实数和代数式
数学综合算式专项练习题实数与代数式的运算

数学综合算式专项练习题实数与代数式的运算数学综合算式专项练习题:实数与代数式的运算在数学中,实数与代数式的运算是我们学习的基本内容之一。
它不仅在高中数学中占据重要地位,而且在其他数学领域如代数、几何、概率等的学习中也有广泛应用。
本文将针对实数与代数式的运算进行专项练习题的介绍,通过解析和计算实例,帮助读者更好地掌握相关知识与技巧。
一、实数的四则运算实数的四则运算是数学中最基本的运算之一。
下面我们通过一些具体的练习题来帮助读者巩固实数的四则运算。
题目一:计算下列各式的值,并化简结果。
1. $(-9) + (-5) - (-7)$2. $(-2) \times 4 - (-3) \times (-2)$3. $\frac{7}{3} - \frac{1}{4} + \frac{2}{5}$4. $(-1)^2 \times \left(\frac{8}{3} - \frac{5}{2}\right)$解析:1. $(-9) + (-5) - (-7) = -9 - 5 + 7 = -7$2. $(-2) \times 4 - (-3) \times (-2) = -8 - 6 = -14$3. $\frac{7}{3} - \frac{1}{4} + \frac{2}{5} = \frac{35}{12} -\frac{3}{12} + \frac{2}{5} = \frac{57}{20}$4. $(-1)^2 \times \left(\frac{8}{3} - \frac{5}{2}\right) = 1 \times\left(\frac{16}{6} - \frac{15}{2}\right) = 1 \times \frac{2}{6} =\frac{1}{3}$题目二:计算下列各式,并化简结果。
1. $\frac{1}{2} + \left(\frac{3}{4} - \frac{2}{5}\right)$2. $\frac{5}{6} \times \left(\frac{2}{3} - \frac{1}{4}\right)$3. $(\frac{3}{4})^2 - (\frac{2}{3})^2$4. $\frac{8 - 6 \times 5}{10}$解析:1. $\frac{1}{2} + \left(\frac{3}{4} - \frac{2}{5}\right) = \frac{1}{2} + \frac{15}{20} - \frac{8}{20} = \frac{7}{10}$2. $\frac{5}{6} \times \left(\frac{2}{3} - \frac{1}{4}\right) = \frac{5}{6} \times \frac{8}{12} - \frac{5}{6} \times \frac{3}{12} = \frac{20}{36} -\frac{15}{36} = \frac{5}{36}$3. $(\frac{3}{4})^2 - (\frac{2}{3})^2 = \frac{9}{16} - \frac{4}{9} =\frac{81}{144} - \frac{64}{144} = \frac{17}{144}$4. $\frac{8 - 6 \times 5}{10} = \frac{8 - 30}{10} = \frac{-22}{10} = -2.2$通过对以上题目的计算,读者可以看出实数运算的基本规律,并掌握化简结果的方法。
实数与代数式

实数与代数式【知识梳理】1.实数(1)分类:实数分数(2)⎪⎩⎪⎨⎧〈-=〉=)0()0(0)0(a a a a a a (3)科学记数法:正数),101(10是整数n a a N n 〈≤⨯=。
2.代数式(1)分类:代数式 分式(2)幂的运算公式: )0(1)()(0≠====÷=⋅-+a a b a ab a a a a a a a a n n n m n n m n m n m n m n m ;;;;。
(3)多项式的乘法:bd bc ad ac d c b a +++=++))((;ab x b a x b x a x +++=++)())((2;22))((b a b a b a -=-+;222)(b ab a b a +±=±;3322))((b a b ab a b a ±=+± 。
【双基训练】一、填空题(时间:10分钟)1.在22,101001.0,,14.3,1,0 π-各数中,整数是_______,分数是__________,无理数是__________; 正整数 零 负整数 正分数 负分数有理数 无理数整数 单项式 多项式有理式 无理式整式2.比较大小:(1)-1 _______ 0 ;(2)43-_______32- ;(3)π _______ 3.14; 3.因式分解:(1)a a 43-=__________;(2)22414a b a -+-=_____________________;(3)652--x x =________________;(4)652+-x x =_________________;4.请写出一个比0.1小的有理数_____________;5.当1,3=-=b a a 时,代数式ab a -2的值是_______________;6.若b a x 122+与b a x 53+-是同类项,则x =_____________;7.用科学记数法表示:0.00000101=______________;8.计算:aa a 214122-+-=_________________; 9.已知: ;;;;; 24552455154415448338333223222222+=+⨯=+⨯=+⨯=+ =+⨯=+b a ab 10a b 102则符合前面式子的规律,若____________; 10. 给出下列等式32-12=8=8×1;52-32=16=8×2;72-52=24=8×3;92-72=32=8×4.观察上面一系列等式,用代数式表示这个规律是:______________。
初中数学数与式的复习概括

数与式一.实数和代数式的有关概念1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。
数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等。
4.倒数:1除以一个数的商,叫做这个数的倒数。
一般地,实数a 的倒数为a1。
0没有倒数。
两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。
5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。
a =()()()⎪⎩⎪⎨⎧<-=>0000a a a a a ,绝对值的几何意义:数轴上表示一个数到原点的距离。
6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。
(1)正数大于零,零大于负数。
(2)两正数相比较绝对值大的数大,绝对值小的数小。
(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。
7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。
单独的一个数或字母也是代数式。
8.整式:单项式与多项式统称为整式。
单项式:只含有数与字母乘积形式的代数式叫做单项式。
一个数或一个字母也是单项式。
单项式中数字因数叫做这个单项式的系数。
一个单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
七年级上数学浙教版知识点

七年级上数学浙教版知识点
一、实数与代数式
实数的概念,有理数、无理数的概念与判断,代数式的概念及
简单的变形。
二、一元一次方程与方程的应用
含有一个未知数的一次方程的基本概念,化简和解一元一次方程,用方程解决实际问题。
三、二元一次方程组
含有两个未知数的一次方程组的基本概念,解二元一次方程组
及应用。
四、图形的认识
各种几何图形的基本概念及简单的性质和应用,画简图、读图。
五、三角形
三角形的基本概念,特殊三角形的性质,三角形的构造和证明、应用。
六、相似
相似的概念和性质,判定、构造和应用。
七、等比数列
等比数列的概念和性质,通项公式及求和公式,等比数列在实际问题中的应用。
八、函数
函数的基本概念,函数图像和简单的函数变换,函数的应用。
九、统计图及其分析
统计图的基本类型,按比例和按数量的统计图制作,统计图的分析。
十、平面直角坐标系
平面直角坐标系的基本概念,坐标系中的图形及其性质,坐标系中的计算问题。
十一、二次根式
二次根式的基本概念,二次根式的化简及应用。
总结:七年级上数学浙教版知识点涵盖了数学基础知识、代数式、方程、几何等方面,是初步掌握数学的基础,学习这些知识点可以使学生打牢数学基础。
中考数学专题:实数与代数式

专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。
初中数学之如何学好有理数、实数、代数式

初中数学之如何学好有理数、实数、代数式1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
九年级数学上册全册教案设计及练习题
九年级数学上册全册教案设计及练习题第一章:实数与代数式1.1 实数教学目标:理解实数的概念,掌握有理数和无理数的分类。
能够进行实数的加减乘除运算。
教学内容:实数的定义及分类。
实数的加减乘除运算规则。
教学方法:采用讲解法,通过举例解释实数的概念和运算规则。
利用数轴辅助学生理解实数的相对位置。
教学练习题:a) 所有整数都是有理数。
b) 根号2是无理数。
c) 实数包括有理数和无理数。
1.2 代数式教学目标:理解代数式的概念,掌握代数式的运算规则。
能够进行代数式的化简和求值。
教学内容:代数式的定义及分类。
代数式的运算规则。
教学方法:采用讲解法,通过举例解释代数式的概念和运算规则。
利用示例进行代数式的化简和求值练习。
教学练习题:填空题:请将下列代数式化简。
a) 2(x + 3) 3(x 1)b) (2x 5)(3x + 2)第二章:方程与不等式2.1 方程教学目标:理解方程的概念,掌握一元一次方程的解法。
能够解简单的一元一次方程。
教学内容:方程的定义及分类。
一元一次方程的解法。
教学方法:采用讲解法,通过举例解释方程的概念和解法。
利用示例进行一元一次方程的解法练习。
教学练习题:解方程题:请解下列一元一次方程。
a) 2x + 5 = 15b) 3x 4 = 72.2 不等式教学目标:理解不等式的概念,掌握一元一次不等式的解法。
能够解简单的一元一次不等式。
教学内容:不等式的定义及分类。
一元一次不等式的解法。
教学方法:采用讲解法,通过举例解释不等式的概念和解法。
利用示例进行一元一次不等式的解法练习。
教学练习题:解不等式题:请解下列一元一次不等式。
a) 2x + 5 > 15b) 3x 4 ≤7九年级数学上册全册教案设计及练习题第六章:函数与图像6.1 函数的概念教学目标:理解函数的定义,掌握函数的表示方法。
能够识别和理解函数的图像。
教学内容:函数的定义及表示方法。
函数图像的特点及识别。
教学方法:采用讲解法,通过举例解释函数的概念和表示方法。
实数与代数式初中数学教案
实数与代数式初中数学教案一、教学目标:1.了解实数的概念和性质。
2.学习代数式的基本知识和运算方法。
3.掌握实数和代数式的应用。
二、教学内容:1.实数的概念和性质:(1)实数的含义:实数指的是可以用于度量和数量关系的数。
这些数包括自然数、整数、有理数、无理数等。
(2)实数的性质:①可加性:实数之间可以进行加法运算。
②可乘性:实数之间可以进行乘法运算。
③可对比性:实数之间可以进行大小比较。
④稠密性:在任意两个不同实数之间,都可以找到一个实数。
2.代数式的基本知识和运算方法:(1)代数式的含义:代数式指的是数和字母的组合,例如2x+3y。
(2)代数式的基本构成:数、字母、符号(+、-、×、÷)。
(3)代数式的运算法则:加、减、乘、除、分配律、结合律、交换律、分数的加减、乘除等。
(4)字母的运算:提取公因数、移项、合并同类项、配方法等。
3.实数和代数式的应用:(1)实数的应用:计算、大小比较、平均数、方差、分布等。
(2)代数式的应用:解方程、解不等式、求根、构造模型等。
三、教学方法:1.讲解法:讲解实数的概念和性质,介绍实数的应用场景。
2.演示法:演示代数式的构成、运算法则和应用。
3.实践法:进行计算、推导、解题和建模等实践操作。
四、教学步骤:1.实数的概念和性质。
2.代数式的构成和运算法则。
3.实数和代数式的应用。
4.实践操作和应用实例。
五、教学评估:1.课堂讨论:讨论实数和代数式的概念、性质和运算方法。
2.小组合作:小组合作完成代数式的构造和运算实践任务。
3.个人测试:个人测试实数和代数式的应用和解题操作。
六、教学资源:1.教材:《初中数学》等。
2.多媒体教具:电脑、投影仪、智能白板等。
3.实践工具:纸笔计算器、模型材料等。
七、教学反思:本次教学实践主要围绕实数和代数式的概念、性质、构成、应用和实践进行,主要采用讲解法、演示法和实践法。
通过教学实践,学生了解了实数的含义和性质,掌握了代数式的构成和基本运算方法,同时还进行了实际计算、推导和建模等学习实践操作。
代数式——知识篇
成 一项 叫做合 并同类 项 . 合并 的法 则
是 把 系 数 相 加 . 得 的 结 果 作 为 合 并 所
铀 + Ⅱ6 n - 6 6 6 6
因 此 中 间 省 略 号 部 分 的 式 子
为 一 ab 6 1 4 3+ n6 a 3 b.
第 一条 : 当k O时, 函数 图象 “ > 的 两个 分 支分 别在 第 一 、三象 限 内. 在每 个 象 限 内, 自变 量 z 逐渐增 大时. y的值 则 随 着逐
学好高中数学也
补 充省 略 号 部 分 的 内容 .
单项式 、 多项式统称 为整式 , 在整 式 的运算 中要 注意同类 项和合并 同类
项 的处 理 .把 多项 式 中 的 同 类 项 合 并
阅读 ,在 语 文 中要抓 住精
炼 的或 生 动 形 象 的词 与 句 , 而 在数 学 中 。则应抓 住关键 的词
—
—
1
读 时 抓 住 关键 词 语 的 重 要 性。
()、 1 ( /a) (≥0 ; n )
,
是 代 数 式 运 算 中 的 重 点 知 识 . 类 整 这
式 的 化 简整理 在 高 中二项 式 定 理 中
一
有 着重要 的应 用 ; 对于 整式的 运算要 掌握 整式 的幂运 算 法则 , 合并 同类 项 法 则 . 能根据 乘 法公 式的结 构特 点 并
化 简 整 式.
式 的化简常用 以下两种 方法 :1利 用 () 除法法 则 :2 利 用分式 的 基本性 质. ()
全平方公式 .乘法公式的学习是数学恒等变换的重要工具和手段 , 作为恒等变换的五个方
面, 在理解和熟练掌握初 中的二个公式 的基础上再拓展 三个乘法公式显得十分必要 , 只有
初中数学实数与代数式概念及运算(第二讲)
6.若a 4 3,b 4 3,求 a b 的值. a ab a b
点评
此题的关键点是能够将a转化为 a
2
,进而可将式子类
似分解因式进行变化、约分,达到简化计算的目的.
实数的运算
7.计算
1.
1
2
1
0
3 1
2 1 2
2.
12005
1
0.5
31
22
cos
600
4
0
3
分式的化简求值
(4)二次根式:式子
叫做二次根式
(5)最简二次根式:如果一个二次根式同时满足:①被开 方数的因数是整数,因式是整式;②被开方数中不含开 得尽方的因数或因式,这样的二次根式叫做最简二次 根式.
(6)同类二次根式:几个二次根式化为最简二次根式后, 如果它们的被开方数相同,则称这几个二次根式是同 类二次根式.
方根;0的平方根是0.
(2)算术平方根:正数a的正平方根,叫做a的算术平
方方根根记,0的作算: a术a平方0根是0;一个非负数a的算术平
(3)立方根:如果一个数的立方等于a那么这个数
是a的立方根.记作3:a .正数有一个正的立方根,
负数有一个负的立方根,0的立方根是0.
根式
1.根式t;4/3.
点评 求字母的取值范围是中考中常考内容之一,方 法是综合考虑各种因素条件,取所有解集的公共部分.
2.下列各式中属于最简二次根式的是 ( ) A
A. x2 1 B. x2 y5 C. 12 D. 0.5
点评 此题主要考查最简二次根式的概念,判断一个二次根 式是不是最简二次根式必须按其定义中的两个条件,进行判 定,本题A选项中虽然有二次项,但就整体而言,没有能开得 尽方的因式,所以是最简二次根式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数和代数式
一、重点、难点提示:
1.相反数
实数a的相反数是-a,零的相反数是零。
(1)a,b互为相反数a+b=0。
(2)在数轴上表示相反数的两点关于原点对称。
2.绝对值
|a|=
3. 算术根
(1)正数a的正的n次方根叫a的n次算术根,零的算术根仍是0。
(2)实数的三个非负性:|a|≥0, a2≥0, ≥0(a≥0)。
4.科学记数法
把一大于10的数记成a×10n的形式,其中1≤a<10。
这种记数法叫做科学记数法。
一个数的科学记数法中,10的指数比原数的整数位数少1。
5.幂的运算法则:(m,n为正整数)
a m·a n=a m+n, (a m)n=a mn, (ab)n=a n
b n;
a m÷a n=a m-n(a≠0, m>n)
6.乘法公式:
(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2;
7.零指数和负整数指数:
规定a0=1(a≠0) ,a-p=(p为正整数)
8.二次根式的主要性质
(1)()2=a (a≥0).
(2)=|a|=
注意:根式的化简相当于绝对值的化简,所以应养成化简时加绝对值的习惯,先完成这种转化,不易出错。
(3)=·(a≥0, b≥0)。
(4)(b≥0,a>0)。
二、重点例题分析
例1.解答下列各题
(1)已知|a|=8, |b|=2, |a-b|=b-a, 求a+b的值。
(2)已知a>0, b<0, |b|>|a|, 试用“<”将a、b、-a、-b连结起来。
解:(1)∵|a|=8, ∴a=±8;
∵|b|=2, ∴b=±2;
又∵|a-b|=b-a, ∴b-a≥0, ∴b≥a。
因此b取+2, a取-8, 或b取-2, a取-8。
当b=2, a=-8时, a+b=(-8)+2=-6。
当b=-2, a=-8时, a+b=(-8)+(-2)=-10。
(2)b<-a<a<-b。
说明(1)这里应注意绝对值定义的正确应用,若|a|=3,则a=±3,不要漏了-3;还应注意运用|a-b|=b-a这个条件进行分析,不要漏解和多出解来。
(2)解涉及有理数的绝对值、大小比较等问题时,数轴是一个十分有效的工具。
画数轴,先由已知条件确定a、b所对应的点A、B,a>0,A在原点右边,b<0,B 在原点左边,|b|>|a|表示B到原点的距离大于A到原点的距离,再依相反数的概念找出-a,-b所对应的点,如图所示,
显然有:b<-a<a<-b。
此题还可用特殊值法求解。
设a=2,b=-3,所设数字一定要符合a>0, b<0, |b|>|a|的条件,那么a=2, -a=-2, b=-3, -b=3。
∴从小到大的顺序为-3,-2,2,3。
即b<-a<a<-b。
例2、计算下列各题
(1)(-)-2+;
(2)[·(3-2)]-1+(-)8÷×3
解:(1)原式=9+
(2)原式=[×(3-2)]-1+×3×3
=[]-1 +
=(-1)-1+
=-1+
=-
说明:在综合运算中搞清各种运算的意义,如乘方运算的底,负指数,零指数的意义及特殊角的三角函数值等。
计算前要仔细审题,一是注意运算的顺序,不要跳步;二是灵活地运用法则,能选择简便运算的要尽可能地采用简便运算;三要特别注意运算符号是否出错。
例3、计算机存储容量的基本单位是字节,用b表示,计算机中一般用Kb(千字节)或Mb(兆字节)或Gb(吉字节)作为存储容量的计量单位,它们之间的关系为1kb=210b, 1Mb=210Kb, 1Gb=210Mb。
一种新款电脑的硬盘存储容量为20Gb,它相当于多少Kb? (结果用科学记数法表示,并保留三个有效数字)
析解:本题目一方面考查近似数和科学记数法,另一方面考查学生收集和处理信息的能力。
解答时,考生直接根据题中所提供的几个单位的换算关系,不难求出
20Gb=20×210Mb=20×210×210Kb
=20×1024×1024Kb≈2.10×107Kb。
例4、给出下列算式:
32-12=8=8×1,
52-32=16=8×2,
72-52=24=8×3,
92-72=32=8×4,
……观察上面一系列等式,你能发现什么规律?用代数式来表示这个规律。
分析:观察等式,不难发现其规律:两个相邻的奇数的平方差是8的倍数。
由此,设n为自然数,则相邻的两个奇数为2n-1和2n+1,用代数式表示为
(2n+1)2-(2n-1)2=2×4n=8n。
说明:本题以列代数式为载体,体现了用字母表示数的简明性和普遍性,蕴含着一种数学简洁的美。
同时可考查学生的观察能力和抽象概括能力,渗透从特殊到一般的辩证关系。
例5、把下列多项式分解因式
(1)2x n+1-6x n+4x n-1 (n为自然数);
(2)(ab+1)2-(a+b)2;
(3)x3+x2-x-1。
解:(1)原式=2x n-1(x2-3x+2)=2x n-1(x-1)(x-2)。
(2)原式=(ab+1+a+b)(ab+1-a-b)
=[(ab+a)+(b+1)][(ab-a)+(1-b)]
=(a+1)(b+1)(a-1)(b-1)
(3)原式=(x3+x2)-(x+1)=x2(x+1)-(x+1) =(x+1)(x2-1)=(x+1)2(x-1)
说明:分解因式的一般思路是:“一提、二套、三分组”。
一提是指首先考虑能否提取公因式,其次考虑能否套用公式,最后考虑分组分解,分组分解的关键是在于分组后是否有公因式可提或是否能套用公式来进一步分解。
例6、(1)判断下列各式是否成立,你认为成立的请在括号内打“√”,不成立的打“×”
①=2()②=3()
③=4()④=5()
(2)你判断完以上各题之后发现了什么规律?请用含有n的式子将规律表示出来,并注明n的取值范围________。
(3)请用数学知识说明你所写式子的正确性。
分析:本题是一道归纳猜想型试题;能较好地考查学生的归纳—猜想—验证的思维过程。
答:(1)①②③④正确;
(2)=n;
(3)n为大于1的自然数。
===n。
例7、阅读下面一道题的解答过程,判断是否正确,如若不正确,请写出正确的解答过程。
化简:-a2·+。
解:原式=a-a2·+a
=a-a+a
=0+a
=a
答:上述解答过程有错误,正确解答如下:
原式=+|a|=|a|·-a2··+|a|
∵-a>0, ∴a<0。
原式=-a·+a-a=-a。
说明:这道题隐含着条件a<0是解此题的关键,而a<0时,|a|=-a。
这一点是该题错误的根本原因;另外,在化简时,注意计算逻辑要严谨。
例8、化简求值:
已知x=, y=, 求3x2-5xy+3y2的值。
∵x==5-2, y==5+2,
∴x+y=10, xy=1
∴3x2-5xy+3y2=3(x+y)2-11xy=3×102-11=289。
说明:二次根式的化简、求值是一个难点。
求代数式的值,采用变形后整体代入再进行计算,可使问题解答简捷。