大连理工电机控制系统研究报告

合集下载

《2024年永磁同步电机伺服控制系统的研究》范文

《2024年永磁同步电机伺服控制系统的研究》范文

《永磁同步电机伺服控制系统的研究》篇一一、引言随着工业自动化和智能制造的快速发展,永磁同步电机(PMSM)因其高效率、高精度和高动态性能等特点,在伺服控制系统中得到了广泛应用。

永磁同步电机伺服控制系统作为实现自动化生产、智能化控制和精准位置定位的重要设备,其研究具有重大的现实意义和工程应用价值。

本文将围绕永磁同步电机伺服控制系统的相关内容展开深入的研究和探讨。

二、永磁同步电机的基本原理永磁同步电机(PMSM)是一种基于永磁体产生磁场和电磁感应原理的电机。

其基本原理是利用永磁体产生的磁场与定子电流产生的磁场相互作用,实现电机的旋转。

PMSM具有高效率、高功率密度、低噪音等优点,在伺服控制系统中得到了广泛应用。

三、伺服控制系统的基本原理及组成伺服控制系统是一种基于反馈控制的自动控制系统,其基本原理是通过传感器实时检测被控对象的实际状态,与设定值进行比较,然后根据比较结果调整控制信号,使被控对象达到预期的稳定状态。

伺服控制系统主要由控制器、传感器、执行器等部分组成。

四、永磁同步电机伺服控制系统的研究现状目前,永磁同步电机伺服控制系统在国内外得到了广泛的研究和应用。

研究方向主要包括控制策略优化、系统稳定性分析、故障诊断与容错控制等方面。

其中,控制策略优化是提高系统性能的关键,包括矢量控制、直接转矩控制、滑模控制等。

此外,随着人工智能和机器学习等技术的发展,智能控制在永磁同步电机伺服控制系统中的应用也日益广泛。

五、永磁同步电机伺服控制系统的研究方法针对永磁同步电机伺服控制系统,常用的研究方法包括数学建模、仿真分析、实验研究等。

首先,通过建立系统的数学模型,可以更好地理解系统的运行原理和性能特点;其次,利用仿真软件对系统进行仿真分析,可以预测系统的动态性能和稳定性;最后,通过实验研究验证理论分析的正确性,并进一步优化系统性能。

六、永磁同步电机伺服控制系统的优化策略针对永磁同步电机伺服控制系统的优化策略主要包括以下几个方面:1. 控制策略优化:通过改进控制算法,提高系统的动态性能和稳定性。

大连交通大学机电传动控制课程实验报告

大连交通大学机电传动控制课程实验报告

大连交通大学机电传动控制课程实验报告1.实验目的.本次实验的主要目的是让学生了解机电传动控制的基本原理和方法,掌握使用PLC编程软件进行编程的方法,并通过实验验证所学知识的正确性和实用性。

2.实验器材.本次实验使用的器材包括:PLC控制器、电机驱动器、编码器、传感器等。

同时还需要使用电脑连接PLC控制器进行编程。

3.实验步骤.编写程序:首先需要根据实验要求编写相应的程序,包括初始化程序、输入输出程序、运动控制程序等。

在编写程序时需要注意变量的使用、逻辑关系以及程序的可读性。

连接硬件:将编写好的程序下载到PLC控制器中,并将PLC控制器与电机驱动器、编码器、传感器等硬件设备连接起来。

调试程序:在连接好硬件设备后,需要对程序进行调试。

调试过程中需要注意各个硬件设备的反馈信号是否正确,程序是否能够正常运行等问题。

测试实验结果:完成调试后,可以进行实验测试。

测试过程中需要注意安全问题,避免发生意外事故。

4.实验结果分析.通过本次实验,我们成功地实现了对机电传动系统的控制。

具体来说,我们使用了PLC编程软件来编写程序,通过PLC控制器与电机驱动器、编码器、传感器等硬件设备进行连接,实现了对电机的运动控制。

在实验过程中,我们发现一些问题并进行了解决,例如硬件设备的连接问题、程序中的逻辑错误等。

这些问题的解决使得我们的实验更加顺利和成功。

5.总结与展望.本次实验让我们深入了解了机电传动控制的基本原理和方法,掌握了使用PLC编程软件进行编程的方法。

通过实验,我们不仅提高了自己的实践能力,还加深了对理论知识的理解和掌握。

在未来的学习中,我们将继续深入学习机电传动控制的知识,并将其应用到实际工作中去。

自动控制原理实验报告

自动控制原理实验报告

大连理工大学本科实验报告课程名称:自动控制原理实验A 学部:电子信息与电气工程专业:自动化辅修班级:学号:学生姓名:2017年 3 月9 日实验项目列表大连理工大学实验预习报告学院(系):专业:班级:姓名:学号:组:___ 实验时间:实验室:实验台:指导教师签字:成绩:典型线性环节的模拟一、实验目的和要求二、实验原理和内容三、实验步骤1.比例环节模拟电路图及参数计算方法2.积分环节模拟电路图及参数计算方法3.比例积分环节模拟电路图及参数计算方法4.比例微分环节模拟电路图及参数计算方法5.微分环节的模拟电路图及参数计算方法6.比例积分微分环节模拟电路图及参数计算方法7.一阶惯性环节模拟电路图及参数计算方法四、实验数据记录表格1.比例环节2.积分环节3.比例积分环节4.比例微分环节5.比例微分积分环节6.一阶惯性环节大连理工大学实验报告学院(系):专业:班级:姓名:学号:组:___ 实验时间:实验室:实验台:指导教师签字:成绩:典型线性环节的模拟一、实验目的和要求见预习报告二、实验原理和内容见预习报告三、主要仪器设备四、实验步骤与操作方法五、实验数据记录和处理1.比例环节的阶跃响应曲线2.积分环节的阶跃响应曲线3.比例积分环节的阶跃响应曲线4.比例微分环节的阶跃响应曲线5.微分环节的阶跃响应曲线6.比例积分微分环节的阶跃响应曲线7.惯性环节的阶跃响应曲线六、实验结果与分析七.思考题八、讨论、建议、质疑大连理工大学实验预习报告学院(系):专业:班级:姓名:学号:组:___实验时间:实验室:实验台:指导教师签字:成绩:二阶系统的阶跃响应一、实验目的和要求二、实验原理和内容画出二阶系统的模拟电路图,如何通过改变电路中的阻、容值来改变二阶系统的参数?三、实验步骤1.在学习机上模拟二阶系统,仔细连线,不要发生错误2.取二阶系统的阻尼比ζ=0.2,时间常数T=0.47秒,求二阶系统的单位阶跃响应3.取二阶系统的阻尼比ζ=0.2,时间常数T=1.47秒,求二阶系统的单位阶跃响应4.取二阶系统的阻尼比ζ=0.2,时间常数T=1.0秒,求二阶系统的单位阶跃响应5.取二阶系统的阻尼比ζ=0.4,时间常数T=1.0秒,求二阶系统的单位阶跃响应6.取二阶系统的阻尼比ζ=0.7,时间常数T=1.0,求二阶系统的单位阶跃响应7.取二阶系统的阻尼比ζ=1,时间常数T=1.0,求二阶系统的单位阶跃响应四、实验数据记录大连理工大学实验报告学院(系):专业:班级:姓名:学号:组:___ 实验时间:实验室:实验台:指导教师签字:成绩:二阶系统的阶跃响应一、实验目的和要求见预习报告二、实验原理和内容见预习报告三、主要仪器设备四、实验步骤与操作方法五、实验数据记录和处理标示出每条曲线的峰值、峰值时间、调整时间,计算最大超调量。

大连理工大《电机与拖动》实验报告

大连理工大《电机与拖动》实验报告

大连理工大《电机与拖动》实验报告实验报告一实验名称:单相变压器实验实验目的:通过空载与短路实验测定变压器的变比和参数。

通过负载实验测取变压器的运行特性。

实验项目:1、空载实验测取空载特性0000U =f(I ), P =f(U )。

2、负载实验保持11N U =U ,2cos 1?=的条件下,测取22U =f(I )。

3、短路实验测取短路特性k k k U =f(I ), P =f(I)。

(一)填写实验设备表(二)空载实验1.填写空载实验数据表格2. 根据上面所得数据计算得到铁损耗Fe P 、励磁电阻m R 、励磁电抗m X 、电压比k(三)短路实验1.填写短路实验数据表格表2 室温θ= O(四)负载实验1. 填写负载实验数据表格表3(五)问题讨论1. 什么是绕组的同名端?答:两个有互感的线圈,在某一端通入电流时,两个线圈产生的磁通方向是相同的,那两个线头就叫“同名端”。

2. 为什么每次实验时都要强调将调压器恢复到起始零位时方可合上电源开关或断开电源开关?答:主要是为了防止在高压下合闸产生产生较大的冲击损坏设备。

其次是因为既然需要调压器对负载进行调压,那么调压器后面的负载情况就是一个不确定因素,就不能事先预料在较高电压下负载可能情况。

因此,就需要从低电压慢慢调高电压,观察负载的情况。

而断开电源时,如果负载时隔较大的感性负载,那么在高压状况下突然停电会产生很高的感应电势。

3. 实验的体会和建议答:体会:通过此次实验学习,我对变压器的参数有了进一步的认识和理解,对变压器的特性有了更具体深刻的体会,同时也学会了在实验室应根据需要正确选择各仪表量程和如何保护实验设备。

建议:如果将实验数据进行后续处理,绘制成图,结果将会更直观。

实验报告二实验名称:直流发电机实验实验目的:熟悉用实验方法测定直流发电机的运行特性,并根据所测得的运行特性评定该被试电机的有关性能。

实验项目:1、他励发电机的调节特性:保持N n=n ,使N U=U ,测取f I =f(I)。

控制步进电机实验报告(3篇)

控制步进电机实验报告(3篇)

第1篇一、实验目的1. 理解步进电机的工作原理及控制方法。

2. 掌握单片机与步进电机驱动模块的接口连接方法。

3. 学习使用C语言编写程序,实现对步进电机的正反转、转速和定位控制。

4. 通过实验,加深对单片机控制系统的理解。

二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是控制精度高、响应速度快、定位准确。

步进电机控制实验主要涉及以下几个方面:1. 步进电机驱动模块:常用的驱动模块有ULN2003、A4988等,它们可以将单片机的数字信号转换为步进电机的控制信号。

2. 单片机:单片机是整个控制系统的核心,负责接收按键输入、处理数据、控制步进电机驱动模块等。

3. 步进电机:步进电机分为单相、双相和三相等类型,本实验使用的是双相四线步进电机。

三、实验设备1. 单片机开发板:例如STC89C52、STM32等。

2. 步进电机驱动模块:例如ULN2003、A4988等。

3. 双相四线步进电机。

4. 按键。

5. 数码管。

6. 电阻、电容等元件。

7. 电源。

四、实验步骤1. 硬件连接(1)将步进电机驱动模块的输入端(IN1、IN2、IN3、IN4)分别连接到单片机的P1.0、P1.1、P1.2、P1.3口。

(2)将按键的输入端连接到单片机的P3.0口。

(3)将数码管的段选端连接到单片机的P2口。

(4)将步进电机驱动模块的电源端连接到电源。

(5)将步进电机连接到驱动模块的输出端。

2. 编写程序(1)初始化单片机I/O端口,设置P1口为输出端口,P3.0口为输入端口,P2口为输出端口。

(2)编写按键扫描函数,用于读取按键状态。

(3)编写步进电机控制函数,实现正反转、转速和定位控制。

(4)编写主函数,实现以下功能:a. 初始化数码管显示;b. 读取按键状态;c. 根据按键状态调用步进电机控制函数;d. 更新数码管显示。

3. 调试程序(1)将程序烧写到单片机中;(2)打开电源,观察数码管显示和步进电机运行状态;(3)根据需要调整程序,实现不同的控制效果。

《2024年步进电机驱动控制技术及其应用设计研究》范文

《2024年步进电机驱动控制技术及其应用设计研究》范文

《步进电机驱动控制技术及其应用设计研究》篇一一、引言步进电机是一种通过输入脉冲序列来驱动转动的电机,其运动方式为离散化的步进动作。

步进电机广泛应用于精密定位、速度控制以及数字化系统等场景。

本文将针对步进电机驱动控制技术及其应用设计进行研究,深入探讨其原理、特点以及在各个领域的应用。

二、步进电机驱动控制技术原理步进电机主要由定子、转子和驱动器三部分组成。

定子上有多个磁极,转子则由多个磁性材料制成的齿组成。

驱动器根据输入的脉冲序列,控制定子上的电流变化,从而产生旋转磁场,使转子按照一定的方向和角度进行转动。

步进电机驱动控制技术主要包括以下几种:1. 恒流驱动技术:通过恒流源对步进电机进行驱动,保证电机在不同负载和转速下均能保持稳定的运行状态。

2. 微步技术:通过精细控制驱动器的脉冲序列,使步进电机在每个方向上实现微小角度的转动,从而提高电机的定位精度和运行平稳性。

3. 环形分布电流技术:通过对定子上的磁极进行环形分布电流的控制,实现对步进电机的持续运动控制,使得步进电机的转动更为流畅和准确。

三、步进电机驱动控制技术的应用设计步进电机驱动控制技术在各个领域有着广泛的应用,主要包括以下几个方面:1. 精密定位系统:步进电机的高精度定位能力使得其在精密定位系统中得到广泛应用,如数控机床、精密测量仪器等。

通过微步技术和环形分布电流技术的应用,可以实现高精度的定位和运动控制。

2. 速度控制系统:步进电机在速度控制系统中也有着重要的应用,如打印机、电动阀等。

通过调整脉冲序列的频率和占空比,可以实现对电机转速的精确控制。

3. 数字化系统:步进电机在数字化系统中也有着广泛的应用,如数字标牌、机器人等。

通过将步进电机的运动与数字信号进行映射,可以实现数字化的运动控制和显示功能。

四、应用设计实例分析以数控机床为例,分析步进电机驱动控制技术的应用设计。

数控机床是一种高精度的加工设备,其运动控制系统对加工精度和效率具有重要影响。

大连理工大学计算机原理实验综合实验设计报告

大连理工大学计算机原理实验综合实验设计报告
sir0
出口参数
功能 描述
buf
步进电机驱动

步进电机延时

数码管延时

数码管显示
dir,speed,count, 调节电机方向速度,数码
portcl
管的状态,更新 count
dir,speed,count, 调节电机方向速度,数码
portcl
管的状态,更开始
-5-
IO_0809 equ 220h
ioled
equ 230h
data segment
portcl db 0ch,14h,21h,22h,0ffh
led db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,67h,77h,7ch,39h,5eh,79h,71h
count db ?
;cs
pop ds
push ds
mov ax,0
mov ds,ax
lea ax,cs:int_proc2
mov si,70h
;IR0 中断类型码 70h
add si,si
add si,si
mov ds:[si],ax
push cs
pop ax
mov ds:[si+2],ax
pop ds
;------------1Hz 分频----------
20
21
PA4 PA5 PA6 PA7 /WR RESET GND D0 D1 D2 D3 D4 D5 D6 D7 VCC PB7 PB6 PB5 PB4
D0 D1 D2 D3 D4 D5 D6 D7 CLK0 OUT0 GATE0 GND
1
24
2
23
3 8253 22

《2024年基于单片机的步进电机控制系统研究》范文

《2024年基于单片机的步进电机控制系统研究》范文

《基于单片机的步进电机控制系统研究》篇一一、引言随着科技的发展,步进电机因其高精度、低噪音、易于控制等优点,在各个领域得到了广泛的应用。

然而,传统的步进电机控制方式存在控制精度低、响应速度慢等问题。

因此,基于单片机的步进电机控制系统应运而生,其具有体积小、控制精度高、响应速度快等优点。

本文旨在研究基于单片机的步进电机控制系统的设计原理、实现方法以及应用前景。

二、步进电机控制系统的基本原理步进电机是一种将电信号转换为机械运动的设备,其运动过程是通过一系列的步进动作实现的。

步进电机的控制原理主要是通过改变电机的电流和电压,使电机按照设定的方向和速度进行旋转。

三、基于单片机的步进电机控制系统设计基于单片机的步进电机控制系统主要由单片机、步进电机驱动器、步进电机等部分组成。

其中,单片机是控制系统的核心,负责接收上位机的指令,并输出相应的控制信号给步进电机驱动器。

步进电机驱动器则负责将单片机的控制信号转换为适合步进电机工作的电流和电压。

在硬件设计方面,我们选择了一款性能稳定、价格适中的单片机作为主控制器,同时设计了相应的电路和接口,以实现与上位机和步进电机驱动器的通信。

在软件设计方面,我们采用了模块化设计思想,将系统分为初始化模块、控制模块、通信模块等部分,以便于后续的维护和升级。

四、基于单片机的步进电机控制系统的实现在实现过程中,我们首先对单片机进行了初始化设置,包括时钟设置、I/O口配置等。

然后,通过编程实现了对步进电机的控制,包括步进电机的启动、停止、正反转以及速度调节等功能。

此外,我们还实现了与上位机的通信功能,以便于实现对步进电机的远程控制和监控。

五、实验结果与分析我们通过实验验证了基于单片机的步进电机控制系统的性能。

实验结果表明,该系统具有较高的控制精度和响应速度,能够实现对步进电机的精确控制。

同时,该系统还具有较好的稳定性和可靠性,能够在各种复杂环境下正常工作。

此外,我们还对系统的抗干扰能力进行了测试,结果表明该系统具有较强的抗干扰能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个人资料整理仅限学习使用网络高等教育本科生毕业论文<设计)题目:电机控制系统研究学习中心:龙游电大层次:专科起点本科专业:电气工程及其自动化年级: 2018年秋季学号:201806987645学生:鄢斌指导教师:王莹完成日期:2018 年 8 月 30 日内容摘要目前的世界,能源日益紧张,环境日趋恶化。

节能减排,改善人类生存的环境,正成为越来越多人们的共识。

低碳已经成为一个世界性的话题,而电能的消耗主要是工作使用,电机占了很大的比重。

电能是所有能源种类中最易被人类使用的一种能源,也是很多其它能源所转换的一个对象,因此,对电能的节约,也就是相应的节约了其它类型的一次性能源,比如煤、油、气等非再生能源。

随着大功率开关器件集成电路及高性能的磁性材料的进步,采用电子换向原理工作的无刷直流电机取得了长足的发展。

无刷直流电机既有直流电机的结构简单,运行可靠,维护方便的一系列优点。

又具备交流电机运行效率高,无励磁损耗及调速性能好等诸多优点,在当今国民经济的各个领域里的应用日益普及。

通常我们靠霍尔元件来得到转子的位置,然而传感器有一些缺点,比如增加了成本占空间,附加了传感器电路对温度不稳定,除此之外,它不能用于在一些恶劣的环境中。

由于无位置传感器技术能解决上述问题,因此吸引了各国科研工作者研究的兴趣。

关键词:无刷直流电机;控制系统;异步电机目录内容摘要1引言31 电机控制系统介绍41.1 电机控制系统的基本组成选题的目的和意义41.2直流电动机控制的发展历史51.3永磁无刷直流电机的国内外研究简况71.4本课题主要研究内容82 电机调速系统92.1电机控制系统的基本组成92.2 电动机92.3 功率放大与变换装置92.4 控制器103 三相异步电动机原理113.1 概述113.2 三相异步电动机的基本组成113.3 三相异步电动机的工作原理113.4 三相异步电动机的特点113.5 三相异步电动机的主要应用113.6 三项异步电机的定期检修124 总结14参考文献15引言本论文以永磁无刷直流电动机的原理、结构为理论墓础,研究永磁无刷电机的系统结构、控制规律,接着分别提出了基于DSP技术的有位置传感器和无位置传感器控制方案。

根据方案进行了硬件电路设计,以DSP芯片TMS320F240为核心的控制单元,研究了无刷直流电机调速系统,IGBT模块以及驱动单元,相电压及电流检测单元,速度给定环节,轴角编码检测单元,主电源、驱动及控制电源回路,故障检测和保护环节,电机姿态显示单元分别进行了阐述。

特别是直流无刷电机的原理、控制方案以及以IGBT模块的具体应用。

1电机控制系统介绍1.1 电机控制系统的基本组成选题的目的和意义永磁无刷直流电机是一种电子电动机。

随着电力电子技术的发展,许多新型的高性能半导体功率器件,如GTR、MOSFET、IGBT等相继出现以及高性能永磁材料,如稀土永磁材料的问世,为无刷直流电动机的广泛应用奠定的基础, 它由直流电源经过逆变器、位置检测装置向电动机供电,因而既保持了直流电机的优良特性,又改善了有刷直流电机效率低、耗电多、噪音大、维护困难、使用寿命短等运行状况。

电机系统属环保节能型产品,是国家产业政策支持的高新技术工程,正处在产品成长期,具有广阔的市场前景。

无刷永磁直流电机正在以其特有的优势不断蓬勃发展。

直流无刷电动机有着很多其它电动机无可比拟的优点使得它在很多领域得到了很广泛的应用。

1.直流无刷电动机在家用电器中的应用。

在空调器行业,永磁直流无刷电动机的应用已成为衡量空调技术水准的重要指标之一。

目前,变频空调技术已从异步电机变频控制发展到无刷电动机的变转速控制,即市场上宣传的“直流变频空调”,其压缩机电机和室内、室外风机都采用永磁直流无刷电动机,与采用异步电机的交流变频空调相比,直流变转速空调具有起动功率大、高效节能,抗电压波动能力强等优点。

目前直流变转速空调电控系统的技术难点主要包括:压缩机控制系统的换相转矩脉动抑制技术,无位置传感器控制技术,高效率低噪音的室内外风机驱动系统。

变频洗衣机是近年来进入居民家庭消费的又一热门产品。

目前应用于变频洗衣机的电机类型主要有三相异步电动机,开关磁阻电动机和直流无刷电动机三大类。

永磁直流无刷电动机直接驱动洗衣机具有机械传动结构简单、高效节能、洗涤脱水运行噪音低等一系列优点,代表了未来的发展趋势。

2.直流无刷电动机在计算机外设和办公自动化设备中的应用。

3.直流无刷电动机在工业中的应用。

4.直流无刷电动机在汽车、摩托车、自行车等交通工具中的应用。

5.直流无刷电动机在其他领域中的应用。

综上所述,由于永磁直流无刷电动机具有效率高、功率密度大、转动惯量小、调速性能好等一系列优点,己经在工业、交通、航空航天、军工、伺服控制领域以及家用电器领域得到广泛应用,虽然我国和国外在电机制造技术方面的差距不大,但是控制系统的研究和开发却需要加大力度。

从另外一个角度来讲,我国的稀土资源特别丰富,占世界总储量的75%,发展永磁直流无刷电动机产业对发展我国的经济有特殊的意义。

由于直流无刷电动机固有的特点,常规的控制方法必须有位置传感器,这带来了种种限制。

因此,研究无位置传感器直流无刷电动机调速系统也很有必要。

1.2直流电动机控制的发展历史常用的控制直流电动机有以下几种:第一,最初的直流调速系统是采用恒定的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。

这种方法简单易行设备制造方便,价格低廉。

但缺点是效率低、机械特性软、不能在较宽范围内平滑调速,所以目前极少采用。

第二,三十年代末,出现了发电机-电动机(也称为旋转变流组>,配合采用磁放大器、电机扩大机、闸流管等控制器件,可获得优良的调速性能,如有较宽的调速范围(十比一至数十比一>、较小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。

但发电机、电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大,维修困难等。

第三,自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。

特别是它的系统快速响应性是发电机、电动机系统不能比拟的。

但是汞弧变流器仍存在一些缺点:维修还是不太方便,特别是水银蒸汽对维护人员会造成一定的危害等。

第四,1957年世界上出现了第一只晶闸管,与其它变流元件相比,晶闸管具有许多独特的优越性,因而晶闸管直流调速系统立即显示出强大的生命力。

由于它具有体积小、响应快、工作可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统经济指标上和可靠性有所提高,而且在技术性能上也显示出很大的优越性。

晶闸管变流装置的放大倍数在10000以上,比机组(放大倍数10>高1000倍,比汞弧变流器(放大倍数1000>高10倍。

在响应快速性上,机组是秒级,而晶闸管变流装置为毫秒级。

[14]从20世纪80年代中后期起,以晶闸管整流装置取代了以往的直流发电机电动机组及水银整流装置,使直流电气传动完成一次大的跃进。

同时,控制电路也实现了高度集成化、小型化、高可靠性及低成本。

以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大,直流调速技术不断发展。

随着微型计算机、超大规模集成电路、新型电子电力开关器件和新型传感器的出现,以及自动控制理论、电力电子技术、计算机控制技术的深入发展,直流电动机控制也装置不断向前发展。

微机的应用使直流电气传动控制系统趋向于数字化、智能化,极大地推动了电气传动的发展。

近年来,一些先进国家陆续推出并大量使用以微机为控制核心的直流电气传动装置,如西门子公司的SIMOREG K 6RA24、ABB公司的PAD/PSD等等。

随着现代化步伐的加快,人们生活水平的不断提高,对自动化的需求也越来越高,直流电动机应用领域也不断扩大。

例如,军事和宇航方面的雷达天线,火炮瞄准,惯性导航,卫星姿态,飞船光电池对太阳得跟踪等控制;工业方面的各种加工中心,专用加工设备,数控机床,工业机器人,塑料机械,印刷机械,绕线机,纺织机械,工业缝纫机,泵和压缩机等设备的控制;计算机外围设备和办公设备中的各种磁盘驱动器,各种光盘驱动器,绘图仪,扫描仪,打印机,传真机,复印机等设备的控制;音像设备和家用电器中的录音机,录像机,数码相机,洗衣机,冰箱,电扇等的控制。

随着计算机,微电子技术的发展以及新型电力电子功率器件的不断涌现,电动机的控制策略也发生了深刻的变化。

电动机控制技术的发展得力于微电子技术,电力电子技术,传感器技术,永磁材料技术,微机应用技术的最新发展成就。

变频技术和脉宽调制技术已成为电动机控制的主流技术。

正是这些技术的进步使电动控制技术在近二十年内发生了很大的变化。

其中,电动机控制策略的模拟实现正逐渐退出历史舞台,而采用微处理器,通用计算机,FPGA/CPLD,DSP控制器等现代手段构成的数字控制系统得到了迅速发展。

电动机的驱动部分所采用的功率器件经历了几次的更新换代以后,速度更快,控制更容易的全控型功率器件MOSFET和IGBT逐渐成为主流。

功率器件控制条件的变化和微电子技术的使用也使新型的电动机控制方法能够得到实现。

其中,脉宽调制<PWM)方法,变频技术在直流调速和交流调速系统中得到了广泛应用。

永磁材料技术的突破与微电子技术的结合又产生了一批新型的电动机,如永磁直流电动机,交流伺服电动机,超声波电动机等。

由于有微处理器和传感器作为新一代运动控制系统的组成部分,所以又称这种运动控制系统为智能运动控制系统。

所以应用先进控制算法,开发全数字化智能运动控制系统将成为新一代运动控制系统设计的发展方向。

[17]在那些对电动机控制系统的性能要求较高的场合<如数控机床,工业缝纫机,磁盘驱动器,打印机,传真机等设备中,要求电动机实现精确定位,适应剧烈负载变化),传统的控制算法已难以满足系统要求。

为了适应时代的发展,现有的电动机控制系统也在朝着高精度,高性能,网络化,信息化,模糊化的方向不断前进。

1.3永磁无刷直流电机的国内外研究简况20世纪七十年代以来,随着电力半导体工业的飞速发展,许多新型的全控型半导体功率器件如GTR、MOSFET、IGBT等相继问世,加上新型高磁能积永磁材料陆续出现均为无刷直流电动机的广泛应用奠定了坚实的基础,随着电机本体及其相关技术的迅速发展,新型电机不断涌现。

“无刷直流电动机”的概念己由最初“特指”具有特定电子换向的直流电动机发展到“泛指”一切具备有刷直流电动机外部特性且没有电刷的永磁直流电动机。

无刷直流电动机系统按其绕组反电势BEMF的波形和电流的波形可分为两大类:方波无刷直流电动机和正弦波无刷直流电动机。

相关文档
最新文档