房价及其影响因素数学建模
数学建模房价预测及影响因素问题

一、问题重述1.1背景分析自1998年我国实行住房改革以来,房地产行业已经逐渐成长为拉动中国经济增长的龙头产业。
近几年在国家积极的财政政策刺激下,我国房地产市场处于不断发展阶段。
然而,与美国等发达国家住房市场进入成熟期不同,我国正处在城市化和工业化进程加速阶段,住房水平低和需求比较旺盛,这是我国住房市场快速发展的重要基础。
中国房地产一方面在快速发展之时,在总体上对经济社会的发展确实起到了促进作用;另一方面由于不规范的房的销售价格行为、地价的上升造成放的开发成本提高等因素造成房价不断上涨,严重超出了普通居民的购买能力,给其造成了巨大的购房压力。
1.2问题重述根据近几年中国上海房地产市场现状,解决以下四个问题:(1)结合对房地产的了解,收集近几年上海房地产的价格走势,预测未来三年上海房价的状况。
(2)结合对上海市近几年来房价的了解,分析并建立合理的数学模型,得出“国五条”具体怎样影响房价。
(3)综合考虑上海的CPI,结合对房价的了解,谈谈房价如何对CPI产生影响。
(4)在2012年拥有100万元人民币的前提下,写出一种合理的分配方案,用这笔钱投资到CPI中的各项因素。
二、问题分析2.1对于问题一的分析问题一要求根据近几年上海房地产的价格走势,来预测未来三年上海房价的情况。
首先,通过在《上海统计年鉴》找到上海近几年的房价, 为得到较为准确的预测,我们选取了最近十年上海的房价,因为长时间的数据能反映更多更合理的问题,不会太过片面对结果造成较大偏差。
历时十年,期间政府的宏观调控或制定的稳定物价等等措施必然会对房价造成影响,如果考虑政策措施和其他因素的影响,问题将变得非常复杂。
反而,我们可以将这些因素看作市场经济的调控,房价因受到这些因素影响而产生变化。
那么,实际呈现出来的房价变化就应该是有效的房价变化。
我们在模型的假设部分阐述了不考虑政府的政策措施对近几年房价的影响。
综合了以上分析,我们将搜集到的数据整理制成表格,绘制出年份-房价变化折线图,可以发现随着年份的增长,上海房价也在不断增长,且在一条直线周围上下波动,因此我们建立一元线性回归模型,来寻求上海房价与年份的线性关系。
数学建模竞赛论文-基于灰色模型的房地产价格分析

摘要本文以重庆市为例,考察房地产价格变化关系。
首先要确定影响房地产价格变化的主要因素,然后建立房地产价格变化与各主要影响因素间的定量关系,接着着重研究住房保障规模变化对房地产价格的影响,并对房地产价格变化趋势进行合理的短期预测,最后针对上述结果,为稳定房地产价格提出相应的调控措施。
在第一问中,要求确定房地产价格的主要影响因素。
首先通过查找相关资料我们先确定影响房地产价格的可能影响因素及其相关统计数据。
然后通过建立灰色关联度分析模型,判断各可能影响因素与房地产价格之间的关联程度。
最后通过分析比较各因素与房地产价格的关联程度,从中找出影响房地产价格的主要因素,分别是土地交易价格、建筑材料价格、经济适用房面积、城镇化率、人均可支配收入。
在第二问中,要求找出房地产价格与各主要因素之间的数学模型。
首先我们选取问题一结论中的五个主要因素,以表1中各主要因素所对应年份的统计数据为分析对象,建立灰色(0,)GM N 模型。
然后根据灰色(0,)GM N 模型的分析方法得到(),GM 0N 估计式为()(1)(1)123()()()1.4968-0.282-0.5919-0.4894ˆ1x k =x k x k (1)(1)(1)456()+()()2.4368-0.0979x k x k x k ,代入相关年份的序号即可计算得到模拟序列。
最后利用后验差检验法将计算得到的预测值与原始值进行比较验证,通过验证后即可利用上述模型关系式进行预测。
在第三问中,要求利用上述模型考察未来三年保障房建设力度变化时,房地产价格的变化趋势。
首先由于数据缺失,我们需要分别对除房地产价格及保障房建设力度以外的4个因素建立灰色GM(1,1,)模型,对未来三年这4个因素的统计值进行预测,将房价的多因变量转化成一个因变量:保障房力度。
然后利用模型二得到的估计式,建立房地产价格与保障房建设力度之间的线性关系。
最后分析两者之间的定量关系,得到在不同保障房建设力度下,预测房价的变化趋势,并且得出结论:为了稳定房价,要保证保障房的建设面积每年比上一年翻一番。
大学生数学建模_房价预测

西安邮电学院第九届大学生数学建模竞赛参赛作品参赛队编号: 016赛题类型代码: A题2 房价问题摘 要随着我国房地产市场的不断升温,居民买房难愈来愈严重。
定一个合适的房价既照顾到居民的需求也满足方差开发商的盈利需要是十分必要的,要达到这些目的都要用到数学模型来进行量化。
在本文中,我们经研究解决了城市房价模型,找出了影响房价的主要因素,建立预测下一阶段的房产均价的一个模型,同时也对政策对调控房价所起的作用作了详细的分析说明。
在解决房价模型问题时,我们用了多元线性回规模型和蛛网模型同时对相关变量进行分析和处理,最终找出了影响房价的主要因素为生产成本和供需关系。
并对房价的形成、演化机理和房地产投机进行了深入细致的分析。
模型一,我们通过比较西安房价近11年来的变化及城镇居民收入变化情况,找到买房难的根结。
模型二,在房价预测方面,我们选用多元线性回归,蛛网模型同时对相关变量进行分析和处理,最终找出影响房价的主要因素为生产成本和供需关系,求出房价预测的计算表达式。
模型三,我们取定一个时间段内某几个房价新政,结合新政出台时间前后某地房价的变化情况分析了房价新政对房价的调控作用。
我们选取房价新政的标准是根据政策内容对相关经济指标有直接作用效果。
最终我们发现,新政出台后,虽然房价依然是居高不下,但房价上涨速率得到了一定的控制,变化渐缓。
关键字:楼市 预测 蛛网模型 线性回归一、问题重述住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。
2008年受国际金融危机的影响,部分购房需求受到抑制,2009年在国家税收、土地等调控政策作用下,一度受到抑制的需求得到释放,适度宽松的货币政策使信贷规模加大,为房地产开发和商品房购买提供了比较充裕的资金,房地产市场供求大增,带动了整体回升。
但有的城市房价过高,上涨过快,加大了居民通过市场解决住房问题的难度,另一方面,部分投机者也通过各种融资渠道买入房屋囤积,期望获得高额利润,也是导致房价居高不下的原因之一。
关于房价问题的数学模型

关于房价问题的数学模型一.问题简述房价问题事关民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。
随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一。
现在就以下几个方面的问题进行讨论:1通过对影响房价因素的分析并建立房价的数学模型,对房价的合理性进行定量分析。
2根据分析结果,预测房价的未来走势。
3通过对模型的求解,进一步探讨使得房价合理的具体措施。
二模型假设引起房地产市场波动的因素有很多,居民收入、供求比例、房贷利率、容积率、建设成本和人口结构及变化趋势等众多因素。
我们从中提取重要因素对次要因素作出如下假设:1政府宏观调控政策,仅考虑税收政策、货币政策、土地政策的影响。
忽略其他政策的影响。
2忽略消费成本如交通费用、物业费用、停车费用等对住房价格的影响。
3城市消费状况用人均收入来代替。
4令房价为销售均价,忽略地域差异。
5忽略房屋质量对房价的影响。
三、符号说明四、问题分析与基本思路1.1房地产价格上涨的影响因素(1)居民收入与房地产价格居民收入的增加是影响房价上涨的首要原因。
改革开放以来,我国居民收入大幅度增加,恩格尔系数——食品占总支出的比重明显下降,消费结构不断升级,投资能力越来越强。
随着居民收入的大幅度上升,居民的消费观念在一定程度上从储蓄转化为投资,而购置房产则是居民较理性的投资选择,因而对房屋的需求显著增加。
尤其在在住房制度改革的推动下,住房的有效需求得以更大程度地释放,家庭结构的变化和城镇化的推进又扩大了住房需求。
这是房价保持上涨态势最显而易见的原因。
根据市场导向原则,需求的增加必然会导致投资的增加,投资力度的加大必然是在给房地产行业升温,房价被进一步拉高。
当房价超出与居住需求相符的水平时,投机就会出现,进而导致空置率偏高。
这样,房价就在消费需求、投资需求、投机需求的共同推动下不断攀升,早买房、买大房的住房消费行为成为居民应对房价快速上涨的选择。
另外,随着居民收入的增加,人均可支配收入也会相应增加,就会在一定程度上刺激消费。
房地产定价数学建模

利用该模型可以快速准确地预测房 地产价格,为开发商和投资者提供 决策依据。
应用案例二
01
时间序列模型
时间序列模型是一种基于时间序列数据的数学建模方法,通过分析历史
数据来预测未来房地产价格走势。
02
模型建立
将房地产价格数据按照时间序列进行排列,并选择适当的时间序列模型
(如ARIMA模型、指数平滑模型等)进行拟合。
使用测试数据对训练好的模型进行评 估,计算模型的准确率、召回率、F1 值等指标,以衡量模型的性能。
模型优化
通过调整模型参数、增加或减少特征 等方式优化模型,提高预测精度。可 以采用交叉验证、网格搜索等技术进 行参数调优。
04
房地产定价的时间序列模型
时间序列模型的建立
1 2
确定模型类型
根据房地产市场的历史数据和变化趋势,选择适 合的时间序列模型,如ARIMA、指数平滑等。
02
房地产定价数学模型的基本 原理
线性回归模型
总结词
线性回归模型是一种预测模型,通过找出影响房地产价格的 主要因素,并建立它们之间的线性关系来预测房地产价格。
详细描述
线性回归模型假设房地产价格与诸如建筑成本、地价、利率 等变量之间存在线性关系。通过最小二乘法等统计技术,可 以估计出这些变量的系数,从而预测房地产价格。
数学建模在房地产定价中的作用
提高定价的准确性和科学性
数学建模能够综合考虑各种因素,建立合理的定价模型,提高定 价的准确性和科学性。
优化资源配置
通过数学建模,可以对不同地区、不同类型、不同时间段的房地产 进行合理定价,优化资源配置,促进市场健康发展。
促进市场公平竞争
数学建模能够减少信息不对称和市场垄断等问题,促进市场公平竞 争,保护消费者利益。
房价数学模型

全国房价一直在高速上升,在这几年过程,一直有关于房价拐点的争论。
是否楼市的拐点真的到来?影响房价的因素众多,大的方面有,国家的宏观经济环境,国家的宏观调控,地方政府对宏观调控的执行力,人民的住房需求,热钱的投机。
而宏观调控的手段众多,如廉租房建设,经济适用房建设,提高税收,打击投机,企业房贷资金紧缩,提高准备金率,不批准房地产企业上市圈钱等等。
1、从影响房价的因素中挑选出最主要的因素,说明理由。
2、建立房价中短期预测模型。
3、收集威海地区2004-2011房价资料,用前面的模型预测2012-2013年的房价。
4、根据3的结果,写一个500字的报告,论证房价的拐点是否到来,并给买房的人具体意见。
摘要:当今社会,随着房价持续不断的飙升,房价问题已经日益成为人们关注的重点。
而对很多大学生而言,毕业后买房已经成为一个头等大事。
因此,在不远的将来,房价会怎样变动、会达到多少?是一个十分值得讨论和研究的问题。
下面是我们通过数学模型来预测的今后几年内的房价。
关键词:根据2004年~2011年的威海房价及相关数据,预测2011年~2013年房价。
一、提出问题问题一:通过分析,找出影响房价的主要原因并且通过建立一个威海房价的数学模型对其进行细致的分析。
问题二:分析影响房价主要因素随时间的变化关系,并且预测其下一阶段的变化和走势。
问题三:通过分析威海2004至2011年房价变化与影响因素之间的关系,预测2012年至2013年该地区房价。
问题四:通过分析结果,给购房者和开发商一些合理建议。
二、模型建立基础和相关符号说明1、假设供求关系在短时间保持不变或者说对房价影响不大。
2、住房建设具有一定的生产周期。
3、在众多因素之中只考虑人均可支配收入住房建造成本的影响。
4、住房成本包括地价、建筑费、各种税收等。
5、房价指的是威海的平均房价。
6、人均可支配收入指的是人均可支配收入指个人收入扣除向政府缴纳的个人所得税、遗产税和赠与税、不动产税、人头税、汽车使用税以及交给政府的非商业性费用等以后的余额。
大学生数学建模_房价预测

大学生数学建模_房价预测
一、问题的提出房地产问题一直是人们的热议话题,尤其是近几年更是成为人们关注的问题。
不错,房地产作为一个行业,不仅关系国家经济命脉,它还是影响民生问题的主要因素,所以搞好房产建设不仅是国家与房产商的任务,我们也应了解其中的一些运作原理来帮助我们更好的适应社会环境。
为此,对房产业的了解就显得颇为紧急,而房价问题一直是人们关注的首要问题,下面我们将用数学模型来解决房产中的以下实际问题,仔细分析影响房价的因素以及它们之间的关系。
问题一:通过分析找出影响房价的主要原因并且通过建立一个城市房价的数学模型对其进行细致的分析。
问题二:分析影响房价主要因素随时间的变化关系,并且预测其下一阶段的变化和走势。
问题三:选择某一地区(以西安为例),通过分析____年至____年房价变化与影响因素之间的关系,预测下一阶段该地区房价的走势。
问题四:通过分析结果,给出房产商和购房者的一些合理建议。
二、模型假设和符号说明假设假设
一、房地产产品具有一定的生产周期假设
二、房价的计算只考虑人均可支配收入和生产成本假设
三、理想房价是仅基于成本得到的房价,不考虑供求假设
四、成本的花费包括地价(地面地价)、建筑费用和各种税收假设
五、不考虑其他影响如(地理位置,环境等)符号说明:_1代表人均可支配收入,_2代表建造成本,y为房产均价,其中a和
三、模型建立与求解我们主要用到的是数学模型是用最小二乘法对影响房价的各个因素进行拟合,从而解除出性方程组,其中用到的主要数学软件是matla。
数学建模之住房的合理定价问题

数学建模之住房的合理定价问题在当今社会,住房问题一直是人们关注的焦点,而住房的合理定价更是关系到广大民众的切身利益。
无论是购房者希望买到性价比高的房子,还是开发商想要制定出有竞争力又能盈利的价格策略,都离不开对住房合理定价的深入研究。
要探讨住房的合理定价,首先得明确影响住房价格的诸多因素。
地理位置毫无疑问是其中最为关键的一点。
位于市中心繁华地段、交通便利、周边配套设施完善(如学校、医院、商场等)的房子,价格往往较高。
比如,在一线城市的核心区域,由于土地资源稀缺,交通、商业、教育等资源高度集中,住房价格可能会达到令人咋舌的水平。
相反,地处偏远郊区,交通不便,周边设施匮乏的房子,价格则相对较低。
房屋的品质和建筑结构也对价格有着显著影响。
房屋的面积大小、户型设计是否合理、朝向采光如何、建筑质量高低等方面,都会在价格上有所体现。
一般来说,面积宽敞、户型方正通透、采光良好、建筑质量过硬的房子,价格会偏高。
而那些面积狭小、户型不合理、采光差、建筑存在质量问题的房子,价格自然会大打折扣。
市场供需关系也是决定住房价格的重要因素。
当市场上购房需求旺盛,而房屋供应相对不足时,价格往往会上涨。
反之,如果市场上房屋供应过剩,而购房需求疲软,价格则可能下跌。
例如,在一些经济发展迅速、人口流入量大的城市,由于对住房的需求持续增加,房价呈现上涨趋势。
而在一些经济发展缓慢、人口流出的地区,住房市场可能会出现供大于求的情况,房价也就难以维持高位。
政策法规对住房价格的影响也不容小觑。
政府出台的房地产调控政策,如限购、限贷、限售等,都会直接或间接地影响住房价格。
税收政策的调整,如房产税的征收,也会对住房的持有成本和交易成本产生影响,从而对房价起到调节作用。
在进行数学建模来确定住房的合理定价时,我们可以将上述因素量化为具体的变量和参数。
以地理位置为例,可以根据距离市中心的距离、周边配套设施的完善程度等因素赋予不同的分值,并将这些分值转化为相应的权重。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
房价影响因素及消费投资建议摘要目前我国房价很高,一些主流经济学家往往热衷于从表象的供求关系来为高房价的现实提供解释,不可否认,实际的房价确实是由供求决定,但问题是:现实的存在难道就是合理的吗?即使高房价确实由目前的供求力量决定的,我们也应该去探究这种供求力量是如何产生的。
从某种程度上讲,当前国内房价居高不下之现状根本上与政治、经济、行政、社会、自然等因素都脱不了关系。
那么,我们又怎样去认识目前的房价问题呢?这就需要采取从本质到现象的研究路线:首先,我们查找相关资料及数据,初步了解影响房价的几个因素;其次,我们采用相关系数分析法,剖析几个因素的重要性,算出权重,做出两个合理的假设(见第5页);再次,采用正反对比矩阵进一步分析几个因素;最后,我们采用层次分析法,综合前人的观点总结出自己的结论并给出合理的消费投资建议。
我们认为在众多影响因素中,人均可支配收入、土地价格、五年以上贷款利率及人口密度是较为重要的因素。
同时我们也提出了相关点建议:首先,国家可以通过调控土地的价格来控制住房的价格;其次,银行可以调控五年以上的贷款利率;还可以通过提供保障房、房屋限购、购房基金等政策,改变购房难的现状;对于有购房需求的家庭适度消费,多样投资。
关键词:房价因素层次分析法相关系数正反对比矩阵目录一、问题重述 (1)二、模型假设 (1)三、符号说明 (1)四、问题分析 (2)五、模型准备 (2)六、模型 (7)七、模型应用 (8)八、模型的优缺点及改进 (9)九、参考文献 (9)十、附录 (10)一、问题的重述众所周知,社会的进步和发展首先要解决人们的基本需求,而“住”则是基本需求之一;但是,随着社会的发展、经济的进步、科技的发达却使得越来越多人无处安身,近年来尤其明显(如图一所示)。
其实,人类在设计“住”的技术方面已经取得了突飞猛进的进步,甚至造房子就如同造彩电一样容易。
那么,为什么现实生活中“住”却越来越困难了呢?特别是,近年来房价的急速上涨已经成为笼罩在社会大众心头的巨大阴影,那么,这个问题是如何产生的?一些主流经济学家往往热衷于从表象的供求关系来为高房价的现实提供解释,不可否认,实际的房价确实是由供求决定,尽管一部分需求是由“幻觉”推动的,但问题是:现实的存在难道就是合理的吗?其实,即使高房价确实由目前的供求力量决定的,但我们也应该去探究这种供求力量是如何产生的。
从某种程度上讲,当前国内房价居高不下之现状根本上与政治、经济、行政、社会、自然等因素都脱不了关系。
受到世界经济低迷的影响,当前中国经济很不稳定,而中国房价的起伏更是非常重要的因素。
前几年,中国房价依旧持续走高,而且丝毫没有要稳定下来的迹象,房价高涨,一房难求的情况持续。
而随着近年调控政策的出台,房地产又出现了极度低迷。
房地产行业作为我国国民经济的支柱产业,不仅影响着国民经济的增长,也牵动着千家万户的心,而且,房价的不断攀升还影响到第三产业的经营状况,提高了第三产业的运营成本,使其生产经营活动受到很大的影响。
我们试着从政治、经济、行政、社会、自然等角度出发讨论影响房价的各种因素,搜集数据并利用层次分析法分析各因素对房价影响的权重,指导国家制定调控政策和家庭合理消费和投资。
二、模型假设1.假设所有数据真实可靠2.假设除该文提到的政治、经济、行政、社会、自然等因素外,其他的因素对房价的影响非常小,可以忽略不计。
三、符号说明C:房屋价格指数 C1:国际影响C2:人均可支配收入 C3:土地价格C4:5年以上贷款利率 C5:房屋限购政策C6:保障房政策 C7:人口密度C8:家庭结构 C9:位置A:成对比较矩阵λ:最大特征根CI:一致性指标 RI:随机一致性指标CR:一致性比率ω:组合权向量四、问题的分析此题目旨在了解房价的波动,分析影响房价的多种因素,同时给出相关的合理建议。
我们做出如下分析:1.房价的波动与政治、经济、行政、社会、自然等因素有关并搜集了很多相关资料和数据。
2.通过相关系数得出几个因素的重要程度即权重。
3.正反对比矩阵进行进一步分析几种因素。
4.运用层次分析法给几个因素并综合参考文献给出合理的结论和建议。
五、模型准备我们通过上网查阅相关数据,搜集了房屋价格指数、人均可支配收入、土地价格、五年以上贷款利率。
(附图)用SPSS做相关性分析得下表:由上表可知:Corr(C,C2)=0.805Corr(C,C3)=0.703Corr(C,C4)=0.699相关系数是表示两个变量相互关联程度的系数,Corr(X,Y)>0表示正相关Corr(X,Y)<0表示负相关,由以上数据可以看出,人均可支配收入、土地价格、五年以上贷款利率与房屋价格指数均成正相关,下面我们就需要由相关系数得出C2、C3、C4对目标的重要程度之比。
首先我们通过比较各种尺度决定采用1-9尺度,因为心理学家认为这个尺度比较符合人类所能掌控的判断范围,它比较简单并且结果并不劣于其他较复杂的尺度。
考虑到这三个因素对房价的影响都比较大,那么我们通过以上数据可以得出以下两个结论,并作出合理假设: (1)C2,C3,C4对于房屋价格指数的影响的重要性近似相等,即不妨假设1342423===a a a(2)C2,C3,C4对于房屋价格的影响非常大,故不妨假设它们三个对于其他次要的影响因素的比为8.2003年至2010年中国城市居住用地地价(单位:元/平方米)年份居住用地地价2003 10702004 11662005 15822006 16812007 19412008 34792009 38242010 4245平均买房贷款年利率2003 5.76% 2004 6.12% 2005 6.12% 2006 6.62% 2007 7.34% 2008 6.99% 2009 5.94% 2010 6.27% 2011 6.82% 年份城镇居民家庭人均可支配收入2003 8472.2 2004 9421.6 2005 10493 2006 11759.5 2007 13785.8 2008 15780.8 2009 17174.7 2010 19109六、模型我们通过查阅大量资料,总结出9个比较重要的因素,用C1,C2,…,C9依次表示国际影响、人均可支配收入、土地价格、五年以上贷款利率、房屋限购政策、保障房政策、人口密度、家庭结构、位置9个准则,用C 表示房屋价格指数。
接下来需要构造成对比较矩阵A 。
我们利用搜索到的相关数据,根据成对比较的1-9尺度来确定矩阵中的各个元素。
1=ii a (i=1, (9)342423,,a a a 的数据根据相关系数确定,即1342423===a a aijji a a 1=其余的元素则根据历史经验,由主观判断决定。
在构造过程中,我们遵循这样一个原则:如果1,1>>kj ik a a ,则必须保证1>ij a 。
这是因为,1,1>>kj ik a a 表示i C 比k C 重要,k C 比j C 重要,那么如果1<ij a ,即j C 比iC 还重要一些,这显然是矛盾的,故在构造矩阵的时候必须时刻注意检查,保证1>ij a 。
由此我们构造出正反对比矩阵A⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=14151211717171241213441414155214521212162314112616161414151211717171274267111974267111974267111921516141219191911A接下来就需要做一致性检验。
首先应计算该矩阵的最大特征根λ,定义一致性指标 CI=1--n nλ(这里n=9)引入随机一致性指标RI令CR 为一致性比率CR=1.0<RICI 则表示通过一致性检验 再将求的的特征向量归一化即可得权向量。
考虑到该矩阵有9阶,我们考虑使用MATLAB 编程计算。
运用MATLAB 编程(见附录)可计算出该矩阵通过一致性检验,以及权向量)0.0287 0.0827 0.1286 0.0449 0.0287 0.2225 0.2225 0.2225 0.0188(=w 由此得出,C1至C9的权重。
在此题中,我们比较幸运,第一次做出矩阵就直接通过了一致性检验,如果考虑的因素更多,矩阵的阶数更大,就很可能不会一次成功,这时候则需要我们不断检查和调整矩阵,最终通过一致性检验。
七、模型应用1.关于房价调控的几点建议首先,国家可以通过调控土地的价格来控制住房的价格。
由我们所建模型解出,土地的价格对房价的影响较大,所以政府可以通过调控土地的价格进而调控房价。
但同时由于中国人口稠密,人均土地占有量小,所以虽然调控土地价格可以影响住住房价格,但其实施性较差。
其次,银行可以调控五年以上的贷款利率(之所以选五年以上的贷款利率是因为购房还贷一般要五年以上)。
五年以上的贷款利率与房价正相关。
所以在保证银行的正常运行的条件下,可以通过降低五年以上的贷款利率的方法使房价降低。
最后,还可以通过提供保障房、房屋限购、购房基金等政策,改变购房难的现状。
2.关于家庭购房的几点建议首先,适度消费,多样投资。
对于有购房需求的年轻家庭,消费支出比例偏高,建议在满足基本生活支出的基础上,适当提高生活质量,并适当减少一些可以避免的消费支出。
可在年初做好家庭财务计划,养成做预算及记账的习惯,适当控制每月生活支出在1300元内。
此外,依据个人不同情况和年龄调整投资策略,实现稳健策略和激进策略在不同时期和不同情况下的有效运用。
然后,长期投资,增值资产。
理财是一种生活方式,不要认为小钱没用,只要坚定不移,小钱也可以变成大钱,越早开始储蓄投资,就越容易提早为家庭累积财富;建议采取定期定额的强迫投资法,可每月1000元定投,尽早准备孩子的教育金和自己的养老金。
因有购房计划,7万元存款可循环做短期或中期的银行理财产品。
其实,房价一直居高不下,有购房需求的家庭应居安思危。
住房市场变幻莫测,唯有尽早及时准备才是上策。
八、模型的优缺点及改进该模型运用层次分析法,对人的主观感觉进行量化,把定性和定量很好的结合起来,是比较系统化、层次化的方法。
而且该方法所需数据信息较少,方便处理。
但是同时,由于该方法过分强调人的主观感觉,定量数据较少,定性数据较多,不易令人信服。
另外,该模型没有考虑区域因素,只考虑了全国平均房价。
做成对比较矩阵时,若阶数增加,则会给矩阵的构造制造很大的麻烦,可实施性不强。
模型改进:该模型定性分析过多,可考虑引入灰色系统。
可考虑分一、二、三线城市分别考虑,这样得出的结果会更加精确。
九、参考文献[1].姚争,孙华平,冯长春;我国城市住房价格变化的影响因素分析——基于31个城市面板数据的实证研究;[J];《经济建筑》;2011年卷007期[2].龙涛,李章宁,白宛昀,韩大涛;房价指数影响因素的多元回归分析;[J] ;《市场论坛》;2011年卷007期[3].马静怡;我国高房价的影响因素及对策分析;[J];《现代企业》;2011年卷001期[4].姜启源,谢金星,叶俊;数学建模(第三版);[M];北京:高等教育出版社,2003.8十、附录clear all;clca=[1 1/9 1/9 1/9 1/2 1/4 1/6 1/5 1/2;9 1 1 1 7 6 2 4 7;9 1 1 1 7 6 2 4 7;9 1 1 1 7 6 2 4 7;2 1/7 1/7 1/7 1 1/2 1/5 1/4 1;4 1/6 1/6 1/6 2 1 1/4 1/3 2;6 1/2 1/2 1/2 5 4 1 2 5;5 1/4 1/4 1/4 4 3 1/2 1 4;2 1/7 1/7 1/7 1 1/2 1/5 1/41;]; %读入判断矩阵C[x,y]=eig(a); %求出特征值和特征向量Jmax=max(max(y)) %求出最大特征值[N,M]=size(a); %看这个矩阵的长宽RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51]; %随机一致性指标RICI=(Jmax-N)/(N-1) %求出一致性指标CR=CI/RI(1,N) %检验一致性if CR<0.1disp('通过一致性检验') %若通过一致性检验,则求出权重B=zeros(N,M); %设置一个同样长宽的零矩阵for i=1:M %循环,每一列都相同操作b(:,i)=a(:,i)/sum(a(:,i));%每列都除以这列每项的和,并赋值给b相对应列end %循环结束b ; %输出b for i=1:NW(1,i)=sum(b(i,:)); %把列归一化的矩阵再按行求和endW;s=sum(W); %将W归一化c=W./s %c即为所求特征向量即权重elsedisp('未通过一致性检验') %未通过则结束操作endJmax =9.2367CI =0.0296CR =0.0204通过一致性检验c =0.0188 0.2225 0.2225 0.2225 0.0287 0.0449 0.1286 0.0827 0.0287。