纳米团簇的结构与性质

纳米团簇的结构与性质
纳米团簇的结构与性质

§3. 纳米团簇的结构与性质

3.1 稳定机构与幻数

在团簇质谱分析中、含有某些特殊原子数的团簇的强度呈现峰值,表明这些团簇特别稳定,所含的原子数称为“幻数”。

团簇的幻数序列与构成团簇的原子键合方式有关,金属键来源于自由价电子,半导体键是取向共价键、碱金属卤化物为离子键,惰性元素原子间的作用力为范德瓦尔斯键。

3.2 团簇的性质

3.2.1 量子尺寸效应

尺寸为2.8nm CdS团簇,光吸收谱进—步蓝移,在360nn处有一个宽峰,属1s跃迁。而高频端也存在吸收峰。

实验表明纳米尺寸的半导体团簇具有可贵的光学性质,即分立的能级跃迂,并与团簇尺寸和形状密切有关。

3.2.2 电子性质

(1)下图给出了钾团簇电离势随n的变化”,可以看出直至n接近100,电离势具有与团族幻数相对应的峰值,在某一壳层连续填充的过程中,电离势近似一常数,但在每一个壳层填满时,电离势发生突变。

(2)带负电铜簇Cu-(n=1-410)进行紫外光电子谱实验,通过观察光电子发射可以直接估计出相应中性团族的电子亲和势。下图是有各种原子数的铜团簇Cu n-的光电子谱。

3.2.3光学性质

金属团簇对光的响应具有和单个原于及大块固体均不相向的特征。

下图示出尺寸分别为2nm,14nm和20nm铜闭簇嵌埋于氟化理基体中的光

吸收谱,下表给出了实验结果。随着团簇尺寸增加.峰位红移.峰展宽。

贵金属纳米团簇的基本性质

贵金属纳米团簇的基本性质 2016-08-20 13:32来源:内江洛伯尔材料科技有限公司作者:研发部 几种荧光贵金属纳米团簇的结构和发射波长范围 贵金属纳米团簇是一种由Au、Ag或Pt等贵金属元素的几个至几十个原子组成核心,有机单分子如硫醇类化合物或生物分子如DNA、蛋白质等作为保护基团组装而成的核/壳型分子级聚集体。Au、Ag或Pt等金属具有化学惰性且保护基团对生物体的毒副作用小,使得贵金属纳米团簇具有良好的生物相容性。其粒径一般在2 nm以下,界于原子和纳米颗粒之间,具有一些特殊的性质而引起人们的广泛关注。 (1)光致荧光性当纳米颗粒的粒径减小到临界尺度——电子的费米波长(Fermi Wavelength),即约0.7 nm,这时会导致产生很多分散的能级使其具有粒径尺寸依赖的荧光性质。贵金属纳米团簇的量子产率一般为10%-70%。 (2)强磁性巯基保护的Au纳米颗粒具有很强的磁性,这是由于保护分子的巯基配体与Au纳米颗粒表面的原子以Au-S键紧密结合,导致Au纳米颗粒5d带上局部的孔洞增加,从而增强了局部的磁矩。

(3)催化性能 Ag NCs的形貌及其与氧化物底物之间的相互作用对Ag NCs的催化性能有很重要的影响。AgNCs具有高表面积、高表面能和活化中心多的特点,因而具有极高的催化活性。 (4)生物相容性表面活化剂、硫醇类、胺类、羧基类化合物甚至树状聚合物等都能用来连接、固定、浓缩和促进贵金属纳米团簇的生成,生物大分子如蛋白质、核酸等也可以用来合成贵金属纳米团簇,这些连接物都为贵金属纳米团簇的形成提供了生物相容性的表面,使制得的贵金属纳米团簇能够用于细胞标记和活体细胞内及细胞外成像等。 (5)光稳定性贵金属纳米团簇具有良好的光稳定性,对典型的单纳米团簇于647 nm (23kW/cm2)处激发,在650 s内可收集到大于108个光子,同时,贵金属纳米团簇在实验有关时间尺度上(0.1—>1000 ms)无闪烁,可以用作长时间、实时、动态研究,如细胞间相互作用、细胞分化和示踪等。 (6) 光谱可调谐贵金属纳米团簇的量子尺寸效应使其荧光发射波长可随粒径大小而变化,可获得可见光到近红外光区范围内的任意波长。此外,贵金属纳米团簇的荧光发射波长还与保护基团的种类有。光谱的可调谐性实现了不同发射波长的贵金属纳米团簇对多个位点的同时标记,避免光谱之间的干扰,提高对比度和分辨率。这种性质在医学诊断中具有潜在的应用价值,如利用颜色反差较大的两种贵金属纳米团簇分别标记正常组织和病变组织,可以通过颜色的不同清晰地分辨出病变组织,便于快速诊断及治疗。

最新纳米结构与纳米材料25个题目+完整答案资料

1.什么是纳米材料?其内涵是什么?(从零、一、二、三维考虑) 2.纳米材料的四大效应是什么?对每一效应举例说明。 3.纳米材料的常用的表征方法有哪些? 4.用来直接观察材料形态的SEM、TEM、AFM对所测定的样品有哪些特定要求?从它们的图像中能够得到哪些基本信息? 5.纳米颗粒的高表面活性有何优缺点?如何利用? 6.在纳米颗粒的气相合成中涉及到哪些基本环节?气相合成大致可分为哪四种?气相成核理论的机制有哪两种? 7.溶胶-凝胶法制备纳米颗粒的基本过程是怎样的? 8.用溶胶-凝胶技术结合碳纳米管的生长机理,可获得密度不同的碳纳米管阵列(也叫纳米森林),简要阐述其主要步骤及如何控制碳纳米管的分布密度? 9.改变条件可制备不同晶粒大小的二氧化钛,下图分别为两种晶粒尺寸不同的二氧化钛的XRD图与比表面积数据。请用Scherrer 方程、BET比表面积分别估算这两种二氧化钛的晶粒尺寸(XRD测试时所用的 = 1.5406?,锐钛矿相二氧化钛的密度是3.84 g/cm3)(默写出公式并根据图中的数据来计算)。 10.氧化物或者氮化物纳米材料具有许多特殊的功能,请以一种氧化物或者氮化物为例,举出其三种主要的制备方法(用到的原料、反应介质、主要的表征手段)、主要用途(与纳米效应有关的用途)、并介绍这种物质的至少两种晶相。 11.举出五种碳的纳米材料,阐述其一维材料与二维材料的结构特点、用途。 12.简述纳米材料的力学性能、热学性能与光学性能有怎样的变化? 13.什么叫化学气相沉积法,它与外场结合又可衍生出哪些方法?简述VLS机制。 14.纳米半导体颗粒具有光催化性能的主要原因是什么?光催化有哪些具体应用 15.利用机械球磨法制备纳米颗粒的主要机制是什么?有何优、缺点? 16 何为“自催化VLS生长”?怎样利用自催化VLS生长实现纳米线的掺杂? 17.液相合成金属纳米线,加入包络剂(capping reagent)的作用是什么? 18.何为纳米材料的模板法合成?它由哪些优点?合成一维纳米材料的模板有哪些? 19.试结合工艺流程图分别说明氧化铝模板的制备过程以及氧化铝模板合成纳米线阵列的过程 20.从力学特性、电学特性和化学特性来阐述碳纳米管的性质,它有哪些主要的应用前景? 21.如何提高传统光刻技术中曝光系统的分辩率? 22.试比较电子束刻蚀和离子束刻蚀技术的异同点和优缺点。 23.比较极紫外光刻技术和X射线光刻技术的异同。 24.何为纳米材料的自组装?用于制备纳米结构的微乳液体系一般有几个组成部分? 25 何谓“取向搭接Oriented attachment”“奥斯德瓦尔德熟化Ostwald ripening”?

举例说明纳米材料的结构与其性质的关系

代鹏程无机化学2009级硕博连读学号:200911461 题目:举例说明纳米材料的结构与其性质的关系 答: 目录 1、纳米材料定义 2、纳米材料的结构 3、纳米材料的性能 4、以量子点为例说明纳米材料结构与其性质的关系 5、以纳米线为例说明纳米材料结构与其性质的关系 1、纳米材料定义 纳米材料是纳米级结构材料的简称。狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm)限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体)和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层)及三维纳米材料。 2、纳米材料的结构 材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异。 纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。 纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积)很大,一般在102~104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例如,普通材料的比表面积在10m2/g以下,其表面原子的个数与组成单元的整体原子个数相比较完全可以忽略不计。 由于以上纳米材料的两上显著不同于普通材料的几何特点,从物理学的观点来看,就使得纳米材料有两个不同于普通材料的物理效应表现出来,这是一个由量变到质变的过程。一个效应我们称之为量子尺寸效应,另一个被称之为表面效应。量子尺寸效应是由于材料的维度不断缩小时,描述它的物理规律完全不同

半导体纳米结构的发光性质及其机理.doc

半导体发光的分类: 1)光致发光,2)电致发光,3)阴极射线发光,4)X射线及高能例子发光,5)化学发光以及6)生物发光等。其共同点就是用不同的能量激发半导体,让其发光,也就是把不同形式的能量转换为光能。 PL定义: Luminescence is one of the most important methods to reveal the energy structure and surface states of semiconductor nanoparticles and has been studied extensively. Whenever a semiconductor is irradiated, electrons and holes are created. If electronhole pairs recombine immediately and emit a photon that is known as fluorescence and if the electrons and holes created do not recombine rapidly, but are trapped in some metastable states separately, they need energy to be released from the traps and recombine to give luminescence. If they spontaneously recombine after some time, it is called photoluminescence (PL). It is reported that the fluorescence process in semiconductor nanoparticles is very complex, and most nanoparticles exhibit broad and Stokes shifted luminescence arising from the deep traps of the surface states. Only clusters with good

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

高压对氮化硼纳米管的几何结构_电子结构和光学性质的影响

高压对氮化硼纳米管的几何结构、电子结构和 光学性质的影响 * 何开华 1) 郑 广 1) 吕 涛 1) 陈 刚 1) 姬广富 2) 1)(中国地质大学数学与物理学院,武汉 430074) 2)(中国工程物理研究院流体物理研究所冲击波物理与爆轰物理国防重点实验室,绵阳 621900) (2005年11月29日收到;2005年12月12日收到修改稿) 运用密度泛函理论平面波赝势方法(PWP)和广义梯度近似(GGA),计算研究了纳米管BN(5,5)在不同压力条件下的几何结构、电子结构和光学性质.在高压条件下管口形状发生了较大的变化.与闪锌矿结构BN 比较分析发现两种结构间存在一些性质上的差异:首先,在外压力作用下,BN(5,5)纳米管的带隙随压力增大而减小,变化率为-0 01795eV GPa,而闪锌矿结构BN 随压力增大而增大;其次光吸收谱在压力条件下,没有和闪锌矿结构B N 一样发生 蓝移 ,相反在红外方向有所拓展;但纳米管BN(5,5)电子的转移方向和立方B N 相同,与BP(5,5)相反.通过分析电子态密度图,纳米管BN(5,5)有较强的离子性,随着压力的增大离子性减弱. 关键词:氮化硼纳米管,密度泛函理论(DFT),电子结构PACC :7115B,7120 *中国工程物理研究院自然科学基金(批准号:20030103)资助的课题. 通讯联系人.E_mail:c yfjkf@https://www.360docs.net/doc/9017702814.html, 1 引言 纳米碳管自1991年[1] 被发现以来,因具有一系列特殊的物理化学性能及其在应用领域的广阔前景,一直是理论和实验工作者们研究的热点.1992年发现的非碳纳米管同样引起了人们的研究热潮,尤其是由! ?族二元化合物所构成的非碳纳米管因具有很好的应用前景,人们更是给予了特别多的关注.1995年,Zettl 等人[2] 首先在实验中观察到BN 纳米管结构的存在,随后又发展了多种制备BN 纳米管的方法.但在理论研究方面迄今报道不多, Rubio 等人[3] 用紧束缚近似(TB)方法计算研究了BN 纳米管,发现其电子结构和碳纳米管的非常类似,即 其亚层电子间既有sp 2杂化又有sp 3 杂化,通过计算电子能带结构证实各种B N 纳米管均为半导体. Blas 等人[4] 用局域密度近似(LDA)计算得到在较大直径时其带隙维持在5 5eV,不受管的直径和手型的影响,比其他大多数管状半导体要高出约2e V.Acdim 等人[5] 用FP_LC AO 和PW_PP 方法对比研究了锯齿型BN 纳米管和扶手椅型B N 纳米管的力学性 质和电子结构,并与碳纳米管的性质作了比较.最 近Wu 等人[6] 对B N (8,0)纳米管进行了氢吸附研究. 闪锌矿结构是环境条件下的稳定结构,有关此结构的物理化学性质报道很多[7#9] ,其在物理性质上表现出与其他的半导体不一样的地方,如:(1)硬度要比其他半导体化合物的硬度高许多;(2)带隙随压力的增大而增大,其他硼化合物半导体的带隙随压力的增大而减小;(3)在压力下,电子的转移方向不同,在B N 中硼原子的电子向氮原子转移,而在B P 中,磷原子的电子向硼原子转移.以上几点性质在纳米管结构中是否依然存在,还未曾见报道.本文采用基于密度泛函理论的第一性原理,计算研究了纳米管B N(5,5)在高压下的几何结构、电子结构和光学性质,并与文献中有关闪锌矿结构B N 的报道作了比较. 2 计算方法和模型 本文的计算基于密度泛函理论的平面波基组的 赝势(PWP)从头算法[10] ,此方法已成功运用在各类 第55卷第6期2006年6月1000 3290 2006 55(06) 2908 06 物 理 学 报 AC TA PHYSIC A SINICA Vol.55,No.6,June,2006 2006Chin.Phys.Soc.

贵金属纳米团簇的应用(一):生物传感器

贵金属纳米团簇的应用(一):生物传感器 2016-08-21 11:50来源:内江洛伯尔材料科技有限公司作者:研发部 血小板衍生生长因子及受体纳米传感器工作原理 贵金属纳米团簇在荧光过程中,光子产生的数量在很短的时间内衰减或者消失,即猝灭(quench)。能引起荧光猝灭的物质称猝灭剂(quencher)。利用贵金属纳米团簇的荧光猝灭原理设计的识别传感器能特异性地检测环境中的化学和生物制剂等。这种肉眼可见的光学变化给贵金属纳米团簇传感器的设计提供了理论可行性。 1、半胱氨酸的检测 半胱氨酸虽属非必须氨基酸,但是在机体代谢中扮演着关键的角色,许多酶的活性都与它结构中的游离巯基有关,它还能与有毒的芳香族化合物缩合成硫醚氨酸(mercapturic acid)而起解毒作用。半胱氨酸的缺乏会引起很多组织、器官的病变,如浮肿、肝损伤、皮肤病甚至免疫系统损伤等,因此对半胱氨酸的检测显得尤为重-。Shang等发现半胱氨酸对PMAA-Ag NCs的

荧光存在强烈的猝灭作用,这可能是由于半胱氨酸可与Ag形成Ag-S键从而使AgNCs从PMAA 中脱离出来并发生氧化所致。该小组设计的PMAA-AgNCs传感器对半胱氨酸的检测灵敏度达到20 nM,这可与以往利用荧光法检测半胱氨酸的研究相媲美。 2、蛋白质的检测 生物传感器更重要的目的是方便、有效地持续检测特殊目标物的浓度。Huang等设计了竞争性同源荧光猝灭法,即分别利用生物修饰的Au NCs和球形Au纳米颗粒作为能量供体和受体分析检测蛋白质。该小组选择一段寡核苷酸序列修饰Au纳米颗粒,这段序列能和特异的蛋白结合,例如乳腺癌标记蛋白、血小板衍生生长因子(platelet-derived growth factor,PDGF)等。利用PDGF修饰的AuNCs作为供体,寡核苷酸修饰的Au纳米颗粒作为受体,当两者结合后由于荧光共振能量转移(fluorescence resonance energy transfer,FRET)使荧光猝灭。当向体系中加入自由PDGF后,PDGF与受体竞争性结合,使荧光重现。2009年,该科研小组又研究了甘露糖(mannose,Man)保护的Au ND(QY=8.6%)检测伴刀豆球蛋白A(concanavalin A,Con A),其检测灵敏度为75 pM。Man-Au ND的荧光可受到多种蛋白质和凝集素的猝灭,而ConA则能够减弱猝灭作用,增强Man-AuND的荧光,从而定性和定量地检测ConA。 3、大肠杆菌的检测 糖类修饰QDs用以检测糖类和蛋白质之间相互关系的研究已有报道。鉴于此,研究学者们利用贵金属纳米团簇代替QDs设计了新型传感器,并取得了一定的成果。Huang等利用巯基化的甘露糖制备了Man-AuND传感器,建立了荧光定量检测大肠杆菌的新方法。这是由于大肠杆菌菌毛能够与甘露糖特异结合,使得Man-AuND作为供体能够特异地定位于菌体表面形成明亮的荧光细胞团簇。菌体浓度在一定范围内与荧光信号强度呈线性相关。这种新型传感器检测大肠杆菌的最低浓度为7.20×105cells/ml。

纳米材料与团簇物理

《纳米材料与团簇物理》 课程报告 题目纳米团簇研究进展及其应用指导教师魏智强 姓名祝杰 班级08级9班 学号082070205016

纳米团簇研究进展及其应用 团簇和纳米体系是20世纪末发展起来的崭新领域,它所研究的对象是既不同于原子、分子,又不同于宏观物体的中间体系,现在普遍认为直径在1~100n m尺寸的颗粒属纳米粒子的范畴。这段尺寸的粒子的物理和化学性质与大于100 nm以上的粒子有着明显的区别,但对其性质远没有深入研究。迄今人工合成的最新枝状化合物的最大尺寸还只能达到10nm,而光刻的最小尺寸也只能接近10 0nm( Intel公司PentiumIII微处理器使用的光刻技术达到180nm),胶体粒子和纳米团簇的尺寸大体位于这一间隙。因此纳米团簇的发现正为填补这段间隙的研究架起了桥梁。虽然早在1857年Faraday就对纳米级的金属胶体的制备和性质有所研究,但真正有目的地研究纳米材料却还是在20世纪60年代,到20世纪80年代这方面的研究进程才明显加快。这是人们过去从未进行研究的新领域,是人们认识物质世界的新层次。它的丰富物理内涵,对物理提出了新的挑战,也是当前物理与其它学科交叉最富有活力的热点领域。 团簇和纳米体系是研究介观尺寸范围内出现的物理现象和物理效应。纳米体系物理主要是探索尺寸限域引起的量子尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而导致纳米体系具有与常规宏观体系和微观体系不同的新的物理现象和效应。由于纳米材料尺寸小,与电子的德布洛意波长、超导相干波长及激子玻尔半径相比拟,电子局限在一个体积十分小的纳米空间,电子输运受到限制,电子平均自由程很短,电子的局域性和相干性增强。尺度下降使纳米体系包含的原子数大大降低,宏观固体的准连续能带消失了,表现了分立的能级,量子尺寸效应十分显著,这使得纳米体系的光、热、电、磁等物理性质与常规材料不同,出现许多新奇特性。例如纳米材料的熔点显著降低。一般来讲,纳米结构材料与其对应的正常态材料相比,密度降低,强度和硬度提高,塑韧性改善,扩散能力提高,热膨胀系数增加,导热性减小,弹性模量降低。此外还具有一些独特的物理性能,如超弹性模量现象、磁致热效应等。 对纳米粒子的研究大体分为个体研究和群体研究两类。对纳米材料的个体研究需要精确的设备及微操纵系统,它是纳米材料学研究的基础。而对纳米粒子群体的研究则以组装纳米材料及其器件的研究最具理论和应用价值。对具有特异性的单个分子团簇、原子簇进行有序的组装或制备特定的器件,可以使分子团簇、原子簇的特异性、微观性在宏观上得以表达,使无序的状态变成有序状态,使简单的组装研究向自组装方向发展。纳米团簇可以组装成超晶格,在新层次上获得新功能和新特性。纳米材料的界面结构和表面结构能够影响材料的性质,由于纳米粒子的直径比较接近电子的平均自由程,所以许多宏观的物理和化学理论已不再适用于纳米粒子,现在一些新的理论已应运而生。纳米粒子的几个主要的特性表现为:①表面效应。当固体粒子直径小于100nm时,固体表面的特殊性质开始表现出来,这主要是由于表面原子数目占主体原子数目的比例开始明显升高,粒子越小,表面原子数占主体原子数的比例就越高。纳米粒子表面的许多原子处于多个方位无原子接近的状态,所以活性很高,易发生位置的移动或与周围的其

发光银纳米团簇的合成及发光机理研究

发光银纳米团簇的合成及发光机理研究 发光金属纳米团簇是近几年才发展起来的一类新物质。近年来,科研工作者发现化学合成的金、银、铜、铂等纳米结构小于一定尺寸(一般为2 nnm)可能具有强烈的发光特性。 由于发光金属纳米团簇在生物探针、细胞成像、化学催化等多个方面具有广泛的应用前景,所以吸引了广大科研工作者的兴趣。但是到目前为止,此方面的研究主要集中在新型发光金属纳米团簇的合成及应用,对其发光机理方面的研究相对较少。 目前已有的理论并不能完全解释发光金属纳米团簇荧光发射的原因。针对此问题,在本论文中我们首先使用紫外光照还原法制备了尺寸介于2-5nnm之间,粒径分布均匀,发光波长位于650nm附近的发光银纳米团簇。 并采用此模型研究了银纳米团簇的发光机理。通过实验,我们发现制备过程中COO-:Ag+比例、pH值等参数的变化会对样品435nm以及505nnm两吸收峰的强度产生影响,但对两吸收峰位置没有影响。 所以,我们认为纳米团簇的吸收峰位置并不是由于银核中原子数目决定的。我们建议435nm的吸收峰是由于形成的Ag(0)核中的等离子共振引起的。 这与直径为几十到几百纳米量级的Ag纳米颗粒在400nm左右的表面等离子共振吸收峰非常接近。而505nmm处吸收峰则是由于配体上的COO-中氧原子上的电子转移到银离子后再转移到中心银原子上引起的(Ligand-Metal-Metal Charge Transfer: LMMCT).因为其发光波长一直位于650nm附近并不随制备参数的改变而改变,所以我们认为团簇中原子数目的变化对其发光波长的影响较小。 同时,我们还研究了模板剂类型对银纳米团簇的生成以及荧光发射性质的影

举例说明纳米材料的结构与其性质的关系.

代鹏程无机化学2009级硕博连读学号:200911461 题目:举例说明纳米材料的结构与其性质的关系 答: 目录 1、纳米材料定义 2、纳米材料的结构 3、纳米材料的性能 4、以量子点为例说明纳米材料结构与其性质的关系 5、以纳米线为例说明纳米材料结构与其性质的关系 1、纳米材料定义 纳米材料是纳米级结构材料的简称。狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层及三维纳米材料。 2、纳米材料的结构 材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异。

纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。 纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积很大,一般在102~104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例如,普通材料的比表面积在10m2/g以下,其表面原子的个数与组成单元的整体原子个数相比较完全可以忽略不计。 由于以上纳米材料的两上显著不同于普通材料的几何特点,从物理学的观点来看,就使得纳米材料有两个不同于普通材料的物理效应表现出来,这是一个由量变到质变的过程。一个效应我们称之为量子尺寸效应,另一个被称之为表面效应。量子尺寸效应是由于材料的维度不断缩小时,描述它的物理规律完全不同 于宏观(普通材料的规律,不但要用描述微观领域的量子力学来描述,同时要考虑到有限边界的实际问题。关于量子尺寸效应处理物理问题,到目前为止,还没有一个较为成熟的适用方法。表面效应是由于纳米材料表面的原子个数不可忽略,而表面上的原子又反受到来自体内一侧原子的作用,因此它很容易与外界的物质发生反应,也就是说它们十分活泼。 纳米材料由于这两上特殊效应的存在,使得它们的物理、化学性质完全不同于普通材料。目前许多实验和应用结果已经证实,纳米材料的熔点、磁性、电容性、发光特性、水溶特性等都完全不同于普通材料。例如,将金属铜或铅做成几个纳米的颗粒,一遇到空气就会燃烧,发生爆炸;用碳纳米管做成的超级电容器,其体积比电

金团簇

亚纳米尺寸的金团簇对CO的催化氧化 由于金团簇的有良好地催化活性,从发现以来,大量的工作都在探究影响金团簇催化活性的具体因素。这些因素包括金团簇的尺度、电子状态、活性位点和基底的类型和结构等。由于实验上暂时无法测量金团簇的具体结构,所以这些因素的具体作用未完全清晰。 3个金原子到20个金团子的金团簇在过去的几十年内被研究的较多。这些团簇的准确结构的发现促进了对他们催化活性的研究。虽然小尺寸的金团簇(气相或者在基底上)都已经被详细的研究过,但是由于中等或者大尺寸的金团簇的精确结构没有准确的数据。对于这种原子数目大于20的金团簇,关于他们的理论研究比较少。由于缺少准确的结构数据,所以与结构有关的催化金团簇的的反应的定量的表征一直欠缺。最近,通过实验和量子化学计算的方法,直径在1纳米左右的金团簇,它们包含的原子个数在27-35和55-64(不包括29和31)的结构已经清晰。 这篇文章中,我们将介绍一些金团簇对CO催化氧化的吸附能、反应途径和能垒,这些金团簇包括中性和,的Au16-Au18、Au20、Au27、Au28、Au30、Au32-Au35。通过光电子能谱和密度泛函理论可以确定这些团簇阴离子的状态。这篇文章中,我们第一次全面的对金团簇的点对点和原子对原子的吸附进行量化研究。这篇文章中我们还会揭示在原子层面上金团簇的活性位点—尺寸—活性的关系。金团簇在气相和氧化基底上的活性会有很大的不同,在这篇文章中,由于计算的缘故,只对气相的金团簇进行研究,基底效应将在以后的工作中进行。 CO和O2的吸附能 我们计算中性的和阴离子的金团簇对CO和O2的点对点吸附能,得到了一个金团簇对CO和O2的吸附能数据库。这些金团簇包括Au16-Au20,Au27、Au28、Au30、Au32-Au35.Au16-Au20(金字塔形的空笼结构)。,和中性的Au16-Au19和Au20对CO 和O2的吸附能在图一中表示。金团簇上不同的颜色代表了不同的吸附能。深绿色代表者比较强的放热吸附(吸附能<0.9ev),绿色代表者中等强度的吸附(吸附能为-0.5—-0.9ev),橘黄色代表者相对较弱的放热吸附(吸附能在-0.2—-0.5ev),金黄色代表者非常弱的放热吸附(吸附能在-0.2—-0ev)蓝色部分代表者几乎没有吸附。 如图一所示,无论是中性团簇还是,团簇,CO的吸附强度要比O2强。对于Au16和Au18,中性的金团簇比,的金团簇吸附作用更强,但是Au20-对CO的吸附作用要比中性的Au20强,中性或者带负电的Au17对CO的吸附作用几乎相同。中性的Au16、Au17、Au18a和Au20几乎不能吸附O2,对应着途中蓝色的部分,但是Au18b可以非常弱的吸附O2(吸附能在0—-0.2ev之间)。所有的带负电的金团簇比中性的金团簇对O2的吸附作用要强。对于Au16-,仅仅只有几个点可以非常弱的吸附O2,对于Au17-同样只有几个点可以吸附O2,吸附能为-0.22ev。O2在Au18a-和Au18b上的吸附作用要比Au16-和Au17-要强吸附能为-0.5—-0.38ev。O2在Au20-顶点上的吸附是Au16-到Au20-中最强的。总的来说,无论是中性的还是带负电的从Au16到Au20,CO的吸附越来越弱,但是带负电的金团簇对于O2的吸附越来越强。

贵金属纳米团簇的合成(二):单分子层保护法

贵金属纳米团簇的合成(二):单分子层保护法 2016-08-21 11:46来源:内江洛伯尔材料科技有限公司作者:研发部 金纳米团簇的结构及电子转移示意图单分子层保护纳米团簇(monolayer protected clusters,MPCs)是指在表面修饰或组装一层分子而形成的具有特定功能的纳米团簇。目前这种方法多用于Au MPCs的合成。保护分子一般包括硫醇类、胺类和磷化氢类等化合物,它们分别以Au-S、Au-N和Au-P键结合在Au MPCs 表面。 最常用的保护分子主要为硫醇类化合物。Schiffrin等首次合成了疏水性的Au MPCs。该小组利用两相法(水-甲苯)在十二烷硫醇存在的情况下以AuCl4-为前体合成了1-3 nm的Au MPCs。由于该MPCs具有荧光特性,这一现象很快引起了学者们的关注,之后更多硫醇类化合物被报道用作MPCs的合成,如二氢硫辛酸(dihydrogenlipoic acid,DHLA)、巯基十一烷酸(mercaptoundecanoic acid,MUA)、谷胱甘肽(glutathione,GSH)、半胱氨酸(cysteine)、硫普罗宁(tiopronin)、十二烷基硫醇(dodecanethiol,DDT)和2,3-二巯基琥珀酸(meso-2,3-dimercaptosuccinic acid,DMSA)等。Huang研究小组利用各种含巯基的配体修饰Au MPCs有效地控制其荧光特性,并在四羟甲基氯化磷(tetrakis (hydroxymethyl) phosphonium chloride,THPC)保护的Au MPCs基础上用MUA的巯基代替THPC制备了粒径更小、绿色

纳米材料与纳米结构21个题目完整答案

1.简单论述纳米材料的定义与分类。 2.什么是原子团簇? 谈谈它的分类. 3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 4.论述碳纳米管的生长机理。 5.论述气相和溶液法生长纳米线的生长机理。 6.解释纳米颗粒红外吸收宽化和蓝移的原因。 7.论述光催化的基本原理以及提高光催化活性的途径。 8.什么是库仑堵塞效应以及观察到的条件? 9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。 10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。 11.论述制备纳米材料的气相法和湿化学法。 12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。 13.简单讨论纳米颗粒的组装方法 14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 15.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 16.简单讨论纳米材料的磁学性能。 17.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理 18.简述光子晶体的概念及其结构 19.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性 能。 20.简单论述单电子晶体管的原理。 21.简述纳米结构组装的工作原理。 1.简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

介观纳米体系的电子输运性质

介观纳米体系的电子输运性质 介观纳米体系的研究是目前凝聚态物理十分活跃的前沿研究领域之一。它不断揭示出一系列重要的物理内禀,同时也展现出广泛的应用前景。 本论文运用格林函数方法研究了介观纳米体系的电子输运现象。其目的在于揭示这些结构中的新效应及其物理机制,并为设计和实现具有优良性能的量子器件提供物理模型和理论依据。 本论文共分八章。第一章介绍了介观纳米体系的结构和性质特征,特别是电子输运性质。 在第二章中,简单介绍了格林函数方法,并利用该方法计算了T型量子线在 势调制下的电子输运性质。讨论了单个和耦合T型量子线垂直手臂中的势垒对输运的影响。 对于单个T型量子线,在势调制下水平和拐角方向的电导上出现了一个谷峰对;势垒宽度的变化使得谷峰对变得更明显。这个谷峰对是由T型量子线中的束缚态引起的。 对于两个耦合T型量子线,势调制与水平方向电导上的两个谷是紧密关联的。我们可以通过势调制来实现对电导谱的裁剪。 在第三章中,用模匹配方法计算了十字型、T型和L型量子线及量子点中束 缚态在势调制下的能量和波函数,发现了束缚态能量与势调制之间的普适关系。用电子几率密度图显示了不同量子结构中束缚态之间的演化。 同时我们的计算表明局域在量子点中的电子态在势调制下经历了一个从束 缚态到准束缚态再到束缚态的演化过程。在第四章中,研究了一个有限量子反点阵列中的束缚态及其引起的传输共振现象。

我们计算了几种不同几何结构的电导,讨论了量子反点之间的距离对量子束缚态及电子输运的影响,也讨论了反点阵列的周期对高能束缚态的影响。发现了一些有趣的高能准束缚态,电子在这些态中主要是局域在结的交叉区域而不是在结中。 在第五章中,我们计算了两种典型的开放周期型结构的电导。对于包含n个限制区域的多波导管结构,在低能区域出现了(n-1)重的共振劈裂峰而在高能区域则是(n-2)重的共振劈裂峰。 前者主要是由局域在突起中的束缚态引起的,而后着则对应于局域在限制区域的高能束缚态。对于高能束缚态,结构中突起的作用相当于一个势垒而不是一个势阱。 当限制区域的长度增加时,更多的束缚态将存在于限制区域中。对于量子反点阵列结构,在电导第一起始能量处同样存在(n-2)重的共振劈裂。 在第五章的基础上,第六章研究了在磁调制下两种典型的周期结构中由束缚态引起的传输共振现象。对于包含n个垒的电超晶格结构,在第一电导台阶开始的地方出现了(n-1)重共振劈裂。 这些共振峰是由磁场调制下的束缚态引起的,处于这些束缚态中的电子主要是局限在势垒而不是势阱中。对于包含n个限制区域的多波导管结构,高能区的(n-2)重共振劈裂在磁调制下变成了(n-1)重共振劈裂。 在第七章中,研究了四种L型石墨纳米带的电导和局域态密度。结果表明,这些结构在费米面附近的电导取决于扶手椅型边界石墨带的类型。 当石墨纳米带的横向尺寸较小时,其电导及态密度对几何结构非常敏感。第八章对本论文的工作进行了总结,并对以后的工作提出了一些设想。

纳米结构与纳米材料英文例子翻译学习

摘要纳米材料(NSM)是这样一类固体,其结构单元(大多为结晶体)至少在一个方向上具有数个纳米的特征尺寸按照结 构单元的形状、化学成分可将其划分为12种类型.NsM的结构及性能不同于具相同化学成分的单晶体和玻璃.这种差别归 因于品体尺寸的减少、品体形状(薄片、针和等轴)引起的维数效应以及结构单元之间界面的密度下降和配位数的变化本文 讨论了支持上述观点的某些实验结果,描述了金属、大分子、半导体纳米材料的技术应用。 关键词:纳米结构材料, 界面, 尺寸效应, 结构与性能 Abstract:Nanostructured materials (NsM) are solids composed of structural elements-mostly crvstaltites-with a characteristic size (in at least one direction) of a few nanometers.NsM may be classified into twelve groups according to the shape and chemical com-position of their constituent structural elements. The atomic structure and properties of NsM deviate from the ones of a single crystal and / or glass with the same chemical composition. This deviation results from the reduced size of the crystallites. dlmensionality effects due to the shape of the crystallites (thin plates. needles or equiaxed shape). and the reduced densitV and / or modified coordination numbers in the interfaces between the structural elements. Some of the experimental observations supporting these ideas are discussed. Technological applications of metallic .macromolecular and semiconducting NsM are described, Key words: Nanostructured materials ,(NsM) interface size effect structure and property 1. Nanoscience and nanotechnology includes three fields: nanomaterials, nanodevice and nanomeasurement and nanocharacterization. 纳米科技包括三个研究领域: 纳米材料、纳米器件、纳米尺度的检测与表征. 2. What makes nanomaterials work is their extremely large surface free energy. 纳米材料的特殊性能主要由其巨大的表面自由能造成. 3. The current research conditions of nano materials as lubricant additive were reviewed. 回顾了纳米材料作为润滑添加剂的研究状况. 4. The preparations , properties and applications of the organic nanoparticles were reviewed. 本文综述了有机纳米材料的制备方法、性质及其应用. 5. Definition, manufacture, structure, properties and applications of nanostructured materials are briefly described. 简述了纳米材料的定义、制备、结构、性能和应用. 6. Development trend of metal oxide nanomaterials is reviewed lastly. 最后对金属氧化物纳米材料研究的发展方向提出了展望. 7. Flower - like nanostructured silver is prepared by electrochemical deposition techniques. 采用电化学沉积法制备了花状银纳米材料. 8. Discuss the application of nanometer materials in the Polymer modification. 论述了纳米材料在聚合物改性中的应用. 9. Microscale reaction technology was reviewed and its prospect in nanomaterials was discussed. 回顾了微尺度反应技术的发展及其在纳米材料制备中所展现的广阔前景. 10. Its directions of development in the future are also looked forward. 同时展望了纳米材料今后的发展方向. 11. An innovative process high gravity technology for nanometer material synthesis is presented. 介绍了一种独创性的纳米材料合成方法即超重力法. 12. Theprinciple , preparation methods , properties and applications of nano film materials have beensummarized. 本文介绍了离子束溅射和磁控溅射技术的基本原理、法及其在制备纳米材料中的应用和优点,以国内外这方面的最新进展.

相关文档
最新文档