八年级数学一次函数32道典型题(含答案和解析)

合集下载

2019-2020初中数学八年级上册《一次函数》专项测试(含答案) (328)

2019-2020初中数学八年级上册《一次函数》专项测试(含答案) (328)

11.
x y
= =
−4 −2
12.2 13.y=2x+7 14.-3 或-2
15. x 5
2 16.2,≠-2 17.y=-2x
18. y = 20 − 2
x
19. y = − 2 x + 2
3 20.0.53;x、y 21.S=5h,10,8
评卷人 得分
三、解答题
22.由
y y
= =
2x −x
(1) y = x2 + 2x ; (2) y = x ;(3) y = 3x + 3 ;(4) y = x −1 + x + 2 .
x+3
x−2
29.(6 分)用总长为 20 m 的篱笆围成一长方形场地. (1)写出长方形面积 S(m2)与一边 x(m)之间的函数解析式和自变量 X 的取值范围; (2)分别求当 x=2,5,8 时,函数 S 的值.
数.
17.(3 分)已知一个正比例函数的图象经过点(-2,4),那么这个正比例函数的表达式
是.
18.(3 分)已知梯形的面积为 10,底边上的高为 x,上底为 2,下底为 y,则 y 与 x 之间的
函数解析式为

19.(3 分)一次函数 y = kx + b 的图象经过点 A(0,2),B(3,0),则此函数的解析式
关系式为 y=30x. (4)某地温度 T(℃)与海拔高度 h(m)之间的关系可用 T = 10 − h 来近似估计.
150
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.B 2.A 3.C 4.B 5.C 6.C 7.A 8.C
评卷人

2019-2020初中数学八年级上册《一次函数》专项测试(含答案) (326)

2019-2020初中数学八年级上册《一次函数》专项测试(含答案) (326)

家了
C.从家出发,一直散步(没有停留),然后回家了
D.从家出发,散了一会儿步,又去了超市,27 分钟后才开始返回 3.(2 分)下列图像不.是.函数图象的是( )
4.(2 分)一次函数 y=2x-1 的图象大致是( )
A.
B.
C.
D.
5.(2 分)将直线 y=2x 向右平移 2 个单位所得的直线的解析式是 ( )
相距 m.
评卷人 得分
三、解答题
23.(6 分)已知正比例函数 y = k1x ( k1 为常数,且 k1 0 )的图象与一次函数 y = k2 x + 3 ( k2 为 常数,且 k2 0 )的图象交于点 P(-3,6). (1)求 k1 、 k2 的值; (2)如果一次函数与 x 轴交于点 M,求点 M 的坐标.
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.D 2.B 3.C 4.B 5.C 6.D 7.A 8.A 解析:答案:A
9.C
10.C
评卷人 得分
二、填空题
11.16
12.16
13.2
14.2
15.1
16.12
17. x 1
18. y = − 2 x + 2 , y = − 2 x − 2
29.(1)30
t,10
min;(2)
Q1
=
29 10
t
+
40
(
t≥0);(3)够用,理由略
30.(1)2280 元,2040 元;(2)y2=1800x+5600;(3)9 月份
∴点 M 的坐标为(3,0) .
24.(1) y = 1 x − 6 (2) 30 kg 5

八年级一次函数测试题及答案解析

八年级一次函数测试题及答案解析

一次函数检测题本检测题满分:100分,时间:90分钟一、选择题〔每小题3分,共30分〕1. 已知一次函数随着的增大而减小,且,则在直角坐标系内它的大致图象是〔 〕2. 对于圆的周长公式C =2R ,下列说法正确的是〔 〕A .、R 是变量,2是常量B .R 是变量,C 、是常量C .C 是变量,、R 是常量D .C 、R 是变量, 2、是常量 3. 函数的自变量的取值X 围是〔 〕A .>1 B.>1且≠3 C .≥1 D .≥1且≠3 4. 如图所示,坐标平面上有四条直线1、2、3、4.若这 四条直线中,有一条直线为方程3-5y +15=0的图象, 则此直线为〔 〕A .1B .2C .3D .45. 已知直线=k -4〔k <0〕与两坐标轴所围成的三角 形面积等于4,则直线的表达式为〔 〕A . =- -4B . =-2 -4C . =-3 +4D . =-3 -46. 小敏从A 地出发向B 地行走,同时小聪从B 地出发向 A 地行走,如图所示,相交于点P 的两条线段1、2 分别表示小敏、小聪离B 地的距离km 与已用时间h 之间的关系,则小敏、小聪行走的速度分别是〔 〕 A .3 km/h 和4 km/hB .3 km/h 和3 km/h C .4 km/h 和4 km/hD .4 km/h 和3 km/h7. 若甲、乙两弹簧的长度 cm 与所挂物体质量 kg 之间的函数表达式分别为=k 1+1和 =k 2+2,如图所示,所挂物体质量均为2 kg 时,甲弹簧长为1,乙弹簧长为2,则1与2的大小关系为〔〕A.1>2B.1=2C.1<2D.不能确定第4题图 第6题图 第7题图y x O y x O y x O y x O C8. 如图所示,已知直线:=,过点A 〔0,1〕作轴的垂线交直线于点B ,过点B 作直线的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线于点B 1,过点B 1作直线的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为〔 〕 A .〔0,64〕B .〔0,128〕C .〔0,256〕D .〔0,512〕9. 如图所示,在平面直角坐标系中,直线y =-与矩形ABCO 的边OC 、BC 分别交于点E 、F ,已知OA =3,OC =4,则△CEF 的面积是〔 〕 A .6 B .3 C .12 D .10. 目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开分钟后,水龙头滴出y 毫升的水,请写出y 与之间的函数表达式〔 〕A .y =0.05B .y =5C .y =100D .y =0.05+100二、填空题〔每小题3分,共24分〕11.已知函数y =〔-1〕+1是一次函数,则=.12.已知函数y =3+1,当自变量增加3时,相应的函数值增加.13. 已知地在地正南方3 km 处,甲、乙两人同时分别从、两 地向正北方向匀速直行,他们与地的距离〔km 〕与所行 的时间〔h 〕之间的函数图象如图所示,当行走3 h 后,他 们之间的距离为km. 14. 若一次函数的图象经过第一、二、四象限,则的取值X 围是.15. 如图所示,一次函数y =k +b 〔k <0〕的图象经过点A .当y <3时,的取值X 围是. 16. 函数的图象上存在点P ,使得P 到轴的距离等于3,则点P的坐标为.17. 如图所示,直线经过A 〔-1,1〕和B 〔-,0〕两点,则关于的不等式组0<<的解集为.18. 据有关资料统计,两个城市之间每天的 通话次数T 与这两个城市的人口数〔单位:万人〕以与两个城市间的距离d 〔单位:km 〕有T =2kmnd的关系〔k 为常数〕.现测得A 、B 、C 三个城市的人口与它们之间的距离如图所示,且已知A 、B 两个城市间每天的 通话次数为t ,那么B 、C 两个城市间每天的 通话次数为_______〔用t 表示〕.第8题图第9题图第17题图第13题图t O 4 2BA CD第15题图三、解答题〔共46分19. 〔6分〕已知一次函数的图象经过点A〔2,0〕与B〔0,4〕.〔1〕求一次函数的表达式,并在直角坐标系内画出这个函数的图象;第18题图〔2〕如果〔1〕中所求的函数的值在-4≤≤4X围内,求相应的的值在什么X围内.20. 〔6分〕已知一次函数,〔1〕为何值时,它的图象经过原点;〔2〕为何值时,它的图象经过点〔0,〕.21.〔6分〕已知一次函数的图象交x轴于A〔-6,0〕,交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的表达式.22.〔6分〕已知与成正比例,且时.(1) 求与之间的函数关系式;(2) 当时,求的值.23. 〔6分〕为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们是根据人的身高设计的.于是,他测量了一套课桌、凳相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高〔cm〕37.0 40.0 42.0 45.0桌高〔cm〕70.0 74.8 78.0 82.8〔1〕小明经过对数据的探究,发现:桌高是凳高的一次函数,请你求出这个一次函数的关系式〔不要求写出的取值X围〕;〔2〕小明回家后,测量了家里的写字台和凳子,写字台的高度为77 cm,凳子的高度为43.5 cm,请你判断它们是否配套?说明理由.24. 〔8分〕已知某服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B 种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为,用这批布料生产两种型号的时装所获得的总利润为y元.(1)求y〔元〕与〔套〕之间的函数表达式,并求出自变量的取值X围.(2)当生产M型号的时装多少套时,能使该厂所获利润最大?最大利润是多少?25. 〔8分〕某市为了节约用水,规定:每户每月用水量不超过最低限量m3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过m3时,除了付同上的基本费和损耗费外,超过部分每1 m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:用水量(m3) 交水费(元)一月份9 9二月份15 19三月份22 33根据上表的表格中的数据,求.第四章一次函数检测题参考答案一、选择题1. A 解析:∵一次函数中随着的增大而减小,∴.又∵,∴,∴此一次函数图象过第一、二、四象限,故选A.2.D 解析:C、R是变量,2、是常量.故选D.3.D 解析:根据题意,得-1≥0,-3≠0,解得≥1且≠3.故选D.4.A 解析:将=0代入3-5+15=0,得=3,∴方程3 -5 +15=0的图象与轴的交点为〔0,3〕,将 =0代入3 -5 +15=0得 =-5,∴方程3-5+15=0的图象与轴的交点为〔-5,0〕,观察图象可得直线1与轴、轴的交点坐标恰为〔-5,0〕、〔0,3〕,∴方程3-5+15=0的图象为直线1.故选A . 5.B 解析:直线=k -4〔k <0〕与两坐标轴的交点坐标为〔0,-4〕〔,0〕,∵直线=k -4〔k <0〕与两坐标轴所围成的三角形面积等于4,∴ 4×〔- 〕×=4,解得k =-2,则直线的表达式为y =-2-4.故选B .6.D 解析:理由如下: ∵通过图象可知的方程为=3,的方程为=-4+11.2 , ∴小敏行走的速度为11.2÷2.8=4(km/h),小聪行走的速度为4.8÷1.6=3(km/h). ∴故选D.7.A 解析:∵点〔0,4〕和点〔1,12〕在上,∴得到方程组解得∴.∵点〔0,8〕和点〔1,12〕在上,∴得到方程组解得∴.当时,,,∴.故选A .8.C 解析:∵点A 的坐标是〔0,1〕,∴OA =1.∵点B 在直线y =上,∴OB =2,∴OA 1=4,∴OA 2=16,得出OA 3=64,∴OA 4=256,∴A 4的坐标是〔0,256〕.故选C . 9.B 解析:当y =0时,-=0,解得=1,∴点E 的坐标是〔1,0〕,即OE =1.∵OC =4,∴EC =OC -OE =4-1=3,点F 的横坐标是4,∴y =×4-=2,即CF =2. ∴△CEF 的面积=×CE ×CF =×3×2=3.故选B .10.B 解析:y =100×0.05,即y =5.故选B .二、填空题11.-1 解析:若两个变量和y 间的关系式可以表示成y =k +b 〔k ,b 为常数,k ≠0〕的形式,则称y 是的一次函数〔为自变量,y 为因变量〕. 因而有m 2=1,解得m =±1.又m -1≠0,∴m =-1.12.9 解析:当自变量增加3时,y =3〔+3〕+1=3+10,则相应的函数值增加9. 13.23解析:由题意可知甲走的是路线,乙走的是路线,因为过点〔0,0〕,〔2,4〕,所以.因为过点〔2,4〕,〔0,3〕,所以.当时,.14.<解析:∵的图象经过第一、二、四象限,∴<0,>0,∴解不等式得<,<,∴的取值X 围是<.故答案为<.15.>2 解析:由函数图象可知,此函数图象y随x的增大而减小,当y=3时,=2,故当y<3时,>2.故答案为>2.16.或解析:∵点P 到轴的距离等于3,∴点P的纵坐标为3或-3.当时,;当时,,∴点P 的坐标为或.17.-<<-1 解析:∵直线经过A〔-1,1〕和B〔-,0〕两点,∴解得∴直线的表达式为=+,解不等式组0<+<,得-<<-1.故答案为-<<-1.18.解析:根据题意,有t =k,∴k =t.因此,B、C两个城市间每天的通话次数为T BC=k ×.三、解答题19. 解:〔1〕由题意得20,2, 4,4,a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一次函数的表达式为,函数图象如图所示.〔2〕∵,-4≤≤4,∴ -4≤≤4,∴ 0≤≤4.20. 分析:〔1〕把点的坐标代入一次函数表达式,并结合一次函数的定义求解即可;〔2〕把点的坐标代入一次函数表达式即可.解:〔1〕∵图象经过原点,∴点〔0,0〕在函数图象上,代入表达式得,解得.又∵是一次函数,∴,∴.故符合.〔2〕∵图象经过点〔0,〕,∴点〔0,〕满足函数表达式,代入,得,解得.由〔1〕知,故符合.第19题答图21.解:设正比例函数的表达式为,一次函数的表达式为,∵点B在第三象限,横坐标为-2,∴设B〔-2,〕,其中.∵S△AOB=6,∴12AO ·││=6,∴=-2,把点B〔-2,-2〕代入正比例函数,得k=1.把点A〔-6,0〕、B〔-2,-2〕代入,得∴,即为所求.22. 解:〔1〕因为与成正比例,所以可设将代入得所以与之间的函数关系式为〔2〕将代入得=1.23. 解:〔1〕设一次函数的表达式为,将表中的数据任取两值,不妨取〔37.0,70.0〕和〔42.0,78.0〕代入,得3770, 4278,k bk b+=⎧⎨+=⎩求得∴一次函数关系式为.〔2〕当43.5时, 1.6×43.5+10.8=80.4.∵ 77≠80.4,∴不配套.24. 解:(1).∵两种型号的时装共用A种布料[1.1+0.•6〔80-〕]米,共用B 种布料[0.4+0.9〔80-〕]米,解得40≤≤44,而为整数,∴=40,41,42,43,44,∴y与的函数表达式是y=5+3 600〔=40,41,42,43,44〕;(2)∵y 随的增大而增大,∴当=44时,y最大=3 820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3 820元.25. 解:设每月用水量为x m3,支付水费为y元,则y=8,0,8(),,c x ab x ac x a+≤≤⎧⎨+-+>⎩①②由题意知,0c≤5,∴ 88+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15 m 3、22 m3均大于最低限量3,将分别代入②式,得198(15),338(22),b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2=c +19③.再分析一月份的用水量是否超过最低限量,不妨设9,将代入②,得9=8+2〔9-〕+c,即2=c+17 ④.④与③矛盾.故9≤,则一月份的付款方式应选①式,则8+c=9,∴c=1,将c=1代入③式得,=10.综上得10,b=2,c=1.。

初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28道典型题(含答案和解析)1.已知关于x 的方程 mx+3=4的解为 x=1,则直线 y=(m−2)x−3一定不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵关于x的方程mx+3=4的解为x=1.∴m+3=4.∴m=1.∴直线y=(m−2)x−3为直线y=−x−3.∴直线y=(m−2)x−3一定不经过第一象限.考点:函数——一次函数——一次函数与一元一次方程.2.如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB解析式是().A. y=−2x−3B. y=−2x−6C. y=−2x+3D. y=−2x+6答案:D.解析:∵直线AB经过点(a,b),且2a+b=6.∴直线AB经过点(a,6−2a).∵直线AB与直线y=−2x平行.∴设直线AB的解析式是:y=−2x+b1.把(a,6−2a)代入函数解析式得:6−2a=−2a+b1.则b1=6.∴直线AB的解析式是y=−2x+6.考点:函数——一次函数——一次函数图象与几何变换——一次函数平移变换.3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.答案:x>23.解析:∵函数y=2x过点A(m,3).∴2m=3.解得:m=23.∴A(32,3).∴不等式2x>ax+4的解集为x>23.考点:函数——一次函数——一次函数与一元一次不等式——两条直线相交或平行问题.4.若函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1),则关于x、y的二元一次方程组{x−y=a2x+y=b的解是.答案:{x=2y=1.解析:因为函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1).所以方程组{x−y=a2x+y=b的解是{x=2y=1.考点:函数——一次函数——一次函数与二元一次方程——一次函数与二元一次方程(组)的关系.5.一次函数y=2x−3的图象与y轴交于A,另一个一次函数y=kx+b与y轴交于B,两条直线交于C,C点的纵坐标是1,且S△ABC=5,求k、b的值.答案:(2,1).解析:由题意知C(2,1).过C作CD⊥y轴,CD=2.·AB·CD=5.S△ABC=12∴AB=5.∴B(0,2)或(0,−8).x+2.当B(0,2)时,y=−12x−8.当B(0,−8)时,y=−92考点:函数——一次函数——求一次函数解析式——两条直线相交或平行问题.6.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),求关于x的不等式a(x−1)−b>0的解集.答案:x<−1.解析:∵一次函数y=ax+b的图象过第一、二、四象限.∴b>0,a<0.把(2,0)代入解析式y=ax+b得:0=2a+b.解得:2a=−b.b=−2.a∵a(x−1)−b>0.∴a(x−1)>b.∵a<0..∴x−1<ba∴x<−1.考点:函数——一次函数——一次函数与一元一次不等式.7.如果一次函数y=−x+1的图象与x轴、y轴分别交于A点、B点,点M在x轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,那么这样的点M有().A. 3个B. 4个C. 5个D. 7个答案:B.解析:一次函数y=−x+1中令x=0,解得y=1.令y=0,解得x=1.∴A(1,0),B(0,1),即OA=OB=1.在直角三角形AOB中,根据勾股定理得:AB=√2.分四种情况考虑,如图所示:当BM1=BA时,由BO⊥AM1,根据三线合一得到O为M1A的中点,此时M1(−1,0).当AB=AM2时,由AB=√2,得到OM2=AM2−OA=√2−1,此时M2(1−√2,0).当BA=AM3时,由AB=√2,得到AM3=√2,则OM3=OA+AM3=1+√2,此时M3(1+√2,0).当M4A=M4B时,此时M4与原点重合,此时M4(0,0).综上,这样的M点有4个.故选B.考点:函数——一次函数——一次函数综合题——一次函数与等腰三角形结合.8.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/S的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).答案:4+2√3.解析:由图②可知,t在2到4秒时,△PAD的面积不发生变化.∴在AB上运动的时间是2秒,在BC上运动的时间是4−2=2秒.∵动点P的运动速度是1cm/s.∴AB=2cm,BC=2cm.过点B作BE⊥AD于点E,过点C作CF⊥AD于点F.则四边形BCFE是矩形.∴BE=CF,BC=EF=2cm.∵∠A=60°.∴BE=ABsin60°=2×√3=√3.2AE=ABcos60°=2×1=1.2∴1×AD×BE=3√3.2×AD×√3=3√3.即12解得AD=6cm.∴DF=AD−AE−EF=6−1−2=3.在Rt△CDF中,CD=√CF2+DF2=√√32+32=2√3.所以,动点P运动的总路程为AB+BC+CD=2+2+2√3=4+2√3.∵动点P的运动速度是1cm/s.∴点P从开始移动到停止移动一共用了(4+2√3)÷1=4+2√3(秒).故答案为:4+2√3.考点:函数——一次函数——一次函数的应用.四边形——梯形.的图像上,OA长为2且∠1=60°。

人教版八年级数学下册一次函数与一元一次不等式(基础)典型例题讲解+练习及答案.doc

人教版八年级数学下册一次函数与一元一次不等式(基础)典型例题讲解+练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】一次函数与一元一次不等式(基础)责编:杜少波【学习目标】1.能用函数的观点认识一次函数、一次方程(组)与一元一次不等式之间的联系,能直观地用图形(在平面直角坐标系中)来表示方程(或方程组)的解及不等式的解,建立数形结合的思想及转化的思想.2.能运用一次函数的性质解决简单的不等式问题及实际问题.【要点梳理】【:393614 一次函数与一元一次不等式,知识要点】要点一、一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点诠释:求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0?从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.要点二、一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.要点三、如何确定两个不等式的大小关系ax b cx d +>+(a ≠c ,且0ac ≠)的解集⇔y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围⇔直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.【典型例题】类型一、一次函数与一元一次不等式1、如图,直线y kx b =+交坐标轴于A (-3,0)、B (0,5)两点,则不等式kx b--<0的解集为( )A .x >-3B .x <-3C .x >3D .x <3【思路点拨】kx b --<0即kx b +>0,图象在x 轴上方所有点的横坐标的集合就构成不等式kx b +>0的解集.【答案】A ;【解析】观察图象可知,当x >-3时,直线y kx b =+落在x 轴的上方,即不等式kx b +>0的解集为x >-3,∵kx b --<0∴kx b +>0,∴kx b --<0解集为x >-3.【总结升华】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.举一反三:【:393614 一次函数与一元一次不等式,例2】【变式】如图,直线y kx b =+与坐标轴的两个交点分别为A (2,0)和B (0,-3),则不等式kx b ++3≥0的解集是( )A .x ≥0B .x ≤0C .x ≥2D .x ≤2【答案】A ;提示:从图象上知,直线y kx b =+的函数值y 随x 的增大而增大,与y 轴的交点为B (0,-3),即当x =0时,y =-3,所以当x ≥0时,函数值kx b +≥-3.2、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为( ).A .1->xB .1-<xC .2-<xD .无法确定y=k 2-1-2y x y=k 1x+bO【答案】B ;【解析】从图象上看x k b x k 21>+的解,就是找到1l 在2l 的上方的部分图象,看这部分图象自变量的取值范围.当1-<x 时,x k b x k 21>+,故选B.【总结升华】本题考察了用数形结合的方法求解不等式的大小关系,解题的关键是找出表示两条直线的交点的横坐标,再根据在上方的图象表示的函数值大,下方的图象表示的函数值小来解题.举一反三:【变式】直线1l :1y k x b =+与直线2l :2y k x c =+在同一平面直角坐标系中的图象如图所示,则关于x 的不等式1k x b +<2k x c +的解集为( )A .x >1B .x <1C .x >-2D .x <-2【答案】B ;提示:1y k x b =+与直线2l :2y k x c =+在同一平面直角坐标系中的交点是(1,-2),根据图象得到x <1时不等式1k x b +<2k x c +成立.3、(2016春•瑞昌市期中)如图,根据图中信息解答下列问题:(1)关于x 的不等式ax +b >0的解集是 .(2)关于x 的不等式mx +n <1的解集是 .(3)当x 为何值时,y 1≤y 2?(4)当x 为何值时,0<y 2<y 1?【思路点拨】紧密结合图象,根据直线与坐标轴的交点来确定不等式的解集,从而判断函数值的大小关系.【答案与解析】解:(1)∵直线y 2=ax +b 与x 轴的交点是(4,0),∴当x <4时,y 2>0,即不等式ax +b >0的解集是x <4;故答案是:x<4;(2)∵直线y1=mx+n与y轴的交点是(0,1),∴当x<0时,y1<1,即不等式mx+n<1的解集是x<0;.故答案是:x<0;(3)由一次函数的图象知,两条直线的交点坐标是(2,18),当函数y1的图象在y2的下面时,有x≤2,所以当x≤2时,y1≤y2;(4)如图所示,当2<x<4时,0<y2<y1.【总结升华】本题考查了一次函数与一元一次不等式,解答该类题目时,需要学生具备一定的读图能力,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.举一反三:【变式】(2015春•东城区期末)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【答案】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.类型二、用一次函数的性质解决不等式的实际问题4、(2015•新疆)某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.品牌进价/(元/件)售价/(元/件)A 50 80B 40 65(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价﹣进价)【思路点拨】(1)由总利润=A品牌T恤的利润+B品牌T恤的利润就可以求出w关于x的函数关系式;(2)根据“两种T恤的总费用不超过9500元”建立不等式求出x的取值范围,由一次函数性质就可以求出结论.【答案与解析】解:(1)设购进A种T恤x件,则购进B种T恤(200﹣x)件,由题意得:w=(80﹣50)x+(65﹣40)(200﹣x),w=30x+5000﹣25x,w=5x+5000.答:w关于x的函数关系式为w=5x+5000;(2)∵购进两种T恤的总费用不超过9500元,∴50x+40(200﹣x)≤9500,∴x≤150.∵w=5x+5000.∴k=5>0∴w随x的增大而增大,∴x=150时,w的最大值为5750.∴购进A种T恤150件.∴购进A种T恤150件,购进B种T恤50件可获得最大利润,最大利润为5750元.【总结升华】本题考查了由销售问题的数量关系求函数的解析式的运用,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

初中数学一次函数经典测试题附答案解析

初中数学一次函数经典测试题附答案解析

初中数学一次函数经典测试题附答案解析一、选择题1.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法: ①射线AB 表示甲的路程与时间的函数关系; ②甲的速度比乙快1.5米/秒; ③甲让乙先跑了12米; ④8秒钟后,甲超过了乙 其中正确的说法是( )A .①②B .②③④C .②③D .①③④【答案】B 【解析】 【分析】根据函数图象上特殊点的坐标和实际意义即可作出判断. 【详解】根据函数图象的意义,①已知甲的速度比乙快,故射线OB 表示甲的路程与时间的函数关系;错误;②甲的速度为:64÷8=8米/秒,乙的速度为:52÷8=6.5米/秒,故甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确; ④8秒钟后,甲超过了乙,正确; 故选B . 【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.2.如图,已知一次函数22y x =-+A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A.22B.2C.5D.3【答案】D【解析】【分析】【详解】解:连结OM、OP,作OH⊥AB于H,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A(0,22),当y=0时,﹣x+22=0,解得x=22,则B(22,0),所以△OAB为等腰直角三角形,则AB=2OA=4,OH=12AB=2,根据切线的性质由PM为切线,得到OM⊥PM,利用勾股定理得到PM=22OP OM-=21OP-,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为2213-=.故选D.【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.3.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【答案】C 【解析】【分析】根据一次函数的图象与系数的关系进行解答即可. 【详解】∵一次函数y=kx+b 的图象经过一、二、四象限, ∴k <0,b >0, 故选C .【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b (k≠0)中,当k <0,b >0时图象在一、二、四象限.4.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x <<【答案】D 【解析】 【分析】根据一次函数的性质即可得答案. 【详解】∵一次函数1y x =--中10k =-<, ∴y 随x 的增大而减小, ∵123y y y <<, ∴123x x x >>. 故选:D . 【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.5.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+ B .24y x =-+C .31y x =+D .31y x -=-【答案】B 【解析】【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案. 【详解】设一次函数关系式为y kx b =+, ∵图象经过点()1,2,2k b ∴+=;∵y 随x 增大而减小, ∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-, ∴y=-3x+1,-3+1=-2,故该选项不符合题意, 故选:B . 【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6.正比例函数y =kx 与一次函数y =x ﹣k 在同一坐标系中的图象大致应为( )A .B .C .D .【答案】B 【解析】 【分析】根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能. 【详解】 根据图象知:A 、k <0,﹣k <0.解集没有公共部分,所以不可能;B 、k <0,﹣k >0.解集有公共部分,所以有可能;C 、k >0,﹣k >0.解集没有公共部分,所以不可能;D 、正比例函数的图象不对,所以不可能. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b 的图象的四种情况是解题的关键.7.下列函数中,y 随x 的增大而增大的函数是( ) A .2y x =- B .21y x =-+C .2y x =-D .2y x =--【答案】C 【解析】 【分析】根据一次函数的性质对各选项进行逐一分析即可. 【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误; ∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误; ∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确; ∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误. 故选C . 【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.8.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( ) A .4个 B .3个C .2个D .1个【答案】B 【解析】 【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可. 【详解】解:(1)y =x 是一次函数,符合题意; (2)y =2x ﹣1是一次函数,符合题意;(3)y =1x是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意; (5)y =x 2﹣1是二次函数,不符合题意; 故是一次函数的有3个. 故选:B . 【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.9.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C 【解析】 【分析】根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.10.甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程y (米)与时间t (分)的函数关系如图所示,则下列结论错误的是( )A .他们步行的速度为每分钟80米;B .出租车的速度为每分320米;C .公司与火车站的距离为1600米;D .出租车与乙相遇时距车站400米.【答案】D 【解析】 【分析】根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可. 【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变, 即:甲步行的速度为每分钟480806=米,乙步行的速度也为每分钟80米, 故A 正确;又∵甲乙再次相遇时是16分钟, ∴16分乙共走了80161280?米, 由图可知,出租车的用时为16-12=4分钟, ∴出租车的速度为每分12804320?米,故B 正确;又∵相遇后,坐出租车去火车站比预计早到3分钟, 设公司与火车站的距离为x 米, 依题意得:12380320x x =++,解之得:1600x =, ∴公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米. 故C 正确,D 不正确. 故选:D . 【点睛】本题通过考查一次函数的应用来考查从图象上获取信息的能力.要注意题中分段函数的意义.11.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得. 【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限, 故选:D .本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B 【解析】 【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标. 【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B . 【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.13.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12B .12<x<32C .x<32D .0<x<32【答案】B 【解析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.超市有A,B两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A型瓶3个或以上,一次性返还现金5元,设购买A型瓶x(个),所需总费用为y(元),则下列说法不一定成立的是()A .购买B 型瓶的个数是253x ⎛⎫-⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元【答案】C 【解析】 【分析】设购买A 型瓶x 个,B(253x -)个,由题意列出算式解出个选项即可判断. 【详解】设购买A 型瓶x 个,∵买瓶子用来分装15升油,瓶子都装满,且无剩油, ∴购买B 型瓶的个数是1522533x x -=-, ∵瓶子的个数为自然数, ∴x=0时, 253x -=5; x=3时, 253x -=3; x=6时, 253x -=1; ∴购买B 型瓶的个数是(253x -)为正整数时的值,故A 成立; 由上可知,购买A 型瓶的个数为0个或3个或6个,所以购买A 型瓶的个数最多为6,故B 成立;设购买A 型瓶x 个,所需总费用为y 元,则购买B 型瓶的个数是(253x -)个, ④当0≤x<3时,y=5x+6×(253x -)=x+30, ∴k=1>0,∴y 随x 的增大而增大,∴当x=0时,y 有最小值,最小值为30元; ②当x≥3时,y=5x+6×(253x -)-5=x+25, ∵.k=1>0随x 的增大而增大,∴当x=3时,y 有最小值,最小值为28元; 综合①②可得,购买盒子所需要最少费用为28元. 故C 不成立,D 成立 故选:C. 【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.15.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==.故选B.16.若一次函数y=(k-3)x-1的图像不经过第一象限,则A.k<3 B.k>3 C.k>0 D.k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k<3.故选A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b <0时,直线与y轴负半轴相交.17.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线,当x=0,得y=3;当y=0,x=4, ∴A (4,0),B (0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD=CO=n ,则BC=3-n ,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.18.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C【解析】【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.19.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B - 设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:33y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.20.如图,把 Rt ABC ∆放在直角坐标系内,其中 90CAB ∠=o ,5BC =,点 A 、B 的坐标分别为(1,0)、(4,0),将ABC ∆沿x 轴向右平移,当点 C 落在直线26y x =-上是,线段BC 扫过的面积为( )A .4B .8C .16D .8【答案】C【解析】【分析】 根据题目提供的点的坐标求得点C 的坐标,当向右平移时,点C 的纵坐标不变,代入直线求得点C 的横坐标,进而求得其平移的距离,计算平行四边形的面积即可.【详解】∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3,BC=5,∵∠CAB=90°,∴AC=4,∴点C的坐标为(1,4),当点C落在直线y=2x-6上时,∴令y=4,得到4=2x-6,解得x=5,∴平移的距离为5-1=4,∴线段BC扫过的面积为4×4=16,故选C.【点睛】本题考查了一次函数与几何知识的应用,解题关键是题中运用圆与直线的关系以及直角三角形等知识求出线段的长.。

八年级一次函数练习题(经典)

八年级一次函数练习题1、下列函数中,一次函数的个数是 ①y=x ②y=-2+5x ③y= -④y=(2x-1)2+2 ⑤ y=x-2⑥y=2πxA 、5个B 、4个C 、3个D 、1个 2、下列语句不正确的是A 、所有的正比例函数都是一次函数B 、一次函数的一般形式是y=kx+bC 、正比例函数和一次函数的图象都是直线D 、正比例函数的图象是一条过原点的直线 3、若y=(m-2)x+(m 2-4)是正比例函数,则m 的取值是A 、2B 、-2C 、±2D 、任意实数 4、若直线y=kx+b 中,k <0,b >0,则直线不经过A 、 第一象限B 、第二象限C 、第三象限D 、第四象限 5、如图,直线y=kx+b 与x 轴交于点(-4,0) 则当y >0时, x 的取值范围是A 、x >-4B 、x >0C 、x <-4D 、x <06、关于直线y=-2x+1,下列结论正确的是A 、图象必过点(-2,1)B 、图象经过第一、二、三象限C 、当x >时,y <0 D 、y 随x 的增大而增大7、某村办工厂,今年前五个月生产某种产品的总量C (件) 与时间t (月)的函数图象如图所示,则该厂对这种产品来说A 、1月至3月每月生产量逐月增加,4、5两月生产量逐月减小B 、1月至3月每月生产量逐月增加,4、5两月生产量与3月持平 C 、1月至3月每月生产量逐月增加,4、5两月均停止生产 D 、1月至3月每月生产量不变,4、5两月均停止生产)8、均匀地向一个容器里注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示,则这个容器A 、是一个上下一样粗的容器B 、是一个上粗下细的容器C 、是一个上细下粗的容器D 、是一个圆锥形的容器二、填空题(每小题3分,共24分)9、已知正比例函数的图象经过点(-3,4),则该函数的表达式为 。

10、在函数y=中,自变量x 的取值范围是 。

11、当 时,一次函数y=(m+1)x+6的函数值随x 的增大而减小。

(典型题)初中数学八年级数学上册第四单元《一次函数》检测(答案解析)(1)

一、选择题1.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .72.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .无法比较3.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(1,1)A ,(3,1)B ,(2,2)C ,当直线3y kx =+与ABC ∆有交点时,k 的取值范围是( )A .2132k -≤≤- B .223k -≤≤- C .223k -<<-D .122k -≤≤-4.对于函数31y x =-+,下列结论正确的是( )A .它的图象必经过点(1,3)B .它的图象经过第一、三、四象限C .当x >0时,y <0D .y 的值随x 值的增大而减小5.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 6.弹簧大家了解吗?弹簧挂上物体后会伸长。

测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系: x 0 1 2 3 4 5 y1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B.物体质量每增加1kg,弹簧长度y增加0.5cmC.y与x的关系表达式是y=0.5xD.所挂物体质量为7kg时,弹簧长度为13.5cm7.如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DEx的函数的是()8.下列各图象中,y不是..A.B.C.D.9.如图,△ABC的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A .4B .8C .82D .1610.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④12.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分 1 2 3 4 … 水池中水量/3m48464442…A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m二、填空题13.为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的1l 和2l 分别表示去年和今年的水费y (元)和用水量x (3m )之间的函数关系图像.如果小明家今年和去年都是用水1503m ,要比去年多交水费________元.14.把一根长为20cm 的蜡烛,每分钟燃烧2cm ,蜡烛剩余长度y(cm)与燃烧时间t(分)之间的关系为_______(不需要写出自变量的取值范围).15.一列火车以100km /h 的速度匀速前进.则它的行驶路程s (单位:km )关于行驶时间t (单位:h )的函数解析式为_____. 16.已知()111,P y ,()222,P y 在正比例函数14y x =-的图象上,则1y ___________2y .(填“>”或“<”或“=”).17.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,下列结论: ①甲、乙两地相距1800千米;②点B 的实际意义是两车出发后4小时相遇; ③动车的速度是280千米/小时; ④6,900.m n ==其中正确的是_______________________.(写出所有正确结论的序号)18.某书定价40元,如果一次购买20本以上,超过20本的部分打八折.试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系____.19.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.20.某通讯公司的4G 上网套餐每月上网费用y (单位:元)与上网流量x (单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a 的值为__________.三、解答题21.如图,在平面直角坐标系中,()1,4A -,()3,3B -,()2,1C -.(1)已知111A B C △与ABC 关于x 轴对称,画出111A B C △(请用2B 铅笔将111A B C △描深);(2)在y 轴上找一点P ,使得PBC 的周长最小,试求点P 的坐标.22.甲船从A 港出发顺流匀速驶向B 港,乙船从B 港出发逆流匀速驶向A 港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A港的距离、与行驶时间之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y与行驶时间x之间的函数关系式;(4)甲船拖拽的小艇与A港的距离和经历的时间之间的函数图像如图2所示,求点C的坐标.23.甲、乙两家商场平时以同样价格出售相同的商品,元旦假期,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数关系式;(2)小明需要购买原价为300元的商品,在元旦期间他去哪家商场购买更省钱?24.如图,直线l与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在直线l上,连接OC.(1)求直线l的解析式;(2)点P为x轴上一动点,若△ACP的面积与△AOB的面积相等,求点P的坐标.25.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.26.已知y 与2x -1成正比例,当x =3时,y =10. (1)求y 与x 之间的函数关系式; (2)当y =-2时,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】把2x =-代入解析式即可. 【详解】解:把2x =-代入23y x =+得, 2(2)31y =⨯-+=-,故选:A . 【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算.2.A解析:A 【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较. 【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<, 所以y 随着x 的增大而减小, ∵-2<1, ∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y >; 故选:A . 【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.3.B解析:B 【分析】把A 点和B 点坐标分别代入y=kx+3中求出对应的的值,即可求得直线y=kx+3与△ABC 有交点时k 的临界值,然后再确定k 的取值范围. 【详解】解:把A (1,1)代入y=kx+3得1=k+3,解得k=-2 把B (3,1)代入y=kx+3得1=3k+3,解得:k=23-所以当直线y=kx+3与△ABC 有交点时,k 的取值范围是223k -≤≤-. 故答案为B . 【点睛】本题考查了一次函数与系数的关系,将A 、B 点坐标代入解析式确定k 的边界点是解答本题的关键.4.D解析:D 【分析】根据一次函数图象上点的坐标特征对A 进行判断;根据一次函数的性质对B 、D 进行判断;利用x >0时,函数图象在y 轴的左侧,y <1,则可对C 进行判断. 【详解】A 、当1x =时,312y x =-+=-,则点(1,3)不在函数31y x =-+的图象上,所以A 选项错误;B 、30k =-<,10b =>,函数图象经过第一、二、四象限,所以B 选项错误;C 、当x >0时,y <1,所以C 选项错误;D 、y 随x 的增大而减小,所以D 选项正确. 故选:D . 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.由于y=kx+b 与y 轴交于(0,b ),当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.5.B解析:B【分析】根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.6.C解析:C【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【详解】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项不符合题意;B、物体质量每增加1kg,弹簧长度y增加0.5cm,故B选项不符合题意;C、y与x的关系表达式是y=0.5x+10,故C选项符合题意;D、由C知,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D 选项不符合题意;故选:C.【点睛】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.7.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】A、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故选项A错误;B、由图1可知,若线段EF是y,则y随x的增大越来越小,故选项B错误;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故选项D正确;故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.8.B解析:B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 9.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC 扫过的面积S=S 平行四边形BCFE =CF•FD=16.故选D .10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 12.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可;【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.二、填空题13.210【分析】根据函数图象中的数据可以求得x>120时l2对应的函数解析式从而可以求得x=150时对应的函数值由l1的图象可以求得x=150时对应的函数值从而可以计算出题目中所求问题的答案【详解】解解析:210【分析】根据函数图象中的数据可以求得x>120时,l 2对应的函数解析式,从而可以求得x=150时对应的函数值,由l 1的图象可以求得x=150时对应的函数值,从而可以计算出题目中所求问题的答案.【详解】解:设当x>120时,l 2对应的函数解析式为y=kx+b ,120480160720k b k b +=⎧⎨+=⎩ 解:6240k b =⎧⎨=-⎩故x>120时,l 2的函数解析式y=6k-240,当x=150时,y=6×150-240=660,由图象可知,去年的水价是480÷160=3(元/m 3),小明去年用水量150m 3,需要缴费:150×3=450(元),660-450=210(元),所以要比去年多交水费210元,故答案为:210【点睛】本题考查的是一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.14.y=20-2t 【分析】根据题意可得燃烧的长度为2tcm 根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度根据等量关系再列出函数关系式即可【详解】由题意得:y=20−2t 故答案为y=20−2t 【解析:y=20-2t【分析】根据题意可得燃烧的长度为2tcm ,根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度,根据等量关系再列出函数关系式即可.【详解】由题意得:y=20−2t ,故答案为y=20−2t.【点睛】本题考查函数关系式,解题的关键是准确获取题文信息.15.s =100t 【分析】利用路程=速度×时间用t 表示出路程s 即可【详解】解:根据题意得s =100t 故答案为s =100t 【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式也称为函数关系式注解析:s =100t【分析】利用路程=速度×时间,用t 表示出路程s 即可.【详解】解:根据题意得s =100t .故答案为s =100t .【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.16.【分析】根据正比例函数的增减性解答【详解】∵<0∴y 随着x 的增大而减小∵1<2∴>故答案为:>【点睛】此题考查了正比例函数的增减性:当k>0时y 随x 的增大而增大;当k<0时y 随x 的增大而减小熟练掌握解析:>【分析】根据正比例函数的增减性解答.【详解】 ∵14k =-<0, ∴y 随着x 的增大而减小,∵1<2,∴1y >2y ,故答案为:>.【点睛】此题考查了正比例函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握正比例函数的增减性是解此题的关键.17.①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点C点表示动车先行到达终点D点表示列车达到终点进而求出动车和列车的速度再结合题中各数据逐个分析即可解答本题【详解】解:对于①:由图像解析:①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点,C点表示动车先行到达终点,D点表示列车达到终点,进而求出动车和列车的速度,再结合题中各数据逐个分析即可解答本题.【详解】解:对于①:由图像可知,甲、乙两地相距1800千米,故①说法正确;对于②:点B的实际意义是两车出发后4小时相遇,故②说法正确;对于③:C点表示动车先行到达终点,D点表示列车达到终点,普通列车的速度为:1800÷12=150(km/h),动车的速度为:(1800-150×4)÷4=300(km/h),故③说法错误;对于④:动车到达终点所需要的时间为1800÷300=6小时,故m=6,动车到达终点的6小时内,列车运行的路程为6×150=900km,此时n=1800-900=900,故④说法正确;故答案为:①②④【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,确定好B、C、D点各代表的含义,利用数形结合的思想解答.18.【分析】分类:当0≤x≤20用数量乘以单价得到付款金额y;当x>20用20的金额加上超过20本的金额得到付款金额【详解】解:当0≤x≤20y=40x;当x >20y=40×20+40×08(x-20)解析:40(020)32+160(20)x xyx x≤≤⎧=⎨>⎩【分析】分类:当0≤x≤20,用数量乘以单价得到付款金额y;当x>20,用20的金额加上超过20本的金额得到付款金额.【详解】解:当0≤x≤20,y=40x;当x>20,y=40×20+40×0.8(x-20)=32x+160;即y=() 40020 32160(20) x xx x⎧≤≤⎨+⎩>故答案为y=() 40020 32160(20)x xx x⎧≤≤⎨+⎩>.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.19.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm 其中一边长为xcm ∴另一边长为:(12-x )cm ∵长方形面积为∴y 与x 的关系式为y=解析:212x x -+【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm ,其中一边长为xcm ,∴另一边长为:(12-x )cm ,∵长方形面积为2cm y ,∴y 与x 的关系式为y=x(12−x)=-x 2+12x .故答案为:y=-x 2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.20.59【解析】由题意得解得a=59故答案为59解析:59【解析】 由题意得,300.29600500a -=-,解得a=59. 故答案为59. 三、解答题21.(1)答案见解析;(2)(0,95). 【分析】(1)分别作出ABC 三个顶点关于x 轴的对称点,再首尾顺次连接即可;(2)作点C 关于y 轴的对称点C ',再利用待定系数法求出BC '所在直线解析式,再令x =0,求出y ,即可求出P 点坐标.【详解】(1)如图所示111A B C △即为所求.(2)如图所示P 点即为所求,由对称可知,点C 关于y 轴的对称点C '的坐标为(2,1),设BC '所在直线解析式为y kx b =+,则3312k bk b=-+⎧⎨=+⎩,解得2595kb⎧=-⎪⎪⎨⎪=⎪⎩,即BC'所在直线解析式为2955y x=-+.当0x=时,95y=,即P点坐标为(0,95).【点睛】本题考查作图-轴对称变换以及利用待定系数法求一次函数解析式,解题的关键是掌握轴对称的定义和性质.22.(1)6/km h;(2)3km;(3)19(02)5630(2)215579()222x xy x xx x⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩;(4)3(2,27)2【分析】(1)由速度=路程÷时间列式求解;(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.(4)根据等量关系:小艇脱离船中后,船顺流行驶的路程=船逆流行驶的路程+小艇漂流的路程,据此即可解答.【详解】解:(1)乙船在逆流中行驶的速度为6/km h.(2)甲船在逆流中行驶的路程为6(2.52)3()km⨯-=.(3)设甲船顺流的速度为/akm h ,由图象得23(3.5 2.5)24a a -+-=,解得9a =.当02x 时,19y x =,当2 2.5x 时,设116y x b =-+,把2x =,118y =代入,得130b =,1630y x ∴=-+,当2.5 3.5x 时,设129y x b =+,把 3.5x =,124y =代入,得27.5b =-,197.5y x ∴=-. 综上所述,19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩; (4)水流速度为(96)2 1.5(/)km h -÷=,设甲船从A 港航行x 小时小艇缆绳松了. 根据题意,得9(2) 1.5(2.5)3x x -=-+,解得 1.5x =,1.5913.5⨯=,即小艇缆绳松了时甲船到A 港的距离为13.5km . ∴点C 坐标3(2,27)2. 【点睛】 此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息,记住船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.23.(1)0.9y x 甲;(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙;(2)乙商场. 【分析】(1)甲是单价的0.9倍,乙的需要分大于100和小于等于100两种情形计算;(2)分别代入两种表达式中计算,比较大小后,作出判断.【详解】解:(1)由题意得,0.9y x 甲, 当0100x 时,y x =乙,当100x >时,100(100)0.80.820y x x =+-⨯=+乙,由上可得,(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙, (2)当300x =时,0.9300270,0.830020260y y =⨯==⨯+=甲乙此时,y y >甲乙所以,小明购买原价为300元的商品,在元旦期间,他去乙家商场购买更省钱.【点睛】本题考查了函数的表示方式,理解打折的意义,学会用分类思想表示是解题的关键. 24.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).【点睛】本题考查一次函数与几何图形,掌握一次函数的性质利用数形结合思想解题是关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】 (1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入,152520b k b=⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y =4x -2;(2)x =0.【分析】(1)根据正比例函数定义设设y=k(2x -1),将数值代入计算即可;(2)将y=-2代入(1)的函数解析式求解.【详解】解:(1)设y=k(2x -1),当x =3时,y =10,∴5k=10,解得k=2,∴y 与x 之间的函数关系式是y =4x -2;(2)当y=-2时4x -2=-2,解得x =0.【点睛】此题考查正比例函数的定义,求函数解析式,已知函数值求自变量,正确理解正比例函数的定义是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

相关文档
最新文档