柱中吸附的杂质和干扰物,保留目标物质。

洗脱溶剂的选择要根据吸附剂和目标物质的亲疏水性来确定。

5.目标物质的脱附:采用合适的溶剂脱附洗脱柱中的目标物质,得到纯净的目标物。

6.浓缩与洗脱:通过吹干或其他手段进行目标物的浓缩和洗脱,以便后续的分析方法检测。

二、固相萃取技术应用1.环境监测:固相萃取技术广泛应用于环境监测领域,可用于海水、湖泊、河流和地下水中的有机污染物的富集和分离。

如对于农药残留、重金属离子等的分析,固相萃取技术具有高效、快速、选择性强的特点。

2.食品安全:固相萃取技术在食品安全领域的应用较为广泛,可用于蔬菜、水果、肉类等食品中残留农药、兽药、环境污染物等的富集和分离。

固相萃取技术具有样品处理简单、灵敏度高、重复性好等特点。

3.药物分析:固相萃取技术在药物分析中的应用主要是用于生物样品(如血液、尿液)中药物残留的富集与纯化。

固相萃取技术可以有效提高药物分析的检测灵敏度和分离效果。

4.环境样品前处理:固相萃取技术在环境样品前处理中也有广泛的应用,如水样预处理、土壤样品的提取等。

固相萃取技术可以快速分析和富集样品中目标物质,减少大量干扰物的影响。

总之,固相萃取技术作为一种高效、快速、选择性强的分离纯化技术,在环境监测、食品安全、药物分析等领域具有广泛的应用前景。

固相萃取操作

固相萃取操作

固相萃取操作一、引言固相萃取是一种常用的分离纯化技术,在化学、生物学等领域广泛应用。

它通过固定相材料与待提取物质之间的相互作用,实现对目标物质的分离和富集。

本文将介绍固相萃取的原理、常用材料和操作步骤,以及其在实际应用中的重要性和局限性。

二、固相萃取原理固相萃取的原理基于吸附-解吸过程。

具体而言,固定相材料表面的功能基团与待提取物质之间发生吸附作用,将目标物质从混合物中分离出来。

而后,通过改变条件(如溶剂pH、温度等),使目标物质从固定相上解吸,得到纯净的目标物质。

三、常用固定相材料1. Silica gel:硅胶是一种常用的固定相材料,其具有较高的吸附能力和化学稳定性。

硅胶可以通过改变孔径和表面官能团来适应不同的提取需求。

2. Bonded silica:固定相硅胶的表面可以修饰为特定的官能团,如脂肪酸、芳香烃等,以增强对特定物质的选择性吸附。

3. Polymer-based materials:聚合物基固定相材料具有较高的机械强度和化学稳定性,常用于对大体积样品的提取。

4. Carbon-based materials:碳基固定相材料具有较高的吸附能力和选择性,常用于提取有机物质。

四、固相萃取操作步骤1. 准备固定相材料:根据待提取物质的性质选择合适的固定相材料,并将其制备成适当的形式(如固定相柱、片剂等)。

2. 条件预处理:根据待提取物质的特性,预处理样品。

例如,对于生物样品,可以通过蛋白酶消化、酸碱调节等步骤来提取目标物质。

3. 样品加载:将预处理后的样品与固定相材料接触,使目标物质吸附到固定相表面。

可以通过溶液滴加、样品注入等方式进行样品加载。

4. 杂质去除:将非目标物质从固定相上洗脱,以减少干扰。

可以使用纯溶剂或特定的洗脱溶液进行洗脱。

5. 目标物质洗脱:改变条件,使目标物质从固定相上解吸。

可以通过调节溶剂pH、温度等参数来实现目标物质的洗脱。

6. 浓缩和洗脱溶剂去除:将洗脱溶液进行浓缩,以得到目标物质的富集样品。

固相萃取原理

固相萃取原理

固相萃取原理固相萃取是一种常用的分离和富集技术,广泛应用于环境监测、食品安全、生物医药等领域。

其原理是利用固定相与待测物质之间的亲疏作用,通过固定相对待测物质的吸附、分配和解吸等过程,实现待测物质的分离和富集。

固相萃取技术具有操作简便、分离效果好、富集度高等优点,因此备受青睐。

固相萃取的原理主要包括吸附、分配和解吸三个过程。

首先是吸附过程,待测物质在固相上发生吸附,其速度受温度、溶剂、固相和待测物质性质的影响。

其次是分配过程,待测物质在固相和溶液之间发生分配,达到平衡后形成分配系数。

最后是解吸过程,通过改变条件(如溶剂、温度等),使待测物质从固相上解吸出来,完成富集和分离。

固相萃取技术可以根据固相的不同分为固相萃取柱和固相萃取片两种形式。

固相萃取柱是将固相填充在柱内,通过吸附、分配和解吸等过程实现待测物质的分离和富集。

固相萃取片是将固相固定在片上,通过待测物质在固相上的吸附和解吸实现分离和富集。

两种形式各有优势,可根据实际需求选择使用。

固相萃取技术的选择主要受到待测物质的性质、固相的选择、溶剂的选择、温度和pH值等因素的影响。

不同的待测物质对固相的选择有不同的要求,有机物一般选择非极性固相,而极性物质则选择极性固相。

溶剂的选择也会影响固相萃取的效果,通常选择对待测物质有较好溶解度的溶剂。

温度和pH值的变化也会对固相萃取的效果产生影响,需要根据具体情况进行调整。

在实际应用中,固相萃取技术通常需要进行前处理、样品吸附、洗脱和浓缩等步骤。

前处理是为了提高样品的纯度和减少干扰物质,样品吸附是将待测物质吸附到固相上,洗脱是将干扰物质从固相上洗脱,浓缩是将待测物质从洗脱液中浓缩出来。

这些步骤需要严格控制条件和操作,以保证固相萃取的有效性和准确性。

总的来说,固相萃取技术是一种高效、简便的分离和富集技术,具有广泛的应用前景。

通过深入理解固相萃取的原理和操作要点,可以更好地应用于实际分析和检测中,为相关领域的研究和实践提供有力支持。

固相萃取技术的应用

固相萃取技术的应用

固相萃取技术的应用以固相萃取技术的应用为标题,本文将介绍固相萃取技术的原理、分类、应用及优势。

一、固相萃取技术的原理固相萃取技术是一种基于化学吸附原理的分离和富集方法。

其原理是利用固定在固体载体上的吸附剂,通过溶液与固相吸附剂之间的相互作用,实现对目标化合物的富集和分离。

固相萃取技术具有选择性强、富集能力高、操作简便等优点,因而被广泛应用于环境监测、食品安全、药物分析等领域。

二、固相萃取技术的分类根据吸附剂的性质和形态,固相萃取技术可以分为固相萃取柱、固相微萃取和固相萃取膜三种类型。

1. 固相萃取柱:将固相吸附剂填充在柱内,样品溶液通过柱时,目标化合物被吸附在固相吸附剂上,其他干扰物被滤除。

常见的固相萃取柱包括固相萃取柱和固相微萃取柱。

2. 固相微萃取:将固相吸附剂固定在微量装置上,样品溶液通过时,目标化合物被吸附在固相吸附剂上,然后通过热解或溶解释放目标物质,进而进行分析。

3. 固相萃取膜:将固相吸附剂涂覆在膜上,样品溶液通过膜时,目标化合物被吸附在固相吸附剂上,其他干扰物被滤除。

常见的固相萃取膜包括固相微萃取膜和固相微萃取纸。

1. 环境监测:固相萃取技术可以用于水体、土壤、大气等环境样品中有机污染物的富集和分析。

通过固相萃取技术,可以实现高灵敏度的环境监测,为环境保护提供数据支持。

2. 食品安全:固相萃取技术可以用于食品中农药、兽药、残留物等有害物质的提取和分析。

通过固相萃取技术,可以实现对食品中有害物质的快速检测,保障食品安全。

3. 药物分析:固相萃取技术可以用于药物代谢产物、药物残留等的提取和分析。

通过固相萃取技术,可以实现对药物分析的高效、准确的检测,为药物研发和临床应用提供数据支持。

4. 生物分析:固相萃取技术可以用于生物样品中目标化合物的富集和分析。

通过固相萃取技术,可以实现对生物样品中微量目标化合物的高灵敏度检测,为生物医学研究提供数据支持。

四、固相萃取技术的优势1. 选择性强:固相吸附剂的选择性可以通过调整吸附剂的化学性质和物理结构来实现,从而实现对目标化合物的选择性富集。

固相萃取SPE技术

固相萃取SPE技术

固相萃取SPE技术一、固相萃取概念及基本原理:固相萃取(Solid Phase Extraction,简称SPE)是从八十年代中期开始发展起来的一项样品前处理技术。

由液固萃取和液相色谱技术相结合发展而来。

主要通过固相填料对样品组分的择性吸咐及解吸过程,实现对样品的分离,纯化和富集。

主要目的在于降低样品基质干扰,提高检测灵敏度。

固相萃取的基本原理和方法:SPE 技术基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、纯化,是一种包括液相和固相的物理萃取过程;也可以将其近似的看作一种简单的色谱过程。

固相萃取(SPE)是利用选择性吸附与选择性洗脱的液相色谱法分离原理。

较常用的方法是使液体样品通过一吸附剂,保留其中被测物质,再选用适当强度溶剂冲去杂质,然后用少量良溶剂洗脱被测物质,从而达到快速分离净化与浓缩的目的。

也可选择性吸附干扰杂质,而让被测物质流出;或同时吸附杂质和被测物质,再使用合适的溶剂选择性洗脱被测物质。

二、固相萃取方法的优点相对于传统的液液萃取法和蛋白沉淀法,固相萃取具有无可比拟的优势:1.无需特殊装置和材料,操作简单2.集样品富集及净化与一身,提高检测灵敏度的最佳方法3.比液液萃取更快,节省溶剂4.可自动化批量处理5.重现性好三、固相萃取的分类固相萃取填料按保留机理分为:正相:Silica,NH2,CN,Diol,Florisil,Alumina反相:C18,C8,Ph,C4,NH2,CN,PEP,PS等离子交换:SCX,SAX,COOH,NH2等混合型:PCX,PAX,C8/SCX等按填料类型共分为4类:1.键合硅胶:C18(封端),C18-N(未端),C8,CN,NH2,PSA,SAX,COOH,PRS,SCX,Silica,Diol。

在SPE中最常用的吸附剂是硅胶或键合相的硅胶即在硅胶表面的硅醇基团上键合不同的官能团。

其pH适用范围2-8。

键合硅胶基质的填料种类较多,具有多选择性的优点。

固相萃取技术与应用

固相萃取技术与应用

固相萃取技术与应用
固相萃取技术是一种常用的样品前处理方法,用于分离、富集和净化目标化合物。

其基本原理是利用吸附剂(固相材料)对溶液中的目标化合物进行选择性吸附,并将其与其他成分分离。

固相材料常采用多孔性或非孔性材料,如硅胶、聚合物、环氧酚醛树脂等。

固相萃取技术主要包括两种形式:固相微萃取和固相萃取柱。

固相微萃取是将固相材料固定在适当的支撑体上,形成微量固相吸附剂,通过直接接触或间接扩散的方式,实现目标化合物的富集。

固相萃取柱则是将固相材料填充在柱内,通过液相的力驱动目标化合物在固相上进行吸附和洗脱。

固相萃取技术广泛应用于环境分析、食品安全、药物代谢研究等领域。

在环境领域,固相萃取常用于水体和土壤中有机物的萃取和浓缩,如挥发性有机物、农药残留等。

在食品安全领域,固相萃取被用于食品中有毒有害物质残留的分析,如重金属、农药残留、塑化剂等。

在药物代谢研究中,固相萃取则用于体内和体外样品中药物及其代谢物的富集。

固相萃取技术具有操作简单、富集效果好、选择性强等优点,因此得到了广泛的应用和发展。

未来,固相萃取技术还有望在蛋白质富集、环境污染物分析和分离纯化等方面有更多的应用。

固相萃取技术在食品检测前处理中的应用进展

固相萃取技术在食品检测前处理中的应用进展

固相萃取技术在食品检测前处理中的应用进展一、固相萃取技术概述固相萃取技术是一种基于化学吸附和脱附原理的样品前处理技术。

其主要原理是在固相吸附剂上吸附目标物质,然后将干净的溶剂或溶液用于脱附目标物质,从而实现对目标物质的富集和提取。

固相萃取技术具有操作简便、高效、选择性好、成本低等优点,因此在食品检测前处理中得到了广泛应用。

它主要包括萃取柱、固相萃取膜、固相微萃取等形式。

二、固相萃取技术在食品检测前处理中的应用1. 农药残留检测固相萃取技术在食品中农药残留检测中起到了重要作用。

通过将样品中的农药残留物质富集到固相萃取柱上,在适当的条件下再脱附出来,可以提高检测的灵敏度和准确性,减少干扰物质对检测结果的影响。

固相萃取技术还可以有效地降低检测的限量标准,提高检测效率。

2. 食品添加剂检测在食品添加剂检测中,固相萃取技术也有着重要的应用。

利用固相萃取技术可以对食品中的防腐剂、色素、甜味剂等添加剂进行富集提取,从而保证检测的准确性和灵敏度。

3. 食品中毒素检测固相萃取技术对食品中毒素的检测具有很高的适用性。

通过固相萃取技术可以将食品中的毒素富集提取出来,避免了复杂的样品前处理过程。

在安全性和准确性方面都具有明显的优势。

2. 缩短分析时间固相萃取技术具有快速、简便的特点,可以有效地缩短食品检测前处理的分析时间,提高工作效率。

3. 降低检测成本相对于传统的检测方法,固相萃取技术具有操作简便、易于自动化和成本低等优势,可以大大降低检测的成本。

4. 减少对环境的影响固相萃取技术使用的溶剂量少,不会产生大量有害废弃物,对环境影响小。

四、固相萃取技术在食品检测前处理中的发展趋势未来,固相萃取技术在食品检测前处理中将会有更广泛的应用。

随着科技的不断进步,固相萃取技术的自动化程度将会更高,操作更简便,准确性更高。

固相萃取技术也将更多地结合其他技术,如色谱技术、质谱技术等,构建更完善的检测体系。

对新型固相吸附剂的研究也将会推动固相萃取技术的发展,提高其适用性和选择性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在2003版的“食品卫生检测方法”标准系列中,有一个较大的改动就是很多项目,尤其是农药项目的前处理普遍使用了固相萃取技术(详见表1 )。

现针对这一技术的原理、使用和误区进行探讨。

一.固相萃取技术简介固相萃取(Solid Phase Extraction,简称SPE)技术,发展于上世纪70年代,由于其具有高效、可靠、消耗试剂少等优点,在许多领域取代了传统的液-液萃取而成为样品前处理的有效手段。

一些传统的介绍SPE的书籍将其归于一个液相色谱的原理,这其实是引起使用不当的主要源由之一。

把SPE小柱看作一根液相色谱柱,不如把它看成单纯的萃取剂更合适,因为:液相色谱的重点在于分离,而SPE的重点在于萃取。

固相萃取技术在样品处理中的作用分两种:一是净化,二是富集,这两种作用可能同时存在。

固体萃取和液-液萃取相比,其长处在于方便和消耗试剂少,短处在于批次间的重复性难以保证。

出现这种情况的原因在于:液体试剂的重复性好,只要其纯度可靠,不同年代的产品的物理化学性质都是可靠的。

而固体萃取剂就算保证了纯度外,还存在着颗粒度的差异,外形的差异等液体试剂不存在的且难以衡量的因素,不同年代不同批号的萃取性质可能会有较大的区别。

从理论上和厂家宣传来看,固相萃取应该在色谱分析的前处理上得到很好的应用:有机溶剂用得很少,可批量处理样品,既可富集,又能除杂质,给人印象是前处理的革命性进步。

然而现实情况,起码在国内,虽然推广了多年,实际应用还是相当有限。

SPE应用得不广,与我们的使用方式和期望有关,也与它本身的局限有关。

对于供应商来说,从经济利益出发,向来都是忽略固相萃取的局限与不足。

固相萃取可以作为前处理手段的一个很好补充,但是在使用时,一定要清醒知道到它的优点和缺点,注意因地制宜,扬长避短。

二、固相萃取的应用优势在什么项目的前处理适合使用固相萃取技术,即用固相萃取会比普通的溶剂萃取更理想,个人认为有以下几种情况:(一)水中有机物的前处理。

此类常规处理基本上是用与水不相溶的有机溶剂振荡萃取,用固相萃取的优势在于(1)可以定量地重复前处理过程。

溶剂振荡的操作一般只能要求到控制时间的程度,却无法控制振荡频率,强度,动作,我们知道,每个人的振荡动作是不同的,就是同一个人,也很难保证始终划一的动作。

所以说,溶液萃取的动作是不定量,不能重复的。

而在应用固相萃取时,比较容易保持过柱和洗脱速度的均一和稳定,因此,固相萃取的萃取过程是可以重复,可定量的。

(2)现场处理。

水中有机物的分析有一个长期困扰我们的瓶颈。

即有机物在池塘水库等环境中能保持相对稳定,但是一旦进入采样瓶这个小环境中,就会迅速发生变化,所以很多水的有机物分析方法要求即采即分析,最多不能超过4 个小时,可一般的情况是,从取水回到实验室的时间就远远不止4 小时了,样品发生了变化,分析结果的可靠性可想而知。

如果引入固相萃取技术,由于其设备简单,体积小,易于携带,完全可以做到在现场一边采样,一边进行前处理。

采样者带回实验室的是固相萃取柱,而不是水样。

这样就能保证我们处理的是真正成份稳定的水样。

从实际应用来说,在水的检测中用固相萃取技术取代传统液液萃取还有相当的工作需要摸索,目前尚不能完全取代,但是其发展的前景很值得看好。

(3)有机试剂消耗量的减少。

在处理水样时,如果用固相萃取,则只需要在洗脱时用到有机溶剂,用量比传统液液萃取要少数十倍以上。

对于实验者的人身保护和环境保护有着积极的意义。

(二)批量生物材料的药物成分萃取这是固相萃取在实际应用中比较成功的范例,主要是指在医院中检测血样和尿样时的前处理工作,由于对药物成份的吸附是固相萃取的优势,加上样品单一,组成固定,在确定方法后很适合大规模批量的净化操作。

(三)免疫亲和固相萃取。

萃取的理想状态就是特异性富集或特异性排斥,可是不论是溶液萃取还是固相萃取,基本上是相似相溶的,最多做到“某一类”层次上的萃取,而无法达到“某一种”层次的萃取。

在固相萃取柱的基础上加上免疫亲和技术,可以利用其生物特异性选择吸附,能够达到近于理论的完美萃取。

实际困难在于虽然其概念很好,但是由于技术难度相对较高,可供应用的更少。

三、固相萃取的应用局限性(1)样品局限性固相萃取不适于处理固体样品。

对于固体,必须将其先制备为液体形态才能进行固相萃取操作,这一点就远不如液体萃取了。

即使是液体样品,固相萃取也有其额外的苛刻要求,即液体必须洁净度高,不能有悬浮物或其它固体颗粒,否则会在柱前形成堵塞,无法继续过柱及洗脱操作。

所以固体样品要制备成液体,液体样品最好还要过滤。

相比来说,溶剂萃取就不存在这个麻烦,稍脏点也影响不大。

(2)结构局限性固相萃取柱的结构很简单,除了塑料管,只有筛板和填料了。

就这简单的结构,带来了便利,也带来了与生俱来的矛盾,一些我们在用溶剂萃取时永远不会遇到的矛盾。

矛盾1 液面的问题。

当我们进行活化、净化,洗脱等典型的固相萃取操作时,会使用不同溶剂,这时的操作要求在液面下降到筛板时换加不同溶剂,加得太晚,会使填料中干涸产生气泡,影响结果的稳定性(甚至会因为溶液的张力问题而使液面无法下降)。

相反,如果加得太晚,会使加入溶液和在筛板上的原有溶液混合,产生一个其实是我们不希望存在的、无法预料极性的新洗脱液,使结果的可靠性大打折扣。

加液加到筛板,说得容易做起来难,如果单独做一个样品可以紧盯液面操作。

但是在批量操作时只会顾此失彼,固相萃取技术实用的一个重要意义就在于,其可以方便可靠地批量处理样品,如果这个意义削弱的话,其实用性也就大大降低。

液面问题是制约固相萃取应用成功的主要瓶颈,虽隐蔽却无法回避。

解决的方法有两种。

第一种解决方法是干脆不用理会液面的困扰,每次都做到抽空溶液,这种做法倒是不会产生筛板上的溶液混合的问题,但是又会出现一个新的问题,即填料看起来是抽干了,但实际表面还是有数量不定的液体,每次干涸程度不一致,也无法重复。

另一种解决方法就是在使用固相萃取器时用电导探针测试,这个方法比较精确,但是也有一个新的问题,探针需要一个清洗过程,否则会有交叉污染的可能,而且有这类装置的固相萃取器价格一般相当地昂贵。

且一个探针在同一时间只能探测一个样品管,要同时监测一批小柱则很困难。

矛盾2 填料的装填松紧问题。

用液体萃取时我们从来不用考虑整个溶剂的密度是否均匀,但是对于固体填料,我们却不能忽略这个问题。

在同一批次甚至同一包里的几个小柱,加上相同溶液时,我们会发现液体过柱的速度是不均匀的,总是有快有慢。

由于生产工艺和成本的综合考虑,固相萃取小柱不可能采用类似填充液相色谱柱的匀浆高压法,所以填料的装填松紧不均匀是必然的。

这就造成一个问题,由于液体流过的速度不一样,在每次加液的时间也会不一样,不利于同步批次处理样品。

而且回收率也会不同。

看过一些公司的所谓全自动固相萃取器,其原理都有一个假设,即每根小柱的流过速度应该一致,可惜,这真的是假设――“假”的“设”想。

矛盾3 填料的质量稳定问题在我们开启一瓶二氯甲烷或丙酮时,只要买的不是伪劣产品,就是不同公司的也可以放心使用,因为它们的萃取性能是稳定可靠的。

而固相萃取则不同,就是同一公司的正品填料,每次的产品性质还是有些许差异,不同公司的相差更大。

而如果换一家公司的固相萃取柱或同一公司不同批次的小柱,都需要我们把所有的项目做一遍质量评估,那估计也没有太多人愿意使用。

矛盾4 不能加热一般的加热行为可以改善吸附作用,可是由于固相萃取柱的套管是由塑料制造的,一加热就会变形,所以只能做常温操作。

(3)项目局限性从各家供应商提供的资料来看,做得比较好的应用主要在处理药物方面,即分子量比较大,性质比较稳定的那些物质。

液体萃取的相似相溶理论已经久经考验,而固相萃取靠的是吸附与洗脱,已经完全不是经典的萃取过程了,并不是所有的项目都适合用。

很多经典的液体萃取实验到现在也不能转化到固相萃取,即使转化,效果也不理想。

四、应用固相萃取技术时的注意事项。

1.尽量慢。

我们在用固相萃取时,面临的一个问题就是:液体应该以什么速率过柱流出,我的经验是,要想效果好,就要慢,尽量慢。

对于固相萃取柱中的填料,我们如果局部放大地看,能够看到其实它们是有很多的空隙,液体流通的渠道很多,如果流得快,相当比例的待测组分还来不及与填料充分作用就地从通道流失;所以要慢,给它们一个充分作用的机会。

如何慢呢?一个窍门就是不要用配合抽气机使用的所谓固相萃取器,而采用再普通不过的重力法。

利用重力的作用使液体向下流出。

在实验速度上,重力法远不如吸力法,但是在实验效果方面,重力法远比吸力法优胜,用吸力法只能得到谱带吸附,用重力法却能得到柱头吸附,在速度和效果两者的平衡中,我们还是倾向于优先保证好的效果。

举例来说,一个3 ml 500mg的C18小柱,如果加甲醇活化,其甲醇全部流至筛板时间约为20 分钟,而在过样品液时,25ml的液体最多2 小时可以流完,而且用重力法如果得当,工作速率不一定比吸力法差很多。

因为我们可以充分利用空闲时间,用吸力法必须有人在旁边守候,而重力法由于不需要用电,可以充分利用午休和晚上时间过柱,液体量大时接个堆叠接头和延长管即可,安排好实验步骤,工作效率一样很高。

另外,重力法不需要抽气机和固相萃取器。

2.尽量少。

在固相萃取条件选择上,有人为了提高提取效率,尽量多加液体,或选择填料量大的小柱,我觉得大可不必如此。

尤其在用重力法时,由于效率高,很多情况下是柱头吸附,并不是所有的填料都在起作用,填料多了不仅液体流出速度会更慢,而且在洗脱时的扩散会很明显。

因此建议,够用就行,在能保证效率时,填料尽量少,加液也不宜多。

3.实验条件不宜过分细化。

固相萃取从原理上是色谱分离,但是在操作时最好只把它作为吸附萃取剂使用,由于填料性质、松紧常有差异,因此在实际实验中不必因为追求效果的最佳化而设计出很复杂的洗脱程序。

在建立条件中,我们应该尽量多利用现成的资料,尽快地建立起体系,同时要对操作过于复杂的步骤保持警惕性,在实验效果,实验速率和易操作性三者中取得平衡点。

4.只用一次固相萃取柱最好只用一次。

因为从严格的意义上来说,很多物质的吸附是不可逆的,一次吸附,无法洗脱,影响着下一次吸附,虽然有人做过重复利用的实验,但是总体来说为了节省一点经费而大大增加了结果的不可靠性和不确定性,是很不合算的行为。

因此建议,只用一次。

如果想节省经费可以从减少填料量和使用小容积管入手,尽量用堆叠接头和延长管。

5.慎用固相萃取器所有的供应商都会在推荐固相萃取柱的同时,推销固相萃取器,最简单的固相萃取器也要几千,如果贴个进口商标价格更要加几倍,这样的价格还不包括抽气机。

但是这样的配置就是再加上调速开关,也很难得到好的结果,主要问题就是把小柱的不平行性放大了。

建议:实在不适合重力法的才用固相萃取器。

相关文档
最新文档