电力系统专业名词

电力系统专业名词
电力系统专业名词

电力系统power system 发电机generator 励磁excitation 励磁器excitor 电压voltage 电流current 升压变压器step-up transformer 母线bus 变压器transformer 空载损耗no-load loss 铁损iron loss 铜损copper loss 空载电流no-load current 有功损耗active loss 无功损耗reactive loss

输电系统power transmission system 高压侧high side 输电线transmission line 高压high voltage

低压low voltage 中压middle voltage 功角稳定angle stability 稳定stability 电压稳定voltage stability 暂态稳定transient stability 电厂power plant 能量输送power transfer 交流AC 直流DC

电网power system 落点drop point 开关站switch station 调节regulation

高抗high voltage shunt reactor 并列的apposable 裕度margin 故障fault 三相故障three phase fault 分接头tap 切机generator triping 高顶值high limited value 静态static (state) 动态dynamic (state) 机端电压控制AVR 电抗reactance 电阻resistance 功角power angle 有功(功率)active power

电容器Capacitor 电抗器Reactor 断路器Breaker 电动机motor 功率因数power-factor 定子stator 阻抗impedance 功角power-angle 电压等级voltage grade 有功负载: active load PLoad

无功负载reactive load 档位tap position 电阻resistor 电抗reactance 电导conductance

电纳susceptance 上限upper limit 下限lower limit 正序阻抗positive sequence impedance

负序阻抗negative sequence impedance 零序阻抗zero sequence impedance

无功(功率)reactive power 功率因数power factor 无功电流reactive current 斜率slope

额定rating 变比ratio 参考值reference value 电压互感器PT 分接头tap

仿真分析simulation analysis 下降率droop rate 传递函数transfer function 框图block diagram

受端receive-side 同步synchronization 保护断路器circuit breaker 摇摆swing 阻尼damping

无刷直流电机Brusless DC motor 刀闸(隔离开关) Isolator 机端generator terminal

变电站transformer substation

永磁同步电机Permanent-magnet Synchronism Motor 异步电机Asynchronous Motor

三绕组变压器three-column transformer ThrClnTrans

双绕组变压器double-column transformer DblClmnTrans

固定串联电容补偿fixed series capacitor compensation

双回同杆并架double-circuit lines on the same tower

单机无穷大系统one machine - infinity bus system

励磁电流Magnetizing current 补偿度degree of compensation

电磁场:Electromagnetic fields 失去同步loss of synchronization

装机容量installed capacity 无功补偿reactive power compensation

故障切除时间fault clearing time 极限切除时间critical clearing time

强行励磁reinforced excitation 并联电容器shunt capacitor<

下降特性droop characteristics 线路补偿器LDC(line drop compensation)

电机学Electrical Machinery

自动控制理论Automatic Control Theory

电磁场Electromagnetic Field

微机原理Principle of Microcomputer

电工学Electrotechnics

电路原理Principle of circuits

电机学Electrical Machinery

电力系统稳态分析Steady-State Analysis of Power System

电力系统暂态分析Transient-State Analysis of Power System

电力系统继电保护原理Principle of Electrical System's Relay Protection 电力系统元件保护原理Protection Principle of Power System 's Element 电力系统内部过电压Past Voltage within Power system

模拟电子技术基础Basis of Analogue Electronic Technique

数字电子技术 Digital Electrical Technique

电路原理实验 Lab. of principle of circuits

电气工程讲座Lectures on electrical power production

电力电子基础Basic fundamentals of power electronics

高电压工程High voltage engineering

电子专题实践Topics on experimental project of electronics

电气工程概论Introduction to electrical engineering

电子电机集成系统Electronic machine system

电力传动与控制Electrical Drive and Control

电力系统继电保护Power System Relaying Protection

主变压器main transformer 升压变压器step-up transformer

降压变压器step-down transformer 工作变压器operating transformer

备用变压器standby transformer 公用变压器 common transformer

三相变压器three-phase transformer 单相变压器single-phase transformer

带负荷调压变压器on-load regulating transformer 变压器铁芯transformer core

变压器线圈transformer coil 变压器绕组transformer winding

变压器油箱transformer oil tank 变压器外壳transformer casing

变压器风扇transformer fan 变压器油枕transformer oil conservator(∽drum

变压器额定电压transformer reted voltage 变压器额定电流transformer reted current

变压器调压范围transformer voltage regulation rage 配电设备power distribution equipment SF6断路器SF6 circuit breaker 开关switch 按钮button

隔离开关isolator,disconnector 真空开关vacuum switch 刀闸开关knife-switch

接地刀闸earthing knife-switch 电气设备electrical equipment

变流器current converter 电流互感器current transformer

电压互感器voltage transformer 电源power source

交流电源AC power source 直流电源DC power source 工作电源operating source

备用电源Standby source 强电strong current 弱电weak current 继电器relay

信号继电器signal relay 电流继电器current relay 电压继电器voltage relay

跳闸继电器tripping relay 合闸继电器closing relay 中间继电器intermediate relay

时间继电器time relay 零序电压继电器zero-sequence voltage relay

差动继电器differential relay 闭锁装置locking device 遥控telecontrol

遥信telesignalisation 遥测telemetering 遥调teleregulation

断路器breaker,circuit breaker 少油断路器mini-oil breaker,oil-mini-mum breaker

高频滤波器high-frequency filter 组合滤波器combined filter

常开触点normally opened contaact 常闭触点normally closed contaact

并联电容parallel capacitance 保护接地protective earthing 熔断器cutout,fusible cutout 电缆cable 跳闸脉冲tripping pulse 合闸脉冲closing pulse

一次电压primary voltage 二次电压secondary voltage 并联电容器parallel capacitor

无功补偿器reactive power compensation device 三角接法delta connection

星形接法Wye connection 原理图schematic diagram

一次系统图primary system diagram 二次系统图secondary system diagram

两相短路two-phase short circuit 三相短路three-phase short circuit

单相接地短路single-phase ground short circuit 短路电流计算 calculation of short circuit current 自动重合闸automatic reclosing 高频保护 high-freqency protection

距离保护distance protection 横差保护transverse differential protection

纵差保护longitudinal differential protection 线路保护line protection

过电压保护over-voltage protection 母差保护bus differential protection

瓦斯保护Buchholtz protection 变压器保护transformer protection

电动机保护motor protection 远方控制remote control 用电量power consumption

载波carrier 故障fault 选择性selectivity 速动性speed 灵敏性sensitivity

可靠性reliability 电磁型继电器electromagnetic

电力系统常用名词

电力系统常用英文名词 电力系统power system发电机generator励磁excitation励磁器 excitor电压voltage电流current升压变压器step-up transformer母线bus 变压器transformer空载损耗no-load loss铁损iron loss铜损copper loss 空载电流no-load current有功损耗reactive loss无功损耗active loss输电系统power transmission system高压侧high side输电线transmission line高压high voltage低压low voltage中压middle voltage功角稳定angle stability稳定stability电压稳定voltage stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC直 流DC电网power system落点drop point开关站switch station调节regulation高抗high voltage shunt reactor并列的apposable裕度margin 故障fault三相故障three phase fault分接头tap切机generator triping 高顶值high limited value静态static(state)动态dynamic(state)机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power电容器Capacitor电抗器Reactor断路器Breaker电动机motor功率因 数power-factor定子stator阻抗impedance功角power-angle电压等级voltage grade有功负载:active load PLoad无功负载reactive load档位tap posi tion电阻resistor电抗reactance电导conductance电纳susceptance上限upper limit下限lower limit正序阻抗positive sequence impedance负序阻抗negative sequence impedance零序阻抗zero sequence impedance无功(功率)reactive power功率因数power factor无功电流reactive current斜率slope额定rating变比ratio参考值reference value 电压互感器PT分接头tap仿真分析simulation analysis下降率droop rate 传递函数transfer function框图block diagram受端receive-side同步synchronization保护断路器circuit breaker摇摆swing阻尼damping无刷 直流电机Brusless DC motor刀闸(隔离开关)Isolator机端generator terminal变电站transformer substation永磁同步电机Permanent-magnet Synchronism Motor异步电机Asynchronous Motor三绕组变压器three-column transformer ThrClnTrans双绕组变压器double-column transformer DblClmnTrans固定串联电容补偿fixed series capacitor compensation双回

电力系统自动化技术专业介绍

电力系统自动化技术专业介绍 电力系统自动化是电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展),电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班,DTS即调度员培训仿真系统为调度员学习提供了方便),配电自动化(DAS已经实现,尚待发展)。 电力系统自动化automation of power systems 对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。 发展过程20世纪50年代以前,电力系统容量在几百万千瓦左右,单机容量不超过10万千瓦,电力系统自动化多限于单项自动装置,且以安全保护和过程自动调节为主。例如:电网和发电机的各种继电保护、汽轮机的危急保安器、锅炉的安全阀、汽轮机转速和发电机电压的自动调节、并网的自动同期装置等。50~60年代,电力系统规模发展到上千万千瓦,单机容量超过20万千瓦,并形成区域联网,在系统稳定、经济调度和综合自动化方面提出了新的要求。厂内自动化方面开始采用机、炉、电单元式集中控制。系统开始装设模拟式调频装置和以离线计算为基础的经济功率分配装置,并广泛采用远动通信技术。各种新型自动装置如晶体管保护装置、可控硅励磁调节器、电气液压式调速器等得到推广使用。70~80年代,以计算机为主体配有功能齐全的整套软硬件的电网实时监控系统(SCADA)开始出现。20万千瓦以上大型火力发电机组开始采用实时安全监控和闭环自动起停全过程控制。水力发电站的水库调度、大坝监测和电厂综合自动化的计算机监控开始得到推广。各种自动调节装置和继电保护装置中广泛采用微型计算机。

《电力系统分析》朱一纶_课后习题解答

电力系统分析朱一纶课后习题选择填空解答第一章 1)电力系统的综合用电负荷加上网络中的功率损耗称为(D) A、厂用电负荷 B、发电负荷 C、工业负荷 D、供电负荷 2)电力网某条线路的额定电压为Un=110kV,则这个电压表示的是(C)A、相电压 B、1 相电压 C、线电压 D、 3线电压 3)以下(A)不是常用的中性点接地方式。 A、中性点通过电容接地 B、中性点不接地 C、中性点直接接地 D、中性点经消弧线圈接地 4)我国电力系统的额定频率为(C) A、 30Hz B、 40Hz C、50Hz D、 60Hz 5)目前,我国电力系统中占最大比例的发电厂为(B) A、水力发电厂 B、火力发电厂 C、核电站 D、风力发电厂 6)以下(D)不是电力系统运行的基本要求。 A、提高电力系统运行的经济性 B、安全可靠的持续供电 C、保证电能质量 D、电力网各节点电压相等 7)一下说法不正确的是(B) A、火力发电需要消耗煤、石油 B、水力发电成本比较大 C、核电站的建造成本比较高 D太阳能发电是理想能源

8)当传输的功率(单位时间传输的能量)一定时,(A) A、输电的压越高,则传输的电流越小 B、输电的电压越高,线路上的损耗越大 C、输电的电压越高,则传输的电流越大 D、线路损耗与输电电压无关 9)对(A)负荷停电会给国民经济带来重大损失或造成人身事故。 A、一级负荷 B、二级负荷 C、三级负荷 D、以上都不是 10)一般用电设备满足(C) A、当端电压减小时,吸收的无功功率增加 B、当电源的频率增加时,吸收的无功功率增加 C、当端电压增加时,吸收的有功功率增加 D、当端电压增加时,吸收的有功功率减少 填空题在后面 第二章 1)电力系统采用有名制计算时,三相对称系统中电压、电流、功率的关系表达 式为(A)A.S=UI B.S=3UI C.S=UIcos D.S=UIsin 2)下列参数中与电抗单位相同的是(B)A、电导B、电阻C、电纳D、导纳 3)三绕组变压器的分接头,一般装在(B)A、高压绕组好低压绕组 B、高压绕组和中压绕组 C、中亚绕组和低压绕组 D、三个绕组组装 4)双绕组变压器,Γ型等效电路中的导纳为( A ) A.GT-jBT B.-GT-jBT C.GT+jBT D.-GT+jBT

复习题电力电子

6.调试图所示晶闸管电路,在断开负载R d测量输出电压U d是否可调时,发现电压表读数不正常,接上R d后一切正常,请分析为什么? 习题2图 解:当S断开时,由于电压表内阻很大,即使晶闸管门极加触发信号,此时流过晶闸管阳极电流仍小于擎住电流,晶闸管无法导通,电流表上显示的读数只是管子漏电流形成的电阻与电压表内阻的分压值,所以此读数不准。在S合上以后,Rd介入电路,晶闸管能正常导通,电压表的读数才能正确显示。 7.画出图1-35所示电路电阻R d上的电压波形。 图1-35 习题3图 解: 8.画出单相半波可控整流电路,当 =60°时,以下三种情况的d u、T i及T u的波形。 1)电阻性负载。 2)大电感负载不接续流二极管。 3)大电感负载接续流二极管。 解:(1)波形如图

(a )电阻性负载波形图 (b )电感性负载不接续流二极管 1. (c )电感性负载接续流二极管将直流电逆变为某一频率或可变频率的交流电直 接( 供给 非电源 负载 )的过程称为无源逆变。 2. 在晶闸管有源逆变电路中,绝对不允许两个电源电动势( 反极性串 联 )相连。 3. 单相全控桥电阻性负载电路中,晶闸管可能承受的最大正向电压为( C ) A. U 2 B.2U 2 C. U 2 D. U 2 三相半波可控整流电路中三个晶闸管的触发脉冲相位按相序依次互差 ( 120° )。

4.双窄脉冲触发是在触发某一号晶闸管时,触发电路同时给 ( 前)一号晶闸管补一个脉冲。 5.晶闸管是四层三端器件,三个引出电极分别为:阳极、阴极和 (门)极。 6.将直流电逆变为某一频率或可变频率的交流电直接( 供给非电源 负载)的过程称为无源逆变。 7.在晶闸管有源逆变电路中,绝对不允许两个电源电动势( 反极性串 联)相连。 8.电力电子器件是直接用于主电路中,实现(电能)的变换或控 制的电子器件。 9.降压斩波电路中通常串接较大电感,其目的是使负载电流( 连 续) 10.在电力电子电路中GTR工作在开关状态, 在开关过程中,在(截止 区)和(饱和区)之间过渡时,要经过放大区。 11.根据(面积等效原理),SPWM控制用一组(等 幅不等宽)的脉冲来等效一个(正弦波)。 12.斩波电路有三种控制方式:(:脉冲宽度调制)、 (脉冲频率调制)和(混合型)。其中最常用的控制方式是:(脉冲宽度调制)。 11、电力电子电能变换的基本类型:(AC/AC)、(AC/DC)、(DC/DC)、(DC/AC)。 13.抑制过电压的方法之一是用(电容)吸收可能产生过电压的能 量,并用(电阻)将其消耗。 14.把晶闸管承受正压起到触发导通之间的电角度称为( 触发 角)。 15.为了保证晶闸管可靠与迅速地关断,通常在管子阳极电压下降为零之后,加 一段时间的( 反向)电压。 16.单相半波可控整流电路,当电感性负载接续流二极管时,控制角的移相范围 为( 0~ 180 )。 17.由于电路中共阴极与共阳极组换流点相隔60。,所以每隔60。有一次

电力系统常用英语词汇

电力系统 power system 发电机 generator 励磁 excitation 励磁器 excitor 电压 voltage 电流 current 升压变压器 step-up transformer 母线 bus 变压器 transformer 空载损耗:no-load loss 铁损:iron loss 铜损:copper loss 空载电流:no-load current 无功损耗:reactive loss 有功损耗:active loss 输电系统 power transmission system 高压侧 high side 输电线 transmission line 高压: high voltage 低压:low voltage 中压:middle voltage 功角稳定 angle stability 稳定 stability 电压稳定 voltage stability 暂态稳定 transient stability 电厂 power plant 能量输送 power transfer 交流 AC 直流 DC 电网 power system 落点 drop point 开关站 switch station 调节 regulation 高抗 high voltage shunt reactor 并列的:apposable 裕度 margin 故障 fault 三相故障 three phase fault 分接头:tap 切机 generator triping 高顶值 high limited value 静态 static (state) 动态 dynamic (state) 机端电压控制 AVR 电抗 reactance 电阻 resistance 功角 power angle 有功(功率) active power 电容器:Capacitor 电抗器:Reactor 断路器:Breaker 电动机:motor 功率因数:power-factor 定子:stator 阻抗电压:阻抗:impedance 功角:power-angle 电压等级:voltage grade 有功负载: active load/PLoad 无功负载:reactive load 档位:tap position 电阻:resistor 电抗:reactance 电导:conductance 电纳:susceptance 上限:upper limit 下限:lower limit

浅谈电力系统自动化

浅谈电力系统自动化 “安全、可靠、经济、优质”的电能供应是现代社会对电力事业的要求,自动化的电力系统成为现代社会的发展趋势,而且电力系统自动化技术也不断地从低级到高级,从局部到整体。本文试对电力系统自动化发展趋势及新技术的应用作简要阐述。 标签:电力系统自动化探讨 1 电力系统自动化总的发展趋势 1.1 当今电力系统的自动控制技术正趋向于: ①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。②在设计分析上日益要求面对多机系统模型来处理问题。③在理论工具上越来越多地借助于现代控制理论。④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。⑤在研究人员的构成上益需要多“兵种”的联合作战。 1.2 整个电力系统自动化的发展则趋向于: ①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 2 具有变革性重要影响的三项新技术 2.1 电力系统的智能控制电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

电力系统名词解释

1、串联谐振回路和并联谐振回路哪个呈现的阻抗大? 答:串联谐振回路阻抗最小,并联谐振回路阻抗最大。 2、现用电压表和电流表分别测量高阻抗和低阻抗,请问为保证精确度,这两块表该如何接线? 答:对低阻抗的测量接法:电压表应接在靠负荷侧。对于高阻抗的测量接法:电流表应接在靠负荷侧 3、大接地电流系统、小接地电流系统的划分标准是什么? 答:大接地电流系统、小接地电流系统的划分标准是依据系统的零序电抗X0与正序电抗X1的比值。我国规定: X0/X1≤4~5的系统属于大接地电流系统, X0/X1>4~5的系统属于小接地电流系统。 4、什么叫大接地电流系统? 答:电力系统中零序电抗X0与正序电抗X1的比值X0/X1≤4~5的系统属于大接地电流系统。通常,中性点直接接地的系统均为大接地电流系统。 5、什么叫小接地电流系统? 答:电力系统中零序电抗X0与正序电抗X1的比值X0/X1>4~5的系统属于小接地电流系统。通常,中性点不接地或经消弧线圈接地的系统均为小接地电流系统。 6、我国电力系统中性点接地方式有哪几种? 答:有三种;分别是:直接接地方式(含经小电阻、小电抗接地)、经消弧线圈接地方式、不接地方式(含经间隙接地)。 7、什么是消弧线圈的过补偿? 答:中性点装设消弧线圈后,补偿后的感性电流大于电容电流,或者说补偿的感抗小于线路容抗,电网以过补偿方式运行。 8、小接地电流系统当发生一相接地时,其它两相的电压数值和相位发生什么变化? 答:其它两相电压幅值升高倍,超前相电压再向超前相移30°,而落后相电压再向落后相移30°。 9、小电流接地系统中,中性点装设的消弧线圈以欠补偿方式运行,当系统频率降低时,可能导致什么后果? 答:当系统频率降低时,可能使消弧线圈的补偿接近于全欠补偿方式运行,造成串联谐振,引起很高的中性点过电压,在补偿电网中会出现很大的中性点位移而危及绝缘。 10、为什么在小接地电流系统中发生单相接地故障时,系统可以继续运行1~2h?

常用电气元器件英文单词

常用电气元器件英文单词(1)元件设备 三绕组变压器:three-column transformer ThrClnTrans 双绕组变压器:double-column transformer DblClmnTrans 电容器:Capacitor 并联电容器:shunt capacitor 电抗器:Reactor 母线:Busbar 输电线:TransmissionLine 发电厂:power plant 断路器:Breaker 刀闸(隔离开关):Isolator 分接头:tap 电动机:motor(2)状态参数 有功:active power 无功:reactive power 电流:current 容量:capacity 电压:voltage 档位:tap position 有功损耗:reactive loss 无功损耗:active loss 功率因数:power-factor 功率:power 功角:power-angle 电压等级:voltage grade 空载损耗:no-load loss 铁损:iron loss 铜损:copper loss 空载电流:no-load current 阻抗:impedance 正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance 电阻:resistor 电抗:reactance 电导:conductance 电纳:susceptance 无功负载:reactive load 或者QLoad 有功负载: active load PLoad 遥测:YC(telemetering) 遥信:YX 励磁电流(转子电流):magnetizing current 定子:stator

电力系统调度自动化控制技术探析 温进荣

电力系统调度自动化控制技术探析温进荣 发表时间:2019-07-19T13:42:27.863Z 来源:《基层建设》2019年第13期作者:温进荣 [导读] 摘要:随着社会发展面向现代化的方向进行建设,我国的经济也有了很大程度的改变,国民的生活水平在不断地提升。 广东卓维网络有限公司广东佛山 528200 摘要:随着社会发展面向现代化的方向进行建设,我国的经济也有了很大程度的改变,国民的生活水平在不断地提升。但也正是在这种社会发展的大背景下,我国的用电需求量也在逐步上升。所以保证供电的可靠性和用电安全是电力系统运行中重要的环节。也正是在这种情况下,电力系统调度自动化控制技术被研制并广泛应用,它的出现为电力系统的正常运行提供了良好的技术条件,使用这种技术可以对电网运行信息进行采集、监视和对运行状态进行控制。本文研究了这种技术应用的重要性以及它的突出特点,探讨了应该怎样对这种技术进行改造。 关键词:电力系统;自动化;控制技术 电力自动化控制技术是整个电力系统中必不可少的一项专业技术,它是电力系统能够正常运行的重要保障。电力自动化技术可以帮助调控人员对电力系统进行远程操控,可以监视电网的运行状态以及对它的安全性进行在线分析预控。因此,加强电力系统调度自动化控制技术的研究力度可以有效的提高电网运行水平并减轻调控人员的工作强度,相关的专业人员熟知此项技术,可以有效的提高自己在日常工作中的运行维护水平。 1电力系统调度自动化控制技术应用必要性以及它的功能特点 1.1电力系统调度自动化控制技术的应用必要性 当今时代人们的生活以及社会经济的发展对电力的依赖性越来越大,这也迫切要求电力系统网络迅速发展壮大并安全、优质、经济、可靠运行,但是整个复杂的电力系统只有靠调度自动化控制技术的不断发展应用才能实现对电网的有效监视、判断、分析、遥控(遥调)或自动控制,必须要使电力系统调度自动化控制技术符合目前的实际情况才能够确保电网正常运行供电,所以这就需要电力调度自动化控制系统工作人员不断提升自己的实力对其进行研究和深化应用。 1.2电力系统调度自动化控制技术的功能特点 1.2.1能够对电力网络进行安全分析 自动化控制技术网络分析包括状态估计、调度员潮流、静态安全分析、灵敏度分析等功能,网络分析功能是电网调度自动化控制系统重要功能模块,为调度员提供快速简便的计算分析手段,是调度运行值班必不可少的工具,在快速、准确计算的同时,有效地协助调度员及时掌握电网危险点,以便及时采取预控措施,可以有效减少事故的发生。 1.2.2变电站集中监控功能应用 变电站集中监控功能是监控员实时掌控所辖变电站设备运行工况的主要手段。实现设备运行信息的分类、分站、分电压等级的汇总与现实,并通过颜色、声音、文字等多种手段进行提示预警及远方遥控功能。能够快速、准确地向监控员提供当前变电站真实运行情况及故障异常情况下设备遥测、遥信信息,能够有效提升监控工作效率,缓解监控员工作压力,使监控功能成为调度的“眼睛和耳朵”,进一步提升变电站集中监控安全运行水平。 1.2.3自动电压控制功能应用 自动电压控制(A VC)应用是在满足电网安全稳定运行前提下,保证电压和功率因数合格,并尽可能降低系统因不必要的无功潮流引起的有功损耗。A VC从网络分析应用(PAS)获取控制模型、从电网稳态监控应用(SCADA)获取实时采集数据并进行在线分析和计算,对电网内各变电站的有载调压装置和无功补偿设备进行集中监视、统一管理和在线控制,实现全网无功电压优化控制闭环运行。 1.2.4能够有效的降低运行成本 电力系统调度自动化控制技术在保证电力系统能够安全运行的基础上,还能够保证整个系统在运行时的经济实用,保证电力有效性,防止浪费,从而节省了成本。 2电力系统调度自动化控制技术的应用 随着电力系统科技迅猛的发展,电力系统调度自动化控制技术也发生着日新月异的变化,目前我国的电力系统已经进入了一个全新的发展阶段,为适应“大运行”体系建设需求,电力公司非常注重自动化控制技术的研发及使用,并依托此技术实现省、地、县一体化运行,下面就让我们对以下几种不同阶段的自动化技术的使用有一个深入的了解。 2.1电力调度自动化控制系统的应用 此种电力自动化控制技术的具体应用就是在电力系统运行时对其进行数据采集,然后再通过各分布点的服务器对数据进行处理,并且根据这些数据分配所要负责的工作,在该技术下,电力系统会非常流畅的运行,在运行过程中很少出现事故,而且它的通用性比较广泛适应能力比较强,会使电力系统的运行更加稳定,更安全,因此在电力系统应用中十分受欢迎。 2.2能量管理系统的应用 该种系统的应用好处就是它具有很强的实时性以及开放性,这种系统的运行主要用系统中的卫星参与进行实时检测,从而保证运行的时效性。除此之外,人还可以与系统进行互动,以便实现对系统的控制,另外,此系统的其他几个功能也能够帮助电力系统更好的工作更好的运行,目前此种能量管理系统多应用于广州北京等几个城市。 这种管理系统是南京一家企业研制出来的,这种应用的具体操作以及它的特点结合了以上两种系统的优点,它既能够对数据进行收集并且整理,又可以对电力系统的工作人员进行培训,调控整个运行过程。这些是其他系统不能够做到的,除了这些特点,它的技术以及性能也比较突出,所以在使用时受到了广大电力企业的喜爱。 2.3智能电网调度控制系统的应用 智能电网调度控制系统,配置实时监控与分析、调度计划、调度管理及省地一体化、地县一体化系统应用功能,横向上,通过统一的基础平台实现三类应用的一体化运行;纵向上,通过基础平台实现省、地、县调系统一体化运行和电网模型、参数、画面的源端维护、全网共享。这是目前为适应“大运行”体系建设并全国推广使用的新型调度自动化控制技术。综合上面的内容,以上几种技术是我国电力调度自动化控制系统采用的比较广泛的,使用效果比较好的。除了这些国内的技术,一些国外的技术也具有极好的使用效果。所以在现在信息

电力系统自动化

计算题。(1题2分 2-8每题3分,9-10每题6分,共35分) 1.某地区2007年被调度部门确认的事故遥信年动作总次数为120次,拒动1次,误动1次,求地区2007年事故遥信年动作正确率为多少?(答案小数点后保留两位) 解:2007年事故遥信年动作正确次数:120-(1+1)=118 Ayx=118/120=98.33% 2.一条10KV配电线路的二次电压为100V,二次电流为3A,功率因数为0.8,三相电压对称,三相负荷平衡,其中电压变比为10000/100,电流变比为300/5,试计算测得的二次功率,并计算其折算到一次侧的功率。 解:二次功率P2= 1.732UICOSφ=1.732×100×3×0.8≈415.68(W) 一次功率P1=415.68×(10000÷100)×(300÷5)=2494080(W)≈ 2.49(MW) 3.一台UPS主机为10kVA,问要达到10kVA4h的配置要求,约需要配置多少节12V100Ah的蓄电池? 解:1)UPS主机要求配置的总VAh数为:10kV A×4h=40kV Ah=40000V Ah;2)每节电池的V Ah数为:12V×100Ah=1200V Ah; 3)需要的电池节数:40000÷1200=33.33节,约需34节。 4.某一线路的TA变比为300/5,当功率源中的电流源输入变送器的电流为4A时,调度端监控系统显示数值为多少这一路遥测才为合格(综合误差<1.5%) 由综合误差<1.5%知300A×1.5%=4.5A 所以,在标准值为±4.5A之内均为合格。又因输入4A,工程量标准值为 300/5 ×4=240(A) 240+4.5=244.5(A) 240-4.5=235.5(A)监控系统显示电流值大于235.5A,小于244.5A均为合格。 5.某调度自动化系统包括10个厂站,9月12日发生3站远动通道故障各3小时,9月20日发生1站RTU故障4小时,现求出该系统本月远动系统月运行率、远动装置月可用率和调度日报月合格率。(小数后保留2位) 远动系统月运行率:(10×30×24-3×3-4)/10×30×24×100%=99.82%;远动装置月可用率:(10×30×24-4)/10×30×24×100%=99.94%;调度日报月合格率(10×30-4)/10

电力系统名词解释.

1有功功率——在交流电能的发输用过程中,用于转换成电磁形式的那部分能量叫做有功 2无功功率——在交流电能的发输用过程中,用于电路内电磁场交换的那部分能量叫做无功 3电力系统——由发电机、配电装置、升压和降压变电所、电力线路及电能用户所组成的整体称为电力系统。中性点位移:在三相电路中,电源电压三相负载对称的情况下,如果三相负荷也对称,那么不管有无中性点,中性点的电压均为零。但如果三相负载不对称,且无中性线或中性线阻抗较大,那么中性点就会出现电压,这种现象称为中性点位移现象。 4操作过电压——因断路器分合操作及短路或接地故障引起的暂态电压升高,称为操作过电压; 5谐振过电压——因断路器操作引起电网回路被分割或带铁芯元件趋于饱和,导致某回路感抗和容抗符合谐振条件,可能引起谐振而出现的电压升高,称为谐振过电压。 6电气主接线——主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送方式和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路。 7双母线接线——它具有两组母线:工作母线I和备用母线l。每回线路都经一台断路器和两组隔离开关分别接至两组母线,母线之间通过母线连络断路器(简称母联)连接,称为双母线接线。 8一个半断路器接线——每两个元件(出线或电源)用三台断路器构成一串接至两组母线,称为一个半断路器接线,又称3/2接线。 9厂用电——发电厂在启动、运转、停役、检修过程中,有大量以电动机拖动的机械设备,用以保证机组的主要设备和输煤、碎煤、除灰、除尘及水处理等辅助设备的正常运行。这些电动机以及全厂的运行、操作、试验、检修、照明等用电设备都属于厂用负荷,总的耗电量,统称为厂用电。 10厂用电率——厂用电耗电量占发电厂全部发电量的百分数,称为厂用电率。厂用电率是发电厂运行的主要经济指标之一。 11经常负荷——每天都要经常连续运行使用的电动机;. 12不经常负荷——只在检修、事故或机炉起停期间使用的负荷;’’ 13连续负荷——每次连续运转2h以上的负荷; 14短时负荷——每次仅运转10—120min的负荷;: 15断续负荷——反复周期性地工作,其每一周期不超过10min的负荷。 16电动机的自起动——厂用系统中正常运行的电动机,“当其供电母线电压突然消失或显著

电力系统常用英文名词

英文缩写对照表 英文缩写英文全称中文全称 AGC Automatic Generation Control 自动发电控制 AVC Automatic Voltage Control 自动电压控制 BIPV Building Integrated Photovoltaic 光伏建筑一体化 CIM Common Information Model 公共信息模型 CMS Customer Management System 客户管理系统 CSR Controlled Shunt Reactor 可控并联电抗器 DCS Distributed Control System 分散控制系统 DSCADA Distribution Supervisory Control And Data Acquisition 配电监控系统DWDM Dense Wavelength Division Multiplexing 光通信集成式密集波分复用EENS Expected Energy Not Serve 电量不足期望值 EMS Energy Management System 能量管理系统 ERP Enterprise Resource Planning 企业资源规划 FA Feeder Automation 馈线自动化 FACTS Flexible AC Transmission Systems 柔性交流输电系统 FCB Fast Cut Back 机组快速切负荷 FCL Fault Current Limiter 故障电流限制器 GDP Gross Domestic Product 国民生产总值 GIS Gas Insulated Switchgear 气体绝缘开关 GIS Geographic Information System 地理信息系统 IEC International Electro-technical Commission 国际电工委员会 IEEE Institute of Electrical and Electronic Engineers 电气电子工程师协会IGBT Insulated Gate Bipolar Transistor 绝缘栅双级型功率管 IP Internet Protocol 互联网协议 IPTV Internet Protocol Television 网络电视 LCAM Life Cycle Asset Manager 资产全寿命周期管理 LLS Lightning Location System 雷电定位系统 MPLS Multiple Protocol Label Switch 多协议标签协议 Ofgem Office of Gas and Electricity Markets 天燃气与电力市场办公室 OMS Outage Manamgement System 故障管理系统 PFTTH Power Fiber To The Home 电力光纤到户 PLC Power line Communication 电力线通信 PMS Production Management System 生产管理系统 PMU Phasor Measurement Unit 相量测量单元 PSS Power System Stablizer 电力系统稳定器 RTU Remote Terminal Unit 远程终端单元 SCADA Supervisory Control And Data Acquisition 数据采集与监视控制系统SDH Synchronous Digital Hierarchy 同步数字系列 SOA Service-Oriented Architecture 面向服务框架 SSSC Static Synchronous Series Compensator 静止同步串联补偿器STATCOM Static Synchronous Compensator 静止同步补偿器 SVC Static Var Compensator 静止无功补偿器

电力系统自动化发展趋势及新技术的应用

[摘要]现代社会对电能供应的“安全、可靠、经济、优质”等各项指标的要求越来越高,相应地,电力系统也不断地向自动化提出更高的要求。电力系统自动化技术不断地由低到高、由局部到整体发展,本文对此进行了详细的阐述。 [关键词]电力系统自动化发展应用 一、电力系统自动化总的发展趋势 1.当今电力系统的自动控制技术正趋向于: (1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。 (2)在设计分析上日益要求面对多机系统模型来处理问题。 (3)在理论工具上越来越多地借助于现代控制理论。 (4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。 (5)在研究人员的构成上益需要多“兵种”的联合作战。 2.整个电力系统自动化的发展则趋向于: (1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。 (2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。 (3)由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。 (4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。 (5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。 (6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。 (7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 二、具有变革性重要影响的三项新技术 1.电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有: (1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。 (2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。 (3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。 智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。 智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。 2.FACTS和DFACTS (1)FACTS概念的提出

电力系统专业英语单词..

power output 功率输出,输出功率 power output 功率输出,输出功率 short circuit a great deal 大量 ac 交流(电) admittance 导纳 amp 安培 amp 安培 amplitude振幅 arc 电弧,弧光 arise from 起于,由...出身 armature 电枢 armature winding 电枢绕组 arrangement 布置,排列;设备,装置;安装,装配;置配;安排 arrangement 布置,排列;安装,装配; assemblage 与会者(集合称), 集合, 集会, 装配 assume 假定, 设想, 采取, 呈现 automatic voltage regulator 自动电压调节器,自动稳压器,自动调压器autotransformer 自耦变压器 backup protection 后备保护,后备保护装置 block 组[件],单元,部件;机组,单元机组;滑轮;字组,块,程序块,数据块break down 毁掉, 制服, 压倒, 停顿, 倒塌, 中止, 垮掉, 分解 bus bar 汇流条, 母线 bus impedance matrix 母线阻抗矩阵,节点阻抗矩阵 bus impedance matrix 母线阻抗矩阵,节点阻抗矩阵 busbar 母线,汇流条,结点,节点,汇流排 bushing [电工]套管 capacitor bank 电容器组 carrier protection 载波保护,高频保护 carrier relaying 载波继电保护,高频保护,载波中继[制] carry 携带,搬运,传送,传播;支持,执行,进位,进列 changing 转换 charging currents 充电电流 circuit breaker [电工]断路开关, 断路器 Circuit breaker 电路断路器 circuit layout 电路布线,线路布置 circuit-breaker 〈电〉断路器,断路开关 circuit-breaker 〈电〉断路器,断路开关 clearing time 通信连络断开时间, 电话的话终时间 clearing time 通信连络断开时间, 电话的话终时间 combine with 与...结合 come into 得到 communication circuit 通讯电路 conductance [电工]电导, 导率, 电导系数

电力系统自动化完整版

1. 同步发电机组并列时遵循的原则:(1)并列断路器合闸时,冲击电流应尽可能的小,其瞬时最大值一般不宜超过 1~2 倍的额定电流( 2)发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减少对电力系统的扰动。 9. 同步发电机的并列方法:准同期并列,自同期并列。设待并发电机组 G 已经加上了 励磁电流,其端电压为 UG,调节待并发电机组 UG的状态参数使之符合并列条件并将发电机并入系统的操作,成为准同期并列。 10. 发电机并列的理想条件:并列断路器两侧电源电压的三个状态量全部相等。 11. 自同期并列:未加励磁电流的发电机组 12. 脉动电压含有同期合闸所需要的所有信息,即电压幅值差、频率差和合闸相角差。但 是,在实际装置中却不能利用它检测并列条件,原因是它的幅值与发电机电压及系统电压有关。 13. 励磁自动控制系统是由励磁调节器,励磁功率单元和发电机构成的一个反馈控制系统。 14. 同步发电机励磁控制系统的任务:(1)电压控制(2)控制无功功率的分配(3)提 高同步发电机并联运行的稳定性。 15. 为了便于研究,电力系统的稳定分为静态稳定和暂态稳定两类。静态稳定是指电力 系统在正常运行状态下,经受微小扰动后恢复到原来运行状态的能力。暂态稳定是指电力系统在某一正常运行方式下突然遭受大扰动后,能否过渡到一个新的稳定运行状态或者恢复到原来运行状态的能力。 16. 对励磁系统的基本要求:(一)对励磁调节器的要求:O 1具有较小的时间常数,能 迅速响应输入信息的变化;② 系统正常运行时,励磁调节器应能反应 发电机电压高低,以维持发电机电压在给定水平;O 3励磁调节器应能合理分 配机组的无功功率;④ 对远距离输电的发电机组,为了能在人工稳定区域运 行,要求励磁调节器没有失灵区;◎励磁调节器应能迅速反应系统故障,具备强行励磁控制功能,以提高暂态稳定和改善系统运行条件。(二)对励磁功率单元要求: ①要求励磁功率单元有足够的可靠性并具有一定的调节容量;② 具有足够的励磁顶值 电压和电压上升速度。 17. 同步发电机励磁系统分类:直流励磁机励磁系统:①自励②他励;交流励磁机励磁 系统①他励交流励磁机励磁系统②无刷励磁系统;静止励磁系统 18. 励磁调节器的主要功能有二:①保持发电机的端电压不变;②保持并联机组间无功电 流的合理分配。 19. 励磁调节器的型式很多,但自动控制系统核心部分相似。基本控制由测量比较、综 合放大、移相触发单元组成。测量比较单元的作用是测量发电机电压并变换为直流电压,与给定的基准电压相比较,得出电压的偏差信号。综合放大单元是沟通测量比较单元及调差单元与移相触发单元的一个中间单元,来自测量比较单元及调差单元的电压信号在综合放大单元与励磁限制、稳定控制及反馈补偿等其他辅助调节信号加以综合放大,用来得到满足移相触发单元相位控制所需的控制电压。移相触发单元是励磁调节器的输出单元,根 据综合放大单元送来的综合控制信号U SM的变化,产生触发脉冲,用以触发

相关文档
最新文档