历年初三数学中考方程与不等式复习及答案

合集下载

2025年中考数学总复习十年中考真题分类汇编第二章方程(组)与不等式(组)第3节一元二次方程及其应用

2025年中考数学总复习十年中考真题分类汇编第二章方程(组)与不等式(组)第3节一元二次方程及其应用

2.3 一元二次方程及其应用一、解一元二次方程1.(2024安徽中考第15题)解方程:223-=x x2.(2019安徽中考第15题)解方程:(x−1)2=43.(2019安徽中考第16题)解方程:x2−2x=4.二、一元二次方程根的判别式4.(2020安徽中考第5题)下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2−2x=3D.x2−2x=05.(2018安徽中考第7题)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.−1B.1C.−2或2D.−3或16.(2022安徽中考第12题)若一元二次方程2x2−4x+m=0有两个相等的实数根,则m=.三、一元二次方程的实际应用7.(2017安徽中考第8题)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25B.25(1−2x)=16C.16(1+x)2=25D.25(1−x)2=168.(2015安徽中考第6题)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.5参考答案与解析一、解一元二次方程1.(2024安徽中考第15题)解方程:223x x -=【答案】13x =,21x =-【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.2.(2019安徽中考第15题)解方程:(x −1)2=4【答案】x 1=3,x 2=−1【详解】解:直接开平方,得 x −1= ±2,解得:x 1=3,x 2=−1.3.(2019安徽中考第16题)解方程:x 2−2x =4.【答案】x 1=1+√5,x 2=1−√5【详解】解:配方x 2−2x +1=4+1∴(x −1)2=5∴x =1±√5∴x 1=1+√5,x 2=1−√5.二、一元二次方程根的判别式4.(2020安徽中考第5题)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2−2x =3D .x 2−2x =0 【答案】A【详解】A.x 2+1=2x 变形为x 2−2x +1=0,此时△=4−4=0,此方程有两个相等的实数根,故选项A 正确;B.x 2+1=0中△=0−4=−4<0,此时方程无实数根,故选项B 错误;C.x 2−2x =3整理为x 2−2x −3=0,此时△=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;D.x 2−2x =0中,△=4>0,此方程有两个不相等的实数根,故选项D错误.故选:A.5.(2018安徽中考第7题)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.−1B.1C.−2或2D.−3或1【答案】A【详解】解:x(x+1)+ax=0,△x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2−4×1×0=0,解得:a1=a2=−1,故选A.6.(2022安徽中考第12题)若一元二次方程2x2−4x+m=0有两个相等的实数根,则m=.【答案】2【详解】解:由题意可知:a=2,b=−4,c=m△=b2−4ac=0,△16−4×2×m=0,解得:m=2.故答案为:2.三、一元二次方程的实际应用7.(2017安徽中考第8题)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25B.25(1−2x)=16C.16(1+x)2=25D.25(1−x)2=16【答案】D【详解】第一次降价后的而价格为25(1−x),第一次降价后的而价格为25(1−x)2,则,25(1−x)2=16,故选答案D.8.(2015安徽中考第6题)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.5【答案】C【详解】解:设2015年与2016年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选C.。

中考数学——方程与不等式计算(含答案)

中考数学——方程与不等式计算(含答案)

方程与不等式计算●解下列方程(组)1.93a b c a b c c ⎧++=⎪⎪++=⎨⎪=⎪⎩ 2.04930a b c a b c a b c ++=⎧⎪-+=-⎨⎪-+=⎩3.222230x y x xy y -=⎧⎨--=⎩4.2111x x x x ++=+5.231222x x x -=+ 6.x 3-3x 2+2x =0课堂练习7. 1640420424-+=⎧⎪++=⎨⎪-+=-⎩a b c a b c a b c 8.222242200⎧+=-⎪⎨+-=⎪⎩x y x xy 9.2285049m m m --=- 10.x 4-2x 2-8=0●解不等式(组)11.已知4a b +=,2a <b <3a ,求a 的取值范围.12.关于x 的不等式05)2(>-+-b a x b a 的解集是710<x ,求0ax b +>的解集.13.已知(1)(3)0-+>x x ,求x 的取值范围.14.若x 2-2x -3<0,求x 的取值范围.15.已知b 2+5b +6>2b +4,求b 的取值范围.课堂练习16.已知a -b =6,9<7a +4b <20,求b 的取值范围.17.已知2x 2-x -3<0,求x 的取值范围.学习水平检测1.201211(1)()3--2. 先化简211()1122x x x x -÷-+-,然后从-2≤x ≤2的范围内选择一个合适的整数作为x 的值代入求值. 3. 32425423a b c a b c a b c ⎧++=⎪⎪++=⎨⎪-+=-⎪⎩4. 解方程222(2)2(2)0x x x x ---=5. 如果关于x 的方程42212-=-+x m x x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x 的一个解,求m 的取值范围.参考答案:1.⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩a b c 2.123a b c =⎧⎪=⎨⎪=-⎩B 3.31x y =⎧⎨=⎩ 或11x y =⎧⎨=-⎩ 4.12- 5..x =6 6. x 1=0,x 2=1,x 3=2 7.1214a b c ⎧=⎪⎪=⎨⎪=-⎪⎩8.=5=2x y -⎧⎪⎨⎪⎩或52x y =-⎧⎪⎨=-⎪⎩ 9. 329m = 10.x 1=2,x 2=-2 11. 413a << 12. 35x <- 13.x <-3或x >1 14.-1<x <3 15. b >-1或b <-216.-3<b<-2 17.-1<x<32学习水平检测1. 2. 4x(当x=2时,原式=2;或当x=-2时,原式=-2)3.1221⎧=⎪⎪=⎨⎪=-⎪⎩abc4.1或2或11 5. m>0。

中考数学总复习 第二章 方程与不等式综合测试题(含答案)

中考数学总复习 第二章 方程与不等式综合测试题(含答案)

方程与不等式一、选择题(每小题3分,共30分)1.下列方程中,解为x =2的方程是(B )A. 3x -2=3B. -x +6=2xC. 4-2(x -1)=1D. 3x +1=02.下列各项中,是二元一次方程的是(B )A. y +12x B. x +y 3-2y =0 C. x =2y +1 D. x 2+y =03.已知方程组⎩⎪⎨⎪⎧2x +y =5,x +3y =5,则x +y 的值为(D ) A. -1B. 0C. 2D. 3 4.分式方程 x x -2-1x=0的根是(D ) A. x =1 B. x =-1C. x =2D. x =-2 5.分式方程x 2x -1+x1-x =0的解为(C ) A. x =1 B. x =-1C. x =0D. x =0或x =16.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15 min.他骑自行车的平均速度是250 m/min ,步行的平均速度是80 m/min.他家离学校的距离是2900 m .如果他骑车和步行的时间分别为x (min),y (min),列出的方程是(D )A. ⎩⎪⎨⎪⎧x +y =14,250x +80y =2900B. ⎩⎪⎨⎪⎧x +y =15,80x +250y =2900C. ⎩⎪⎨⎪⎧x +y =14,80x +250y =2900D. ⎩⎪⎨⎪⎧x +y =15,250x +80y =2900 7.若不等式组 ⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A ) A. 1B. 2C. 3D. 4 8.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中的位置是(A ) A. 第一象限 B. 第二象限C. 第三角限D. 第四象限解:解方程组,得⎩⎪⎨⎪⎧x =1.5,y =0.5.∴点(1.5,0.5)在第一象限. 9.关于x 的分式方程a x +3=1,下列说法正确的是(B )A. 方程的解是x =a -3B. 当a >3时,方程的解是正数C. 当a <3时,方程的解为负数D. 以上答案都正确 10.小华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x(0>0),解得x =1,这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小,因此x +1x(x >0)的最小值是2.模仿小华的推导,你求得式子x 2+9x(x >0)的最小值是(C )(第10题图)A. 2B. 1C. 6D. 10解:∵x >0,∴x 2+9x =x +9x ≥2x ·9x =6, 则原式的最小值为6.二、填空题(每小题4分,共24分)11.已知关于x 的一元二次方程x 2-23x +k =0有两个相等的实数根,则k 的值为__3__.12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有__22__只,兔有__11__只.13.如图,将一条长为60 cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1∶2∶3,则折痕对应的刻度有__4__种可能.(第13题图)14.已知a =6,且(5tan 45°-b )2+2b -5-c =0,以a ,b ,c 为边组成的三角形面积等于__12__.15.若分式3x +5x -1无意义,当53m -2x -12m -x =0时,m =__37__. 16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题(本题有8小题,共66分)17.(本题8分)解下列方程(组).(1)解方程:x x +1-4x 2-1=1. 解:去分母,得x (x -1)-4=x 2-1.去括号,得x 2-x -4=x 2-1.解得x =-3.经检验,x =-3是分式方程的解.(2)解方程组:⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.解:方程组整理,得⎩⎪⎨⎪⎧3x -5y =3,①3x -2y =6.② ②-①,得3y =3,∴y =1.将y =1代入①,得x =83. ∴原方程组的解为⎩⎪⎨⎪⎧x =83,y =1.18.(本题6分)解方程:16x -2=12-21-3x . 设13x -1=y ,则原方程化为12y =12+2y ,解方程求得y 的值,再代入13x -1=y 求值即可.结果需检验.请按此思路完成解答. 解:设13x -1=y ,则原方程化为12y =12+2y , 解得y =-13.当y =-13时,有13x -1=-13,解得x =-23. 经检验,x =-23是原方程的根. ∴原方程的根是x =-23. 19.(本题8分)设m 是满足1≤m ≤50的正整数,关于x 的二次方程(x -2)2+(a -m )2=2mx+a 2-2am 的两根都是正整数,求m 的值.解:将方程整理,得x 2-(2m +4)x +m 2+4=0,∴x =2(m +2)±4m 2=2+m ±2m . ∵x ,m 均是正整数且1≤m ≤50,2+m ±2m =(m ±1)2+1>0,∴m 为完全平方数即可,∴m =1,4,9,16,25,36,49.20.(本题8分)已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5都是关于x ,y 的方程y =kx +b 的解. (1)求k ,b 的值.(2)若不等式3+2x >m +3x 的最大整数解是k ,求m 的取值范围.解:(1)将⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5代入y =kx +b ,得∴⎩⎪⎨⎪⎧2k +b =3,-2k +b =-5 解得⎩⎪⎨⎪⎧k =2,b =-1.∴k 的值是2,b 的值是-1.(2)∵3+2x >m +3x ,∴x <3-m .∵不等式3+2x >m +3x 的最大整数解是k =2,∴2<3-m ≤3,∴0≤m <1,即m 的取值范围是0≤m <1.21.(本题8分)解方程:|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.(第21题图)参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为x =1或x =-7.(2)解不等式|x -3|+|x +4|≥9.(3)若|x -3|-|x +4|≤a 对任意的x 都成立,求a 的取值范围.解:(1)x =1或x =-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点在3与-4的两侧.当x 在3的右边时,如解图,易知x ≥4.当x 在-4的左边时,如解图,易知x ≤-5.∴原不等式的解为x ≥4或x ≤-5.(第21题图解)(3)原问题转化为: a 大于或等于|x -3|-|x +4|的最大值.当x ≥3时,|x -3|-|x +4|=-7≤0;当-4<x <3时,|x -3|-|x +4|=-2x -1随x 的增大而减小;当x ≤-4时,|x -3|-|x +4|=7,即|x -3|-|x +4|的最大值为7.故a ≥7.22.(本题8分)如图,长青化工厂与A ,B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(第22题图)(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售额比原料费与运输费的和多多少元?解:(1)设工厂从A 地购买了x (t)原料,制成运往B 地的产品y (t).由题意,得⎩⎪⎨⎪⎧1.5(10x +20y )=15000,1.2(120x +110y )=97200.解得⎩⎪⎨⎪⎧x =400,y =300. 答:工厂从A 地购买了400 t 原料,制成运往B 地的产品为300 t.(2)300×8000-400×1000-15000-97200=1887800(元).答:这批产品的销售额比原料费与运输费的和多1887800元.23.(本题10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出 45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元(利润=售价-进价)?解:(1)设第一批T 恤衫每件进价是x 元,由题意,得4500x =4950x +9, 解得x =90.经检验,x =90是分式方程的解且符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50(件). 由题意,得120×50×45+y ×50×15-4950≥650, 解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.24.(本题10分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车各可装多少件帐蓬.(2)如果这批帐篷有1490件,用甲、乙两种货车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐蓬,则乙种货车每辆车可装(x -20)件帐蓬.由题意,得1000x =800x -20,解得x =100. 经检验,x =100是原方程组的解且符合题意.∴x -20=100-20=80.答:甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬.(2)设甲种货车有z 辆,乙种货车有(16-z )辆.由题意,得100z +80(16-z -1)+50=1490,解得z =12,∴16-z =16-12=4.答:甲种货车有12辆,乙种货车有4辆.。

2020年九年级数学中考专题复习 方程和不等式 练习题(有答案)

2020年九年级数学中考专题复习 方程和不等式 练习题(有答案)

方程与不等式一、单选题1.下列方程是一元二次方程的是( )A .227x x -=B .31x y -=C .40xy -=D .11x x+= 2.由x <y 能得到mx >my ,则( ).A .m >0B .m ≥0C .m <0D .m ≤03.关于x 的一元二次方程ax 2+4x +2=0有两个相等的实数根,则a 的值是( ) A .﹣2B .0C .1D .2 4.解分式方程12x -=12x x--﹣1时,去分母,得( ) A .1=1﹣x ﹣(x ﹣2) B .1=x ﹣1﹣(2﹣x )C .1=x ﹣1﹣(x ﹣2)D .﹣1=x ﹣1﹣(x ﹣2) 5.如果关于x 的不等式组3210x x a +≥⎧⎨-≤⎩无解,那么a 的取值范围是( ) A .1a ≥- B .1a ≤-C .1a >-D .1a <- 6.若关于x 的方程()21220m x mx m -+++=有实数根,求m 的取值范围( )A .2m ≥-且1m ≠B .2m ≥-C .2m ≤且1m ≠D .2m ≤7.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( )A .2700450020x x=- B .2700450020x x =- C .2700450020x x =+ D .2700450020x x =+ 8.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540B .(32﹣x )(20﹣x )=540C .32x +20x =540D .(32﹣x )(20﹣x )+x 2=5409. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .20{3252x y x y +=+= 10.下列不等式中不一定成立的是( )A .若x y >,则x a y a ->-B .若x y >,则22x y >C .若22<xc yc ,则x y <D .若x y >,则m +x >m +y 11.甲、乙两个公共汽车站相向发车,一人在街上行走,他发现每隔8分钟就迎面开来一辆公交车,每隔24分种从背后开来一辆公交车,如果车站发车的间隔时间相同,各车的速度相同,那两车站发车的间隔时间为( )A .18分钟B .10分钟C .12分钟D .16分钟12.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A .140元B .150元C .160元D .200元 二、填空题13.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是______. 14.若关于x 的分式方程1x m x --﹣3x =1无解,则m 的值为_____. 15.已知关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2,若x 1,x 2满足3x 1=|x 2|+2,则m 的值为_____16.若整数a 使关于x 的分式方程21222a x x +=--的解为正数,使关于y 的不等式组2350y a y +>⎧⎨+<⎩无解,则所有满足条件的整数a 的值之和是_____. 17.某商品每件进价90元,标价120元,按标价售出商品的70%后商场决定降价销售,这批商品的总利润率不低于25%,则剩余商品的售价最低应为_________元/件.18.一个200人到300人之间的旅行团队准备外出旅游,旅行团队向某汽车运输公司租用可以乘坐30人、乘坐45人的两种客车若干辆,其中大型客车辆数要多于中型客车辆数.按照预定的租车方案,如果大型客车都坐满,中型客车有一辆就会空出少于一半的座位.但是汽车运输公司发过来的车辆,车型与对应的辆数刚好搞反了,这样就有5个人没有座位可坐.这个旅游团一共有______个人.19.关于x 的方程22x m x +-=1的解是正数,则m 的取值范围是________ . 20.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则2m-n 的算术平方根为________. 三、解答题21.解分式方程:(1)2393x x x +--=1. (2)2x x -﹣1=284x -. 22.解不等式,并把解集在数轴上表示出来()()8321x x --≤+23.若分式方程2311x x ++-=21m x -的解是正数,求m 的取值范围. 24.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?25.学校新到一批理、化、生实验器材需要整理,若实验管理员张老师一人单独整理需要1小时完成.现在张老师与工人黄师傅共同整理30分钟后,张老师因事外出,黄师傅再单独整理了30分钟才完成任务.(1)黄师傅单独整理这批实验器材需要多少分钟完成;(2)学校要求在完成整理这批器材时黄师傅的工作时间不能超过30分钟,则张老师至少要工作多少分钟?26.某手机销售商从厂家购进了A B 、两种型号的手机,已知一台A 型手机的进价比一台B 型手机的进价多300元,用7500元购进A 型手机和用6000元购进B 型手机的数量相同. (1)求一台A 型手机和一台B 型手机的进价各是多少元?(2)在销售过程中,A型手机因为性价比高,更受消费者的欢迎.为了增大B型手机的销量,该销售商决定对B型手机进行降价销售.经调查,当B型手机的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台.如果每天销售B型手机的利润为3200元,请问该手机销售商应将B型手机的售价降低多少元?参考答案1.A2.C3.D4.C5.D6.D7.D8.B9.D10.B11.C12.B13.-114.﹣2或115.416.717.9518.26019.m<﹣2且m≠﹣420.221.(1)x=﹣4;(2)无解x22.323.m>1且m≠624.每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.25.(1)120分钟;(2)张老师至少要工作45分钟.26.(1)一台A型手机和一台B型手机的进价分别为1500元、1200元;(2)200元。

初中数学中考一轮复习第2章方程(组)与不等式(组)第7课时分式方程中考演练(含答案)

初中数学中考一轮复习第2章方程(组)与不等式(组)第7课时分式方程中考演练(含答案)

第7课时 分式方程1.分式方程3x -2=1的解是( )A.x=-1B.x=1C.x=5D.x=22.分式方程2-x x -3+13-x =1的解为( )A.x=2B.x=-2C.x=1D.x=-13.把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘( )A.xB.2xC.x+4D.x (x+4)4.若关于x 的方程m -1x -1―x x -1=0有增根,则m 的值是( )A.3B.2C.1D.-15.分式方程1x -2=1-12-x 的解为( )A.x=1B.x=2C.无解D.x=46.若2x -1与1互为相反数,则x 的值是 .7.方程x 2+xx +1=0的解是 .8.若关于x 的分式方程k -1x +1=2的解为非正数,则k 的取值范围为 .9.解方程:x +1x -1―4x 2-1=1.10.解分式方程:(1)x x +1+1=2x +1x;(2)1x +1―2x x 2-1=1.参考答案1.C2.A3.D4.B5.C6.-17.x=08.k ≤3,且k ≠19.方程两边同乘(x+1)(x-1),得(x+1)2-4=(x+1)(x-1),整理得2x-2=0,解得x=1.检验:当x=1时,(x+1)(x-1)=0,x=1是增根,应舍去.故原方程无解.10.1)去分母,得x 2+x (x+1)=(2x+1)·(x+1),解得x=-12.经检验,x=-12是原方程的解,所以原方程的解为x=-12.(2)去分母,得x-1-2x=x 2-1,化简,得x 2+x=0,解得x 1=0,x 2=-1.经检验,x=-1不是原方程的解.所以原方程的解为x=0.。

中考数学总复习《方程不等式》练习题及答案

中考数学总复习《方程不等式》练习题及答案

中考数学总复习《方程不等式》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.实数x ,y 满足方程组{2x +y =7x +2y =8,则x +y 的值为( )A .3B .-5C .5D .-32.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有30名工人,每人每天可以生产900个口罩面或1200个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x 名工人生产口罩面,则下面所列方程正确的是( ) A .2×1200(30﹣x )=900x B .1200(15﹣x )=900x C .1200(30﹣x )=900xD .1200(30﹣x )=2×900x3.小明和小亮各收集了一些废电池.如果小明 ,他的废电池个数就和小亮一样多.设小亮收集了 x 个废电池,则两人一共收集了 (2x −6) 个.要将题目补充完整,横线上可填( ) A .少收集3个B .少收集6个C .多收集3个D .多收集6个4.一元二次方程 x 2+x −6=0 的根的情况是( )A .有两个相等的实根B .没有实数根C .有两个不相等的实根D .无法确定5.我校九年级某班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1275张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x (x ﹣1)=1275 B .x (x+1)=1275 C .2x (x+1)=1275D .x(x−1)2=12756.已知关于 x 的方程 x 2+2x −k −2=0 没有实数解,则函数 y =kx的图象大致是图中的( )A .B .C .D .7.不等式组{4(x −1)>3x −22x+13≥x −1的整数解是一个一元二次方程的两根,则该方程为( )A .x 2+3x +4=0B .x 2+7x +12=0C .x 2−3x +4=0D .x 2−7x +12=08.已知一元二次方程 x 2−8x +12=0 的两根恰好是某等腰三角形的两边长,则该等腰三角形的底边长为( ) A .2B .6C .8D .2或69.不等式组 {x +2>03x −6≤0 的解集在数轴上表示正确的是( )A .B .C .D .10.对于两个不相等的有理数a ,b ,我们规定符号max{a ,b}表示a ,b 两数中较大的数,例如max{2,4}=4.按照这个规定,那么方程max{x ,-x}=3x-2的解为( ) A .12B .1C .1或 12D .12 或 5611.一元二次方程2x 2-3x +1=0根的情况是( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根12.下列解方程的步骤中正确的是( )A .由 x −5=7 ,可得 x =7−5B .由 8−2(3x +1)=x ,可得 8−6x −2=xC .由 16x =−1 ,可得 x =−16D .由 x−12=x 4−3 ,可得 2(x −1)=x −3二、填空题13.在虚线上填写一个二元一次方程,使所成方程组 {5x −2y =1____的解是 {x =1y =2 .14.疫情期间,某快递公司推出无接触配送服务,第一周的订单数是5万件,第三周的订单数比第一周增加2.8万件,如果设平均每周订单数的增长率为x,那么正确的方程是.15.若关于x的分式方程x−mx−1﹣3x=1无解,则m的值为.16.如图,一块长12m,宽8m的长方形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为60m2,则道路的宽应为m.17.方程(x+3)⋅√x−2=0的解是.18.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等,则这种服装每件的标价是元.三、综合题19.为弘扬爱国主义精神,某校组织七年级学生以班级为单位观看电影《长津湖》,票价为每张40元,701班班长问售票员买团体票是否可以优惠,售票员说:“40人以上的团体票有两个优惠方案可选择,方案一:全体人员打8折;方案二:5人免票,其他人员打9折.”(1)702班有41名学生,选择哪个方案更优惠?(2)701班班长思考了一会儿说:“我们班无论选择哪种方案,要付的钱是一样多的.”请问701班有多少名学生?20.已知关于x的一元二次方程x2−6x+k=0有两个不相等的实数根(1)求k的取值范围;(2)若x1,x2为该方程的两个实数根且满足求k的值21.如图,在△ABC中,△B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经过几秒后,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,经过几秒后,PQ的长度等于2√10cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.22.图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍.(1)设:长方体的高为xcm,则其宽为cm.(2)求长方体的体积.23.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣11,点B 表示10,点C表示18,我们称点A和点C在数轴上相距29个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等. 24.已知关于的一元二次方程x 2 +2x+2k-4=0有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求方程的根.参考答案1.【答案】C2.【答案】D3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】A9.【答案】A10.【答案】B11.【答案】B12.【答案】B13.【答案】x+y=314.【答案】5(1+x)2=5+2.815.【答案】﹣2或116.【答案】217.【答案】x=218.【答案】7519.【答案】(1)解:由题意可得方案一的花费为:41×40×0.8=1312(元)方案二的花费为:(41-5)×0.9×40=1296(元)∵1312>1296∴702班该选择方案二更优惠;(2)解:设701班有x名学生,根据题意得x×40×0.8=(x-5)×0.9×40解得x=45.答:701班有45名学生.20.【答案】(1)解:由题意可得△=36-4k>0所以k<9;(2)解:由x1+x2=6,x1x2=k得(x1·x2)2−(x1+x2)=115k2−6=115 k2=121k=±11∵k<9所以k=-11.21.【答案】(1)解:设经过x秒以后△PBQ面积为4cm2,根据题意得12(5−x)×2x=4整理得:x2-5x+4=0解得:x=1或x=4(舍去);或12(5−x)×7=4解得:x= 27 7答:1秒或277秒后△PBQ的面积等于4cm2(2)解:PQ= 2√10,则PQ2=BP2+BQ2,即40=(5-t)2+(2t)2解得:t=-1(舍去)或3.则3秒后,PQ的长度为2√10cm(3)解:令S△PQB=7,即BP× BQ2=7,(5-t)×2t2=7整理得:t2-5t+7=0由于b2-4ac=25-28=-7<0则原方程没有实数根;或Q到C了,P还在运动,(5-t)×7÷2=7解得t=3(舍去).所以在(1)中,△PQB的面积不能等于7cm222.【答案】(1)30−2x2(2)解:根据题意得:30−2x2=2x解得:x=5故长方体的宽为10,高为5,长为30﹣5×2=20则长方体的体积为5×10×20=1000cm3.答:长方体的体积为1000cm3.23.【答案】(1)解:点P运动至点C时,所需时间t=11÷2+10÷1+8÷2=19.5(秒)答:动点P从点A运动至C点需要19.5时间;(2)解:由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则11÷2+x÷1=8÷1+(10﹣x)÷2x=5答:M所对应的数为5.(3)解:P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上则:8﹣t=11﹣2t,解得:t=3.②动点Q在CB上,动点P在OB上则:8﹣t=(t﹣5.5)×1,解得:t=6.75.③动点Q在BO上,动点P在OB上则:2(t﹣8)=(t﹣5.5)×1,解得:t=10.5.④动点Q在OA上,动点P在BC上则:10+2(t﹣15.5)=t﹣13+10,解得:t=18综上所述:t的值为3、6.75、10.5或18.24.【答案】(1)因为x2+2x+2k -4 = 0有两个不相等的实数根所以Δ=b2−4ac>0,即22−4×1×(2k−4)>0所以8k<20,解得:k<5 2(2)因为k<52且k为正整数,所以k=1或2当k=1时,方程化为x2+2x−2=0,△=12,此方程无整数根;当k=2时,方程化为x2+2x=0解得x1=0,x2=2所以k=2,方程的有整数根为x1=0,x2=2.。

中考数学《方程与不等式》专题训练50题含参考答案

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、6【答案】C【分析】首先将方程()223x x =-化为一般形式: 2260x x -+=,然后根据此一般形式,即可求得答案.【详解】解:方程()223x x =-化成一般形式是2260x x -+=,∴二次项系数为1,一次项系数为-2,常数项为6.所以C 选项是正确的.【点睛】此题考查了一元二次方程的一般形式.注意一元二次方程的一般形式是:ax 2+bx+c=0(a,b,c 是常数且a≠0),其中a,b,c 分别叫二次项系数,一次项系数,常数项. 2.已知一个二次函数图象经过11(5,)P y -,22(1,)P y -,33P (1,y ),44(5,)P y 四点,若324y y y <<,则1y ,2y ,3y ,4y 的最值情况是( )A .1y 最小,4y 最大B .3y 最小,1y 最大C .3y 最小,4y 最大D .无法确定【答案】B【分析】设出抛物线的解析式,再把四点的坐标代入,解不等式后确定字母的取值范围,即可判断大小关系,从而知道哪个最小,哪个最大.【详解】解:∵一条抛物线过11(5,)P y -,22(1,)P y -,33P (1,y ),44(5,)P y 四点, 设抛物线的解析式为2y ax bx c =++(a≠0), ∵1255y a b c =-+, 2y a b c =-+,3y a b c =++,4255y a b c =++,∵324y y y <<, ∵a +b+c <a-b+c , ∵b <0,∵255a b c -+>255a b c ++, ∵14y y >,∵3y 最小,1y 最大. 故选B.【点睛】此题考查了二次函数的最值问题,涉及到解不等式,解不等式后确定字母的取值范围是解题关键.3.不等式组410,27x x +>⎧⎨<⎩正整数解的个数有( )A .2个B .3个C .4个D .5个4.下列不等式组中,无解的是( )A .1313x x -<⎧⎨+<⎩B .1313x x ->⎧⎨+>⎩C .1313x x -<⎧⎨+>⎩D .1313x x ->⎧⎨+<⎩【答案】D【分析】根据不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到,即可得出答案. 【详解】解:不等式组整理为: A 、42x x ⎧⎨⎩<<,解集为:2x <; B 、42x x >⎧⎨>⎩,解集为:>4x ; C 、42x x ⎧⎨>⎩<,解集为:24x <<; D 、42x x >⎧⎨⎩<,无解; 故选:D .【点睛】本题主要考查了一元一次不等式解集的求法,熟记求不等式组解集的方法是解题的关键.5.甲队修路120m 比乙队修路210m 所用天数少1天,已知甲队比乙队每天少修40%,设甲队每天修路m x .依题意,下面所列方程正确的是( ) A .12021010.4x x x+=- B .12021010.4x x x-=- C .120210(10.4)1x x -=+ D .120210(10.4)1x x-+=6.已知n 是方程2210x x --=的一个根,则2367n n --=( ) A .10- B .7-C .6-D .4-【答案】D【分析】把n 代入方程得到2210n n --=,再根据所求的代数式的特点即可求解. 【详解】把n 代入方程得到2210n n --=,故221n n -= ∵2367n n --=3(22n n -)-7=3-7=-4, 故选D.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程的解的定义.7.不等式2x﹣1<3的解集在数轴上表示为()A.B.C.D.【答案】D【分析】先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可.【详解】解:由2x﹣1<3得:x<2,则不等式2x﹣1<3的解集在数轴上表示为,故选:D.【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键.8.若点P(2m-4,2-3m)在第三象限,则实数m的取值范围是()A.223m-<<B.23m<C.223m<<D.223m-<<9.已知关x、y的方程组5331x y ax y a+=+⎧⎨-=-⎩给出下列结论:∵20x y =⎧⎨=⎩是方程组的解;∵无论a 取何值,x 、y 的值都不可能互为相反数; ∵当1a =时,方程组的解也是方程1x y a +=+的一组解; ∵x 、y 都为自然数的解有3对. 其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个10.一元二次方程2230x x ++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定【答案】C【分析】根据方程的系数结合根的判别式即可得出80∆=-<,由此即可得出结论. 【详解】解:∵在方程2230x x ++=中,2241380∆=-⨯⨯=-<, ∵该方程无解. 故选:C .【点睛】本题考查了一元二次方程根的判别式,牢记Δ0<时方程无解是解题的关键. 11.近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校组织八年级同学到劳动教育基地参加实践活动,某小组的任务是平整土地2300m .开始的半小时,由于操作不熟练,只平整完230m .学校要求完成全部任务的时间不超过3小时,若他们在剩余时间内每小时平整土地2m x ,则x 满足的不等关系为( ) A .()3030.5300x +-≤ B .300300.53x --≤ C .()3030.5300x +-≥ D .0.5300303x +-≥【答案】C【分析】设他们在剩余时间内每小时平整土地x m 2,根据学校要求完成全部任务的时间不超过3小时得出不等式解答即可.【详解】解:设他们在剩余时间内每小时平整土地x m 2, 根据题意可得:()3030.5300x +-≥, 故选:C .【点睛】本题考查了由实际问题抽象出一元一次不等式,找准等量关系,正确列出一元一次不等式是解题的关键.12.如图,AB 与CD 相交于点E ,点F 在线段BC 上,且AC //EF //DB .若BE =5,BF =3,AE =BC ,则EBAE的值为( )A .23B .12C .35D .25//EF AC ∴BF BE CF AE =解得92x =92CF ∴=13.若0a b <<,则下列各式中不一定...成立的是( ) A .33a b +<+ B .88a b ->- C .11a b> D .22ac bc <14.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <5 B .k <5,且k ≠1 C .k ≤5,且k ≠1 D .k >5【答案】B【详解】∵关于x 的一元二次方程方程()21410k x x -++=有两个不相等的实数根,∵10Δ0k-≠⎧⎨>⎩,即()2104410kk-≠⎧⎨-->⎩,解得:k<5且k≠1.故选:B.15.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<4【答案】D【详解】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.解:,(1)+(2)得:4x+4y=a+4,即x+y=,∵x+y=<2,∵a<4.故选D16.已知二次函数,且,,则一定有()A.B.C.D.≤0【答案】A【详解】试题分析:∵二次函数中,∵当x=-1时,y=a-b+c>0且∵a<0∵抛物线开口向下且穿过x轴∵抛物线与x轴肯定有两个交点即∵=故选A考点:1.抛物线的值;2.根的判别式17.下列不等式中,是一元一次不等式的是( ) A .20x< B .x 2-5<0 C .3x >2y D .2x -1≥0 【答案】D【详解】A 选项中不等式的左边不是整式,故A 中的不等式不是一元一次不等式;B 选项中未知数的次数是2,故B 中的不等式也不是一元一次不等式;C 选项中含有两个未知数,故C 中的不等式也不是一元一次不等式;只有D 中的不等式符合条件.18.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( ) A .2m >- B .m>2C .3m >D .2m <-【答案】A【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -+⎧⎨+⎩=①=②∵+∵得2x +2y =2m +4, 则x +y =m +2, 根据题意得m +2>0, 解得m >-2. 故选:A .【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x +y 的值,再得到关于m 的不等式. 19.若关于x 的方程322133x mx x x---=---无解,则m 的值为( ) A .1 B .3C .1或53D .53【答案】C【分析】分式方程去分母转化为整式方程,由分式方程无解的意义,计算即可求出m 的值.20.甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b+ 元的价格把羊全卖给了乙,结果甲发现赚了钱,赚钱的原因是( ) A .a b = B .a b >C .a b <D .与a b 、大小无关二、填空题21.电影《长津湖》首映当日票房已经达到2.06亿元,2天后当日票房达到4.38亿元,设平均每天票房的增长率为x ,则可列方程为________________. 【答案】2.06(1+x )2=4.38【分析】设平均每天票房的增长率为x ,根据当日票房已经达到2.06亿元,2天后当日票房达到4.38亿元,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每天票房的增长率为x ,根据题意得:2.06(1+x )2=4.38.故答案为:2.06(1+x )2=4.38.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.22.若关于x 的方程()1320k k xx ----=是一元二次方程,则k =______.23.关于x 的方程(a ﹣1)21ax ++x ﹣3=0是一元二次方程,则a =_____. 【答案】-1【分析】直接利用一元二次方程的定义得出a 2+1=2且a ﹣1≠0,进而得出答案.【详解】解:∵关于x 的方程(a ﹣1)x 21a++x ﹣3=0是一元二次方程,∵a 2+1=2且a ﹣1≠0,解得:a =﹣1.故答案为:﹣1.【点睛】此题考查的是求一元二次方程中的参数问题,掌握一元二次方程的定义是解决此题的关键.24.已知1x =是方程220x mx +=的根,则m =______.25.某校将若干间宿舍分配给八年级(1)班女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,且有一间住不满.那么该班有____________名女生.26.不等式2x+1>3x-2的非负整数解是______.【答案】0,1,2【分析】先求出不等式2x+1>3x-2的解集,再求其非负整数解【详解】移项得,2+1>3x-2x,合并同类项得,3>x,故其非负整数解为:0,1,2【点睛】解答此题不仅要明确不等式的解法,还要知道非负整数的定义.27.关于x 的方程ax 2-3x -6=0是一元二次方程,则a 满足的条件是________. 【答案】a≠0【分析】直接利用一元二次方程的定义分析得出答案. 【详解】解:∵关于x 的方程ax 2-3x -6=0是一元二次方程,∵a 满足的条件是a≠0.故答案为:a≠0.【点睛】此题主要考查了一元二次方程的定义,正确把握相关定义是解题关键. 28.已知关于x 的一元二次方程21(2)04mx m x m --+=有两个不相等的实数根,则m 的取值范围是_______. 【分析】由题意可得21244404m m m m ,即可求解.【详解】解:关于x 的一元二次方程21(2)04mx m x m --+=∴21244404m m m m ,104m1m <且0m ≠故答案是:1m <且0m ≠.【点睛】本题考查了一元二次方程20(ax bx c ++=29.已知关于x 的方程250mx mx ++=有两个相等的实数根,则m 的值是____________.【答案】20【分析】根据一元二次方程根与判别式的关系求解即可.【详解】解:∵关于x 的方程250mx mx ++=有两个相等的实数根,∵2450m m ∆=-⨯=且0m ≠,解得:20m =.故答案为:20.【点睛】本题考查一元二次方程根的判别式、解一元二次方程,解答关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的情况与根的判别式24b ac ∆=-的关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.30.一辆匀速行驶的汽车在 10:30 距离A 地50千米,要在12:00之前驶过A 地,车速v (单位:km/h)应满足的条件 是___________.(请列一元一次不等式)31.关于x 的一元二次方程(m ﹣1)x 2﹣x ﹣2=0有两个不等的实数根,则m 的取值范围是_____________ 20{18(m m -≠=+-解得:m>78故答案为m>【点睛】本题考查了根的判别式,牢记题的关键.32.若二元一次方程组232x y m x y m+=+⎧⎨+=⎩的解x 、y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为______.【答案】2【分析】解二元一次方程组,分三种情况考虑,根据周长为7得关于m 的方程,求得m ,根据构成三角形的条件判断即可.【详解】232x y m x y m +=+⎧⎨+=⎩①②33.2x2﹣x﹣1=0的二次项系数是_____,一次项系数是_______,常数项是_____.解:根据一元二次方程的定义得:2x2﹣x﹣1=0的二次项系数是2,一次项系数是﹣,常数项是﹣1.34.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.35.某厂工业废气年排放量为450万立方米,为了改善上海市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,每期减少的百分率是________________. 【答案】20%;【分析】等量关系为:450×(1-减少的百分率)2=288,把相关数值代入计算即可.【详解】设每期减少的百分率为x ,根据题意得:450×(1-x )2=288,解得:x 1=1.8(舍去),x 2=0.2解得x=20%.所以,每期减少的百分率是20%.故答案为20%.【点睛】考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )236.若关于x 、y 的方程组ax by c mx ny d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()133133a x by c m x ny d ⎧--=⎪⎨--=⎪⎩的解是__________.【答案】42x y =⎧⎨=-⎩ 【分析】将方程组的解代入方程组得到22a b c m n d +=⎧⎨+=⎩,等式两边同时乘以3得到363363a b c m n d +=⎧⎨+=⎩,与方程组()()133133a x by c m x ny d ⎧--=⎪⎨--=⎪⎩对比系数得到()1336x y ⎧-=⎨-=⎩,从而得到方程组的解.【详解】∵方程组ax by cmx ny d+=⎧⎨+=⎩的解为12xy=⎧⎨=⎩∵22a b c m n d+=⎧⎨+=⎩∵363 363 a b c m n d+=⎧⎨+=⎩∵()()133133 a x by c m x ny d ⎧--=⎪⎨--=⎪⎩得()13 36 xy⎧-=⎨-=⎩∵42 xy=⎧⎨=-⎩故答案为:42 xy=⎧⎨=-⎩【点睛】本题考查方程组的性质,解题的关键是熟练掌握方程组的相关知识.37.在下边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=_____,b=________.【答案】62【详解】试题分析:根据正方体的展开图的特点,1与a相对,5与b相对,3与4相对,因为3+4=7,所以1+a=7,5+b=7,解得:a = 6,b = 2.故答案为6;2.考点:正方体的展开图.38.关于x的不等式3x-2m<x-m的正整数解为1、2、3,则m取值范围是______.39.若 21x y =⎧⎨=⎩是方程()2121x m y nx y ⎧+-=⎨+=⎩的解,则(m+n )2016的值是________. 【答案】1【详解】由题意得:()412211m n ⎧+-=⎨+=⎩,解得:10m n =-⎧⎨=⎩ , 所以(m+n )2016=1,故答案为1.三、解答题40.解方程()2331842y y y y ++--=-. 【答案】11y =,21y =-.【分析】先把方程整理成一般形式,再利用直接开平方法求解即可.【详解】解:去分母,得:()()()2382341y y y y +-=+--,即26982644y y y y y ++-=+-+,整理得:y 2=1,∵y =±1,即11y =,21y =-.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握解一元二次方程的方法是关键.41.解下列分式方程:(1)542332x x x +=-- (2)32x x --+1=32x- 【答案】(1)1x =;(2)1x =.【分析】(1)先去分母,把分式方程化为整式方程,再解整式方程并检验; (2)先去分母,把分式方程化为整式方程,再解整式方程并检验.【详解】解:(1)去分母,得54(23)x x -=-,去括号,得5812x x -=-,移项,得77x -=-,解得 1.x =检验:x =1时,230.x -≠∵原分式方程的解为 1.x =(2)方程两边同乘()2x - ,得3(2)3x x -+-=-,解得x =1检验:x =1时,20.x -≠∵x =1是原分式方程的解. 【点睛】本题考查的是分式方程的解法,解分式方程的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1,并检验.422倍,求改造后的正方形绿地的边长是多少米?43.解下列分式方程(1)11322x x x-+=--; (2)225124x x x ++=--- 【答案】(1)原方程无解2x=0是增根,原方程无解.)4,约去分母,得4),44.甲、乙两地间铁路长2400千米,经技术改造后,列车实现了提速.提速后比提速前速度增加20千米/时,列车从甲地到乙地行驶时间减少4小时.已知列车在现有条件下安全行驶的速度不超过140千米/时.请你用学过的数学知识说明这条铁路在现有条件下是否还可以再次提速?【答案】可以再次提速【详解】试题分析:首先设提速后列车的速度为x千米/时,然后根据题意列出分式方程,从而求出方程的解,将解与140进行比较大小,从而得出答案.试题解析:设提速后列车的速度为x千米/时,根据题意可得:解得:,=-100(舍去)经检验:x=120是原方程的解且符合题意∵120<140∵仍可以再次提速考点:分式方程的应用45.解不等式:(1)2(1)3(1)2x x -<+-,并把解集在数轴上表示出来.(2)解不等式:213x -≥324x +﹣1,并写出其非负整数解. 【答案】(1)3x >-,见解析(2)x ≤2;非负整数解有0,1,2【分析】(1)按去括号,移项、合并同类项,系数化1的步骤求解,再把解集用数轴表示出来即可;(2)按去分母,去括号,移项、合并同类项,系数化1的步骤求解,再写出解集中非负整数即可.(1)解:去括号,得:22332x x -<+-移项、合并同类项,得:3x -<系数化1得:3x >-这个不等式的解集在数轴上表示如图:(2)解:去分母得,4(2x ﹣1)≥3(3x +2)﹣12,去括号得,8x ﹣4≥9x +6﹣12,移项得,8x ﹣9x ≥6﹣12+4,合并同类项得,﹣x ≥﹣2,系数化为1得,x ≤2.非负整数解有0,1,2.【点睛】本题考查解不等式,用数轴表示不等式的解集,熟练掌握解不等式的一般步骤是解是题的关键.46.某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?47.解方程1132x x +-=﹣1. 【答案】x =11.【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】方程两边同时乘以6得:2(x +1)=3(x ﹣1)﹣6,去括号得:2x +2=3x ﹣3﹣6,移项得:2x ﹣3x =﹣3﹣6﹣2,合并同类项得:﹣x =﹣11,系数化为1得:x =11.【点睛】此题主要考查学生对解一元一次方程的理解和掌握,此题难度不大,属于基础题.48.解方程:(1)()3242--=-x x (2)1311510---=x x 【答案】(1)2x =;(2)11x =-.【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)()3242--=-x x ,去括号得:3642x x -+=-,移项合并得:2x -=-,解得:2x =;49.解方程:(1)312x x=+;(2)11322xx x-=---.【答案】(1)x=﹣3;(2)无解.【详解】试题分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:解:(1)去分母得:3x+6=x,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.考点:解分式方程.。

【中考数学总复习一轮】不等式与不等式组(方程与不等式)基础练习(含答案)

【中考数学总复习一轮】不等式与不等式组(方程与不等式)基础练习一、填空题(共3道,每道20分)1.不等式的基本性质:①不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向________;②不等式的两边都乘以(或除以)同一个正数,不等号的方向________;③不等号的两边都乘以(或除以)同一个负数,不等号的方向_________.答案:不变;不变;相反解题思路:直接应用不等式的性质即可试题难度:三颗星知识点:不等式的性质2.已知方程组的解x、y满足2x+y&ge;0,则m的取值范围是.答案:解题思路:由方程组,得,代入2x+y=0,得试题难度:三颗星知识点:解一元一次不等式3.已知关于的不等式组只有四个整数解,则实数的取值范围是;答案:解题思路:解不等式组得到x,有四个整数解,则为1,0,-1,-2.所以试题难度:三颗星知识点:解一元一次不等式组二、解答题(共2道,每道20分)1.今年四月份,李大叔收获洋葱30吨,黄瓜13吨,现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨;一辆乙种货车可装洋葱和黄瓜各2吨.(1)李大叔安排甲、乙两种货车时有几种方案?请你帮助设计出来;(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,请帮李大叔算一算应选择哪种方案,才能使运费最少?最少运费是多少元?答案:(1)运货方案一为用甲种车5辆,乙种车5辆运货方案二为用甲种车6辆,乙种车4辆运货方案三为用甲种车7辆,乙种车3辆(2)16500元解题思路:(1)设用甲种货车x辆,则用乙种货车(10-x)辆,依题意,且x正整数。

解得,所以x取5,6,7则运货方案一为用甲种车5辆,乙种车5辆运货;方案二为用甲种车6辆,乙种车4辆运货;方案三为用甲种车7辆,乙种车3辆(2)需付车费用为2000x+1300(10-x)=13000+700x费用关于x是增函数,则选择第一种方案费用最低,最低为13000+700=16500元试题难度:三颗星知识点:一元一次不等式组的应用2.某校组织七年级学生到军营训练,为了喝水方便,要求每个学生各带一只水杯,几个学生可以合带一个水壶.可临出发前,带队老师发现有51名同学没带水壶和水杯,于是老师拿出260元钱并派两名同学去附近商店购买.该商店有大小不同的甲、乙两种水壶,并且水壶与水杯必须配套购买.每个甲种水壶配4只杯子,每套20元;每个乙种水壶配6只杯子,每套28元.若需购买水壶10个,设购买甲种水壶x个,购买的总费用为y(元).(1)求出y与x之间的函数关系式(不必写出自变量x的取值范围);(2)请你帮助设计所有可能的购买方案,并写出最省钱的购买方案及最少费用.答案:(1)(2)248元解题思路:(1)(2)依题意列方程,且x取正整数,解得,所以x取3,4则方案一购买甲种水壶3个,购买乙种水壶7个;方案二购买甲种水壶4个,购买乙种水壶6个.由于费用关于x为减函数,则取x为4时费用最少最省钱,即方案一最省钱,最少费用为(元)试题难度:三颗星知识点:一元一次不等式组的应用。

2020年九年级中考数学三轮专题复习:方程与不等式(含答案)

2020年中考数学三轮专题复习方程与不等式一、选择题(本大题共6道小题)1. 关于x的一元一次方程2x a-2+m=4的解为x=1,则a+m的值为()A.9B.8C.5D.42. 方程组的解是()A.B.C.D.3. 若关于x的一元二次方程x2+2x-k=0有两个不相等的实数根,则k的取值范围是()A.k<-1B.k>-1C.k<1D.k>14. 甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=5. 红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种6. 已知关于x的一元二次方程(a-1)x2-2x+a2-1=0有一个根为x=0,则a的值为()A.0B.±1C.1D.-1二、填空题(本大题共6道小题)7. 设x1,x2是方程x2-3x+2=0的两个根,则x1+x2-x1·x2=.8. 在x2++4=0的横线上添加一个关于x的一次项,使方程有两个相等的实数根.9. 定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且1*2=5,2*1=6,则2*3=.10. 中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入为20000元,到2018年人均年收入达到39200元,则该地区居民人均年收入平均增长率为.(用百分数表示)11. 已知关于x的一元二次方程ax2+2x+2-c=0有两个相等的实数根,则+c的值等于.12. 如果不等式组的解集是x<a-4,则a的取值范围是.三、解答题(本大题共5道小题)13. 解分式方程:(1)=; (2)-1=.14. 已知关于x,y的二元一次方程组的解满足x>y,求k的取值范围.15. 解方程组:(1)(2)(3)16. 如图,有一矩形的硬纸板,长为30 cm,宽为20 cm,在其四个角各剪去一个相同的小正方形,然后把四周的矩形折起,可做成一个无盖的长方体盒子,当剪去的小正方形的边长为何值时,所得长方体盒子的底面积为200 cm2?17. 为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.2020年中考数学三轮专题复习方程与不等式-答案一、选择题(本大题共6道小题)1. 【答案】C[解析]由关于x的一元一次方程2x a-2+m=4的解为x=1,可得a-2=1,2+m=4,解得a=3,m=2,所以a+m=3+2=5,故选C.2. 【答案】D3. 【答案】B[解析]∵关于x的一元二次方程x2+2x-k=0有两个不相等的实数根,∴Δ=22-4×1·(-k)=4+4k>0,∴k>-1.4. 【答案】D5. 【答案】C[解析]设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:解得20≤x<25.∵x为正整数,∴x=20,21,22,23,24,∴该店进货方案有5种,故选C.6. 【答案】D[解析]当x=0时,a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a=-1,故选D.二、填空题(本大题共6道小题)7. 【答案】18. 【答案】4x(或-4x,只写一个即可)[解析]一元二次方程有两个相等的实根,则b2-4ac=b2-16=0,解得b=±4,所以一次项为4x或-4x.9. 【答案】10[解析]根据题中的新定义化简已知等式得解得则2*3=4a+3b=4+6=10.10. 【答案】40%[解析]设该地区居民人均年收入平均增长率为x,则20000(1+x)2=39200,解得x1=0.4,x2=-2.4(舍去),∴该地区居民人均年收入平均增长率为40%.故答案为:40%.11. 【答案】2[解析]根据题意得:Δ=4-4a(2-c)=0,整理得4ac-8a=-4,4a(c-2)=-4.∵方程ax2+2x+2-c=0是一元二次方程,∴a≠0,等式4a(c-2)=-4两边同时除以4a,得c-2=-,则+c=2.12. 【答案】a≥-3[解析]因为不等式组的解集为x<a-4,所以3a+2≥a-4,解这个不等式得a≥-3.三、解答题(本大题共5道小题)13. 【答案】解:(1)去分母,得x+1=4(x-2),解得x=3,经检验x=3是原分式方程的解.所以方程的解为x=3.(2)方程两边同时乘(x-2)2得:x(x-2)-(x-2)2=4,解得x=4,检验:当x=4时,(x-2)2≠0.所以原方程的解为x=4.14. 【答案】解:方法一:①-②得,x-y=5-k.∵x>y,∴5-k>0,∴k<5,即k的取值范围为k<5.方法二:解得:∵x>y,∴-3k+10>-2k+5,∴k<5,即k的取值范围为k<5.15. 【答案】解:(1)①+②,得:3x+x=-8+0,∴4x=-8,x=-2,把x=-2代入②,得-2+2y=0,∴y=1,∴原方程组的解为(2)②×2+①,得7x=7,解得x=1,将x=1代入②,得y=-1.∴方程组的解为(3)由②,得2x-2y=1,③①-③,得y=4.将y=4代入①,得x=.∴方程组的解为16. 【答案】解:设剪去的小正方形的边长为x cm,根据题意有:(30-2x)(20-2x)=200,解得x1=5,x2=20,当x=20时,30-2x<0,20-2x<0,所以x=5.答:当剪去的小正方形的边长为5 cm时,长方体盒子的底面积为200 cm2.17. 【答案】解:设其他班的平均速度为x米/分,则九(1)班的平均速度为1.25x米/分,依题意得:=10,解得:x=80.经检验:x=80是所列方程的解.此时,1.25x=1.25×80=100.答:九(1)班的平均速度为100米/分,其他班的平均速度为80米/分.。

2024年江西中考数学一轮复习考点探究 构建6 方程(组)与不等式的实际应用 学案(含答案)

构建6方程(组)与不等式的实际应用【真题精粹】考向1 行程问题1.(2019·江西)斑马线前“车让人”的交通规则,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,这是某路口的斑马线路段A-B-C横穿双向行驶车道,其中AB=BC=6米,在绿灯亮后,小明共用11秒通过AC段,其中通过BC段速度是通过AB段速度的1.2倍,求小明通过AB段时的速度.设小明通过AB段时的速度是x米/秒,根据题意可列方程:_______________________________________________.考向2 购买问题2.(数学文化)(2018·江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛、羊各直金几何?”译文:今有牛5头,羊2头,共值金10两.牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,则可列出方程组:.3.(2023·江西)今年植树节,某班同学共同种植一批树苗,若每人种3棵,则剩余20棵;若每人种4棵,则还缺25棵.(1)求该班的学生人数.(2)这批树苗只有甲、乙两种,其中甲种树苗每棵30元,乙种树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲种树苗多少棵?4.(2020·江西)放学后,小贤和小艺来到学校附近的地摊上购买笔芯和卡通笔记本,这种笔芯每盒10支,整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本,需花费19元;小艺要买7支笔芯,1本笔记本,需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格.(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品?请通过计算说明.5.(2021·江西)甲、乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品比乙用3000元购买的商品数量少10件.(1)求这种商品的单价.(2)甲、乙两人第二次再去采购该商品时,每件价格都降低了20元,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均价格是元/件,乙两次购买这种商品的平均价格是元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同加油更划算.(填“金额”或“油量”)【参考答案】1.6x +61.2x=112.{5x+2y=10,2x+5y=83.(1)该班的学生人数为45(2)至少购买了甲种树苗80棵4.(1)笔记本的单价为5元,单独购买一支笔芯的价格为3元(2)略5.(1)这种商品的单价为60元(2)48;50(3)金额【核心突破】考点1 根据数量关系列方程或不等式例题1在数学课上,老师展示了下列问题,请同学们分组讨论解决的方法.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有这样一个问题:“今有三人共车,二车空;二人共车,九人步,问人和车各几何?”大意:今有若干人乘车.若每3人乘一辆车,则余2辆空车;若每2人乘一辆车.则余9人需步行.问共有多少辆车?多少人?某小组选择用一元一次方程解决问题,设共有x辆车,请补全他们的分析和解答过程.(1)由“若每3人乘一辆车,则余2辆空车”,可得人数为.(用含x的式子表示)(2)由“若每2人乘一辆车,则余9人需步行”可得人数为.(用含x的式子表示)(3)根据两种乘车方式的人数相等,列出方程:.(4)写出解方程的过程.变式特训1.(核心素养)“一粒米千滴汗,粒粒粮食汗珠换”.为抵制餐饮浪费行为,某送餐公司推出了“半份餐”服务,餐量是整份餐的一半,价格也是整份餐的一半,整份餐的单价为10元,希望中学每天中午从该送餐公司订200份午餐,其中半份餐订x(0<x≤200)份,其余均为整份餐.设该中学每天午餐订单总费用为y元,则y与x之间的函数关系式为( )A.y=-5x+2000B.y=5x+1000C.y=-5x+1000D.y=5x+20002.受第24届北京冬季奥林匹克运动会的影响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A端以平均(x+2)米/秒的速度滑到B端,用了24秒;第二次从滑雪道A端以平均(x+3)米/秒的速度滑到B端,用了20秒.(1)求x的值.(2)设小勇从滑雪道A端滑到B端的平均速度为v米/秒,所用时间为t秒,请用含t的代数式表示v(不要求写出t的取值范围).考点2 行程问题例题2电气机车和磁悬浮列车从相距298千米的两地同时出发,相向而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.问两车的速度各是多少?试题分析:①设电气机车的速度为x千米/时,则磁悬浮列车的速度为千米/时.②根据题意列方程,得.③完成后续的解题步骤.变式特训3.(真情境)坐火车从玉山县到南昌市可以选择普快列车,也可以选择“和谐号”动车,两条铁路线途经各站点的距离都相同.春运期间加开了一列普快列车和一列“和谐号”动车,火车时刻表如图所示,两车都准点抵达,准点驶离沿途各站.已知玉山县到南昌市的铁路线全长288 km,从玉山县到南昌市,普快列车比动车慢128 min,各站点之间两车行驶的平均速度不变.(1)动车的平均速度是多少?(2)动车几点抵达南昌市?4.如图1,A1B1和A2B2是水面上相邻的两条赛道(可看成两条互相平行的线段).甲是一名游泳健将,乙是一名游泳爱好者,甲在赛道A1B1上从A1处出发,到达B1后,以同样的速度回到A1处,然后重复上述过程;乙在赛道A2B2上以1.5 m/s的速度从B2处出发,到达A2后,以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设到池边B1B2的距离为y(m),运动时间为t(s),甲游动时,y(m)与t(s)的函数图象如图2所示.(1)赛道的长度是m,甲的速度是m/s;当t=s时,甲、乙两人第一次相遇,当t=s时,甲、乙两人第二次相遇.(2)求第三次相遇时,两人到池边B1B2的距离.考点3 购买问题例题3 (文化自信)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A种奖品的单价比B种奖品的单价多10元,用300元购买A种奖品的数量与用240元购买B种奖品的数量相同.设B种奖品的单价是x 元,则可列分式方程:.变式特训5.永远跟党走,奋进新征程.某班国庆期间决定去井冈山革命老区研学旅行,研学基地有甲、乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班购买甲、乙两种快餐共55份,所花的快餐费不超过1280元,问至少买乙种快餐多少份?考点4 销售问题例题4临近春节的前三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元.设销售额的月平均增长率为x,则根据题意,以下方程正确的为( )A.8(1+2x)=11.52B.2×8(1+x)=11.52C.8(1+x)2=11.52D.8(1+x2)=11.52变式特训6.某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸的产量比3月份的2倍少100吨.(1)求4月份再生纸的产量.(2)若4月份每吨再生纸的利润为1000元,5月份再生纸的产量比上月增加了m%,且5月份每吨再生纸的利润比上月增加了m2%,则5月份再生纸项目的月利润达到66万元.求m的值.(3)若4月份每吨再生纸的利润为1200元,4至6月份每吨再生纸利润的月平均增长率与6月份再生纸的产量比上月增长的百分数相同,6月份再生纸项目的月利润比上月增加了25%.求6月份每吨再生纸的利润.考点5 说理决策问题例题5 (2023·宜春模拟)为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.下表是某服装厂给出的服装的价格表:购买服装的套数1套至45套46套至90套91套及以上(含91套)每套服装的价格60元50元40元(1)如果两个年级单独购买服装一共应付5000元,问七、八年级各有多少学生参加合唱比赛?(2)如果七年级参加合唱比赛的学生中,有10名同学被调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装的方案.变式特训7.(2023·南昌模拟)已知A型车和B型车载满货物一次可运货情况如下表.某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完且恰好每辆车都载满货物.根据以上信息,解答下列问题.A型车/辆B型车/辆共运货/吨32192321(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.(3)若A型车每辆需租金300元/次,B型车每辆需租金320元/次,请选出最省钱的租车方案,并求出最少的租车费.考点6 与图形相关的应用例题6 (文化自信)《千里江山图》是宋代王希孟的作品.如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8∶13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意,以下方程正确的为( )A.1.4−x2.4−x =8 13B.1.4+x2.4+x =8 13C.1.4−2x2.4−2x =813 D.1.4+2x2.4+2x =813变式特训 8.六张完全相同的小矩形纸片C 与A ,B 两张矩形纸片恰好能拼成一个长为50、宽为m 的大矩形,部分数据如图所示.(1)若n=8,则矩形纸片A 的水平边长为 .(2)请用含m ,n 的代数式表示矩形纸片A 的周长: . (3)若矩形纸片A ,B 的面积相等,求n 的值.【参考答案】例题1 (1)3(x-2) (2)2x+9 (3)3(x-2)=2x+9 (4)略 变式特训 1.A2.(1)x 的值为3 (2)v=120t例题2 ①(5x+20) ②12[x+(5x+20)]=298 ③略 变式特训3.(1)288 km/h (2)上午11:02抵达南昌市4.(1)50;2;1007;3007(2)507 m例题3300x+10=240x变式特训5.(1)购买一份甲种快餐需要30元,购买一份乙种快餐需要20元 (2)至少购买乙种快餐37份 例题4 C 变式特训6.(1)4月份再生纸的产量为500吨 (2)20 (3)1500元 例题5 (1)八年级有40人,七年级有52人参加合唱比赛 (2)最省钱的购买服装的方案是买91套演出服 变式特训7.(1)1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货5吨(2)方案1:租用A型车5辆,B型车4辆方案2:租用A型车10辆,B型车1辆(3)最省钱的租车方案是租用A型车5辆,B型车4辆,最少的租车费为2780元例题6 D变式特训或n=50(舍去)8.(1)26(2)100+2m-12n(3)n=253。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学方程与不等式复习一.教学内容:方程与不等式 二. 教学目标: 通过对方程与不等式基础知识的复习,解决中考中常见的问题。

三. 教学重点、难点: 熟练地解决方程与不等式相关的问题 四、课堂教学: 中考导航一⎪⎪⎩⎪⎪⎨⎧一元一次方程的应用一元一次方程的解法程的解一元一次方程定义、方等式及其性质一元一次方程中考大纲要求一中考导航二⎪⎪⎩⎪⎪⎨⎧用题列二元一次方程组解应的解法简单的三元一次方程组解二元一次方程组义及其解二元一次方程(组)定二元一次方程组中考大纲要求二中考导航三⎪⎪⎪⎩⎪⎪⎪⎨⎧的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念一元一次不等式(组)不等式的性质一次不等式组一元一次不等式和一元中考大纲要求三中考导航四⎪⎪⎩⎪⎪⎨⎧程的应用一元二次方程及分式方分式方程可化为一元二次方程的一元二次方程的解法一元二次方程的定义一元二次方程中考大纲要求四知识与技能目标考点考纲要求了解 理解 掌握 灵活应用 了解一元二次方程的定义及双重性 √ 掌握一元二次方程的四种解法,并能灵活运用√ √ 掌握一元二次方程根的判别式,并能运用它解相应问题√ √ √ 掌握可化为一元二次方程的分式方程的解法并会验根√ 一元二次方程会解一元二次方程及分式方程应用题√【典型例题】例1. 若关于x 的一元一次方程12k3x 3k x 2=---的解是1x -=,则k 的值是( )A. 72B. 1C. 1113-D. 0答案:B例2. 一元二次方程03x 2x 2=--的两个根分别为( ) A. 1x 1=,3x 2= B. 1x 1=,3x 2-=C. 1x 1-=,3x 2=D. 1x 1-=,3x 2-=答案:C例3. 如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( ) A. 0b a >- B. 0ab < C. 0b a <+ D. 0)c a (b >-B A O C答案:B例4. 把不等式组⎩⎨⎧>-≥-3x 604x 2的解集表示在数轴上,正确的是( )答案:A例5. 某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告。

15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元,若要求每种广告播放不少于2次,则电视台在播放时收益最大的播放方式是( ) A. 15秒的广告播放4次,30秒的广告播放2次B. 15秒的广告播放2次,30秒的广告播放4次C. 15秒的广告播放2次,30秒的广告播放3次D. 15秒的广告播放3次,30秒的广告播放2次 答案:A例6. 锦州市疏港快速干道(锦州至笔架山)于2006年8月正式通车。

届时锦州至笔架山的公路运行里程将由目前的34km 缩短至28km ,设计时速是现行时速的1.25倍,汽车运行时间将缩短0.145小时,求疏港快速干道的设计时速。

解:设现行时速是x 千米/时,则疏港快速干道的设计时速是1.25x 千米/时。

根据题意,得145.0x 25.128x 34+=解这个方程,得x =80 经检验,x =80是所列方程的根 1.25×80=100(千米/时) 答:疏港快速干道的设计时速是100千米/时。

例7. 晓跃汽车销售公司到某汽车制造厂选购A 、B 两种型号的轿车,用300万元可购进A 型轿车10辆,B 型轿车15辆,用300万元也可以购进A 型轿车8辆,B 型轿车18辆。

(1)求A 、B 两种型号的轿车每辆分别为多少万元? (2)若该汽车销售公司销售1辆A 型轿车可获利8000元,销售1辆B 型轿车可获利5000元,该汽车销售公司准备用不超过400万元购进A 、B 两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元,问有几种购车方案?在这几种购车方案中,该汽车销售公司将这些轿车全部售出后,分别获利多少万元? 解:(1)设A 型号的轿车每辆为x 万元,B 型号的轿车每辆为y 万元。

根据题意,得⎩⎨⎧=+=+300y 18x 8300y 15x 10解得:⎩⎨⎧==10y 15x 答:A 、B 两种型号的轿车每辆分别为10万元、15万元。

(2)设购进A 种型号轿车a 辆,则购进B 种型号轿车(30-a )辆。

根据题意,得⎩⎨⎧≥-+≤-+4.20)a 30(5.0a 8.0400)a 30(10a 15 解此不等式组得20a 18≤≤ ∵a 为整数,∴a =18,19,20 ∴有三种购车方案方案一:购进A 型号轿车18辆,购进B 型号轿车12辆; 方案二:购进A 型号轿车19辆,购进B 型号轿车11辆; 方案三:购进A 型号轿车20辆,购进B 型号轿车10辆。

汽车销售公司将这些轿车全部售出后:方案一获利4.205.0128.018=⨯+⨯(万元); 方案二获利7.205.0118.019=⨯+⨯(万元); 方案三获利215.0108.020=⨯+⨯(万元)答:有三种购车方案,在这三种购车方案中,汽车销售公司将这些轿车全部售出后分别获利为20.4万元,20.7万元,21万元。

【模拟试题】一、选择题1. 如果a 与-2的和为0,那么a 是( )A. 2B. 21C. 21-D. -22. 某市按以下标准收取水费:用水不超过20吨,按每吨1.2元收费,超过20吨,则超过部分按每吨1.5元收费。

某家庭五月份的水费是平均每吨1.25元,那么这个家庭五月份应交水费( ) A. 20元 B. 24元 C. 30元 D. 36元3. 已知分式1x 1x +-的值是零,那么x 的值是( )A. -1B. 0C. 1D. ±14. 一个三角形的两边长为3和6,第三边的边长是方程0)4x )(2x (=--的根,则这个三角形的周长是( ) A. 11 B. 11或13 C. 13 D. 11和135. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( )A. 49kgB. 50kgC. 24kgD. 25kg二、填空题 1. 若313x 2--与互为倒数,则x =_____________。

2. 已知方程组⎩⎨⎧==⎩⎨⎧=+=-1y 2x 2by ax 4by ax 的解为,则b 3a 2-的值为___________。

3. 不等式组⎩⎨⎧-≤->16x 4x 2的解集是( )4. 某地2004年外贸收入为2.5亿元,2006年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为_____________。

5. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y o ,则可得到方程组为________________。

三、解答题1. 解方程:x 312212x 61--=-2. 已知方程11x 1=-的解是k ,求关于x 的方程0kx x 2=+的解。

3. 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?4. 甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?5. 据《潍坊日报》报道,潍坊市物价局下发了《关于调整潍坊市城市供水价格的通知》,本通知规定自今年5月1日起执行现行水价标准(见下表)。

用水类别基本水价 (元/吨) 代收污水处理费(元/吨) 代收水资源费(元/吨) 综合水价(元/吨)基数内 1.80 0.90 0.50 3.20 基数外一档 2.70 0.90 0.50 4.10 居民生活、行政事业用水 基数外二档3.70 0.90 0.50 5.10 工业生 产用水……………(1)由上表可以看出:基数内用水的基本水价为1.80元/吨;基数外一档[即超基数50%(含)以内的部分]的基本水价在基数内基本水价的基础上,每立方米加收_________元;基数外二档(即超基数50%以外的部分)的基本水价在基数内基本水价的基础上,每立方米加收_____________元;(2)若李明家基数内用水为每月6吨,5月份他家用水12吨,那么李明家5月份应交水费(按综合水价计算)多少元?若李明家计划6月份水费不超过30元,那么李明家6月份最多用水多少吨?(精确到0.01)【试题答案】一、 1. A2. C3. C4. C5. D二、1. 02. 63. 5x 2≤<4. 4)x 1(5.22=+ 5. ⎩⎨⎧=++=90y x 50y x三、1.32x -= 2. 解:11x 1=-方程两边同时乘以)1x (-,得1x 1-=,解得x =2 经检验,x =2是原方程的解所以原方程的解为x =2,即k =2把k =2代入0kx x 2=+,得0x 2x 2=+解得0x 1=,2x 2-=3. 解:设该单位这次共有x 名员工去天水湾风景区旅游 因为2700025000251000<=⨯,所以员工人数一定超过25人 可得方程[1000-20(x -25)]x =27000整理,得01350752=+-x x解得30,4521==x x当451=x 时,1000-20(x -25)=600<700,故舍去1x 当302=x 时,1000-20(x -25)=900>700,符合题意 答:该单位这次共有30名员工去天水湾风景区旅游。

4. 解:设甲每天加工x 个玩具,那么乙每天加工)x 35(-个玩具 由题意得:x 35120x 90-=解得:x =15经检验:x =15是原方程的根20x 35=- 答:甲每天加工15个玩具,乙每天加工20个玩具。

5. (1)0.9,1.9 (2)解:由题意知,李明家5月份基数内6吨水费为3.2×6=19.2(元);。

相关文档
最新文档