分类计数原理和分步计数原理 教案

合集下载

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用计数原理解决实际问题的能力。

3. 引导学生通过合作交流,提高思维能力和创新能力。

二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。

(2)学会运用分类加法计数原理解决问题。

2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。

(2)学会运用分步乘法计数原理解决问题。

三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。

(2)分步乘法计数原理的应用。

2. 教学难点:(1)理解分类加法计数原理的含义。

(2)理解分步乘法计数原理的含义。

四、教学方法1. 采用问题驱动法,引导学生主动探究。

2. 运用实例分析,让学生直观理解计数原理。

3. 组织小组讨论,培养学生合作交流能力。

五、教学准备1. 课件、黑板、粉笔等教学工具。

2. 相关实例和练习题。

教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。

2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。

3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。

二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。

2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。

3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。

2. 讲解分类加法计数原理的概念和步骤。

3. 让学生举例说明并计算。

二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。

2. 讲解分步乘法计数原理的概念和步骤。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 让学生学会运用分类加法计数原理和分步乘法计法原理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 分类加法计数原理:(1)概念介绍:同一类对象的数量相加得到总数。

(2)实例讲解:学校举办运动会,参加跑步的有20人,参加跳高的有15人,参加跳远的有10人,请问参加运动会的总人数是多少?a. 班级里有男生30人,女生20人,请问班级里总共有多少人?b. 图书馆里有小说50本,科普书籍30本,请问图书馆里总共有多少本书?2. 分步乘法计数原理:(1)概念介绍:完成一项任务需要多个步骤,每个步骤的数量相乘得到总数量。

(2)实例讲解:做一份报纸,需要先排版(10分钟),印刷(20分钟),装订(10分钟),请问完成这份报纸需要多长时间?a. 制作一个蛋糕,需要打发鸡蛋(10分钟),加入面粉和糖(5分钟),烘烤(20分钟),请问制作一个蛋糕需要多长时间?b. 工厂生产一批玩具,每台机器每小时可以生产10个玩具,共有3台机器工作,请问每小时可以生产多少个玩具?三、教学方法1. 采用讲授法,讲解分类加法计数原理和分步乘法计数原理的概念及应用。

2. 利用实例讲解,让学生更好地理解计数原理。

3. 设计练习题,让学生动手实践,巩固所学知识。

四、教学评价1. 课堂问答:检查学生对分类加法计数原理和分步乘法计数原理的理解。

2. 练习题解答:评价学生运用计数原理解决问题的能力。

3. 课后作业:布置相关题目,让学生进一步巩固所学知识。

五、教学资源1. PPT课件:展示分类加法计数原理和分步乘法计数原理的概念及实例。

2. 练习题:提供丰富的练习题,让学生动手实践。

3. 教学视频:可选用的相关教学视频,辅助学生理解计数原理。

4. 黑板、粉笔:用于板书关键词和讲解实例。

六、教学步骤1. 引入新课:通过一个简单的实例,让学生感受分类加法计数原理和分步乘法计数原理的应用。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。

2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。

公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。

公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。

分步乘法计数原理的概念和公式。

2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。

四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。

2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。

五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。

2. 讲解分类加法计数原理的公式和应用示例。

3. 讲解分步乘法计数原理的公式和应用示例。

4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。

六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。

2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。

3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。

七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。

教学设计2:分类加法计数原理与分步乘法计数原理

教学设计2:分类加法计数原理与分步乘法计数原理

10.6.1 分类加法计数原理与分步乘法计数原理考纲传真 1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ×n 种不同的方法.1.(人教A 版教材习题改编)在所有的两位数中,个位数字大于十位数字的两位数共有( )A .50个B .45个C .36个D .35个【解析】 根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).【答案】 C2.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A .10B .11C .12D .15【解析】 若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C34;若恰有2个位置上的数字不同的信息个数为C24.由分类计数原理知满足条件的信息个数为1+C34+C24=11.【答案】B3.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504 B.210 C.336 D.120【解析】分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.【答案】A4.(2012·大纲全国卷)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A.240种B.360种C.480种D.720种【解析】第一步先排甲,共有A14种不同的排法;第二步再排其他人,共有A55种不同的排法.因此不同的演讲次序共有A14·A55=480(种).【答案】C5.从4名男生,2名女生中,选2人参加某项活动,至少有一名女生参加的选法有________种.【解析】法一分两类,①一男一女,共有4×2=8种;②两女,只有1种,共有8+1=9种.法二间接法C26-C24=15-6=9种.【答案】9分类加法计数原理某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【思路点拨】由于是两类不同的书本,故用分类加法计数原理.【尝试解答】赠送一本画册,3本集邮册.需从4人中选取一人赠送画册,其余送邮册,有C14种方法.赠送2本画册,2本集邮册,只需从4人中选出2人送画册,其余2人送邮册,有C24种方法.由分类加法计数原理,不同的赠送方法有C14+C24=10(种).【答案】B,1.本题常见错误:①忽视相同画册,相同集邮册条件,错用排列计算.②找不准分类标准.求解的关键在于抓住赠送画册的本数进行分类.2.分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法.图10-1-1如图10-1-1所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.【解析】把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8(个).由分类加法计数原理知,共有32+8=40(个).【答案】40分步乘法计数原理(2012·大纲全国卷)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【思路点拨】先排第一列三个位置,再排第二列第一行上的元素,则其余位置上元素就可以确定.【尝试解答】先排第一列,由于每列的字母互不相同,因此共有A33种不同排法.再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·A12·1=12(种)不同的排列方法.【答案】A,1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且也要确定分步的标准,分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:(1)步骤互相独立,互不干扰.(2)步与步确保连续,逐步完成.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.【解】(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y =ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的取值均有6种情况.因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.两个计数原理的综合应用图10-1-2如图10-1-2所示,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种【思路点拨】解答本题应注意两点:(1)每一个点都有可以和它同色的两个点.(2)涂色的顺序不同影响解题的难度,可先涂A、D、E,再分类涂B、F、C.【尝试解答】先涂A、D、E,共有4×3×2=24种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法,另一类是B与E 和D不同色,共有1×(1×1+1×2)=3种涂法,故涂色方法共有24×(8+3)=264种.【答案】B,1.给B、C、F涂色时,在每一类下又有两种情况,应切实掌握好分类的标准,分清哪些可以同色,哪些不同色.2.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,把完成每一步的方法数相乘,得到总数.(2013· 杭州模拟)如图10-1-3,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.图10-1-3【解析】按区域1与3是否同色分类:(1)区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24种方法.(2)区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72种方法,故由分类计数原理,不同的涂色种数为24+72=96.【答案】96两个原理分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,构成完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.两点提醒1.分类时,标准要明确,应做到不重不漏.2.分步时,要合理设计顺序、步骤,并注意元素是否可以重复选取.从近两年高考试题看,两个计数原理是高考考查的热点,一般与排列、组合等知识结合,考查分类讨论的数学思想.主要涉及数字问题、几何问题、涂色问题,有时也出现与其它知识相结合的新定义题型.创新探究之十二与计数原理有关的新定义题(2012·江苏高考)设集合P n={1,2,…,n},n∈N*,记f(n)为同时满足下列条件的集合A 的个数:①A ⊆P n ;②若x ∈A ,则2x ∉A ;③若x ∈∁P n A ,则2x ∉∁P n A .(1)求f (4);(2)求f (n )的解析式(用n 表示).【解】 (1)当n =4时,符合条件的集合A 为:{2},{1,4},{2,3},{1,3,4},故f (4)=4.(2)任取偶数x ∈P n ,将x 除以2,若商仍为偶数,再除以2,…,经过k 次以后,商必为奇数,此时记商为m ,于是x =m ·2k ,其中m 为奇数,k ∈N *.由条件知,若m ∈A ,则x ∈A ⇔k 为偶数;若m ∉A ,则x ∈A ⇔k 为奇数.于是x 是否属于A 由m 是否属于A 确定.设Q n 是P n 中所有奇数的集合,因此f (n )等于Q n 的子集个数.当n 为偶数(或奇数)时,P n 中奇数的个数是n 2(或n +12), 所以f (n )=⎩⎨⎧2n 2,n 为偶数,2n +12,n 为奇数.创新点拨:(1)以集合的概念和运算为背景,求解计数问题.(2)一题两问,体现由特殊到一般的数学思想,考查归纳、抽象概括能力.防范措施:(1)通过阅读、分析,弄清新定义,弄清利用新定义所解决的问题,如本题中f (n )表示集合A 的个数,且集合A 满足三个条件.(2)从特殊情形入手,通过分析、归纳,发现问题中隐含的一些本质特征和规律,然后再推广到一般情形,必要时可以多列举一些特殊情形,使规律方法更加明确.1.(2012·课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种【解析】 分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C 12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法.由分步乘法计数原理得不同的选派方案共有2×6=12(种).【答案】A2.(2013·济南质检)如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.【解析】第一类:恰有三个相同的数字为1,选2,3,4中的一个数字排在十、百、千位的一个位置上,有C13·A13种方法,四位“好数”有9个.第二类:相同的三个数字为2,3,4中的一个,这样的四位“好数”为2221,3331,4441共3个.由分类加法计数原理,共有“好数”9+3=12个.【答案】12。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标:1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。

3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。

二、教学重点与难点:1. 教学重点:分类加法计数原理和分步乘法计数原理的理解和应用。

2. 教学难点:如何引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

三、教学方法:1. 采用问题驱动的教学方法,让学生在解决问题的过程中理解分类加法计数原理和分步乘法计数原理。

2. 使用案例分析和小组讨论的方式,培养学生的合作能力和沟通能力。

3. 运用数形结合的方法,帮助学生直观地理解分类加法计数原理和分步乘法计数原理。

四、教学准备:1. 教具准备:黑板、粉笔、多媒体教学设备。

2. 学具准备:学生用书、练习本、文具。

3. 教学素材:相关案例分析题、小组讨论题。

五、教学过程:1. 导入新课:通过一个实际问题,引入分类加法计数原理和分步乘法计数原理。

2. 讲解分类加法计数原理:解释分类加法计数原理的概念,并通过实例讲解如何运用。

3. 讲解分步乘法计数原理:解释分步乘法计数原理的概念,并通过实例讲解如何运用。

4. 案例分析:给出一个案例,让学生运用分类加法计数原理和分步乘法计数原理解决问题。

5. 小组讨论:学生分组讨论,分享各自解决问题的方法和答案。

7. 课堂练习:给出一些练习题,让学生巩固所学内容。

8. 课后作业:布置一些相关的作业题,让学生进一步巩固所学知识。

9. 课堂小结:对本节课的内容进行小结,强调重点和难点。

六、教学评价:1. 评价目标:通过课堂表现、练习完成情况和课后作业来评价学生对分类加法计数原理和分步乘法计数原理的理解和应用能力。

2. 评价方法:a) 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现。

b) 练习完成情况:检查学生练习题的完成质量,包括解题思路、步骤和答案的正确性。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、分类加法计数原理教案主旨: 学习分类加法计数原理,能够运用该原理解决实际问题。

一、导入 (5分钟)1. 引入问题:小明有3个红色球和4个蓝色球,他想穿一双颜色相同的球,有多少种可能性?2. 学生回答问题并讨论解决方法。

二、呈现 (10分钟)1. 介绍分类加法计数原理的概念: 分类加法计数原理是指在一个问题中,通过将问题进行分类,然后对每个分类进行计数,最后将各个分类的计数结果相加,得到最终的解决方案。

2. 给出示例问题: 一个篮球队有5个队员,一个足球队有6个队员,现在要选出两个队员进行混合比赛,有多少种可能性?三、讲解 (15分钟)1. 分类: 将问题分为篮球队员和足球队员两类。

2. 计数: 分别计算篮球队员和足球队员的可能性,篮球队员有C(5,2)种组合方式,足球队员有C(6,2)种组合方式。

3. 合并: 将篮球队员和足球队员的组合数相加得到最终的解。

四、练习 (15分钟)1. 分发练习册,让学生完成相关练习。

2. 教师巡视督促学生的练习过程,提供必要的帮助和指导。

五、总结 (5分钟)1. 总结分类加法计数原理的步骤:分类、计数、合并。

2. 强调分类加法计数原理在解决实际问题中的应用。

3. 回顾学生在课堂练习中的解题思路和结果。

二、分步乘法计数原理教案主旨: 学习分步乘法计数原理,能够运用该原理解决实际问题。

一、导入 (5分钟)1. 引入问题:小明喜欢穿不同颜色的T恤和裤子,他有3种不同颜色的T恤和4种不同颜色的裤子,他有多少种穿搭可能性?2. 学生回答问题并讨论解决方法。

二、呈现 (10分钟)1. 介绍分步乘法计数原理的概念: 分步乘法计数原理是指在一个问题中,将问题分为多个独立的步骤,然后计算每个步骤的可能性,并将各个步骤的可能性相乘,得到最终的解决方案。

2. 给出示例问题: 一个密码锁有3个拨轮,每个拨轮上分别有0-9的数字,求密码锁的可能组合数。

高中数学分类加法计数原理和分步乘法计数原理教案新人教A版选修

高中数学分类加法计数原理和分步乘法计数原理教案新人教A版选修

一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。

2. 学会运用分类加法计数原理和分步乘法计数原理解决问题。

3. 培养学生的逻辑思维能力和数学素养。

二、教学内容1. 分类加法计数原理:(1)定义:如果一个事件可以分成若干个互不重叠的分类,这个事件发生的总次数就等于各分类事件发生次数的和。

(2)表达式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:(1)定义:如果一个事件可以分成若干个相互独立的步骤,这个事件发生的总次数就等于各步骤事件发生次数的乘积。

(2)表达式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理和分步乘法计数原理的概念及表达式。

2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决问题。

四、教学方法1. 采用案例分析法,通过具体例子引导学生理解分类加法计数原理和分步乘法计数原理。

2. 利用互动讨论法,让学生在课堂上积极参与,提高逻辑思维能力。

3. 运用练习法,巩固所学知识,提高解决问题的能力。

五、教学过程1. 导入:通过生活中的实例,引导学生思考如何计算事件发生的总次数。

2. 讲解:介绍分类加法计数原理和分步乘法计数原理的概念及表达式。

3. 案例分析:分析具体例子,让学生理解并掌握分类加法计数原理和分步乘法计数原理。

4. 互动讨论:分组讨论,让学生运用所学原理解决问题,并分享解题过程。

5. 练习:布置练习题,让学生巩固所学知识。

7. 课后作业:布置相关作业,让学生进一步巩固所学知识。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及对知识的掌握程度。

2. 练习题评价:检查学生完成的练习题,评估其对分类加法计数原理和分步乘法计数原理的理解和应用能力。

3. 课后作业评价:审阅学生的课后作业,评估其对课堂所学知识的巩固和应用情况。

分类加法计数原理和分步乘法计数原理教案人教版

分类加法计数原理和分步乘法计数原理教案人教版
学生学习效果
1.知识掌握:学生能够理解和掌握分类加法计数原理和分步乘法计数原理的基本概念和应用方法。他们应该能够识别和解决实际问题中的计数问题,并能够运用所学的原理进行问题的解答。
2.逻辑推理能力:通过解决实际问题,学生能够培养逻辑推理能力,学会如何将问题分解为独立的子问题,并运用分类加法计数原理和分步乘法计数原理进行解答。
板书设计
①分类加法计数原理:对于分类加法计数原理,我们首先要让学生明确其定义,即当一个事件可以分为若干个互斥的事件时,该事件的可能性的总数等于每个互斥事件的可能性的和。
②应用实例:通过具体的实例,如抽奖问题、投票问题等,让学生了解分类加法计数原理的应用,加深对分类加法计数原理的理解。
③公式:P(A) = P(A1) + P(A2) + ... + P(An)
-合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
作用与目的:
-帮助学生深入理解“分类加法计数原理和分步乘法计数原理”知识点,掌握相关技能。
-通过实践活动,培养学生的动手能力和解决问题的能力。
-通过合作学习,培养学生的团队合作意识和沟通能力。
3.课后拓展应用
教师活动:
-布置作业:根据“分类加法计数原理和分步乘法计数原理”,布置适量的课后作业,巩固学习效果。
2.分步乘法计数原理的定义和应用
①分步乘法计数原理:对于分步乘法计数原理,我们首先要让学生明确其定义,即当一个事件可以分为若干个相互独立的事件时,该事件的可能性的总数等于每个独立事件的可能性的乘积。
②应用实例:通过具体的实例,如组合问题、排列问题等,让学生了解分步乘法计数原理的应用,加深对分步乘法计数原理的理解。
-恰好有2名男生的概率为:C(15, 2) * C(15, 1) / C(30, 3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

<<§4.1 分类计数原理和分步计数原理>>教案
(二)
观察归纳,形成概念:
(三)比较归纳,深化概念:坐这些交通工具从甲地到乙地共有多少种不同的走法?
引例2:某人从甲地出发,经过乙地到达丙地。

从甲
地到乙地有A,B,C共3条路可走;从乙地到丙地有a,
b共2条路可走。

那么,从甲地经过乙地到丙地共有多少
种不同的走法?
分类计数原理(加法原理):若完成一件事,有n 类办法,
在第1类办法中有
1
m种不同方法,在第2类中有
2
m种不
同方法,……,在第n类办法中有
n
m种不同方法。

每一类
方法中的每一种方法均可直接完成这件事,那么完成这件
事情共有
12n
N m m m
=+++种不同方法。

分步计数原理(乘法原理):若完成一件事,分成n个步
骤,做第1步有
1
m种不同方法,做第2步有
2
m种不同方
法,……,做第n步有
n
m种不同方法。

每一种方法均需几
步才可完成这件事,那么完成这件事情共有
12n
N m m m
=⨯⨯⨯种不同方法。

回顾两个引例:1、N = 3+2+1=6 2、N=3×2=6,
比较、归纳两个原理:
提示
提问
归纳
提示
回答
思考
推导
思考
讨论
(五)
总结反思,加深理解:
(六)
布置作业,
分层练习:
示、补充)
3、应用两个原理的注意点:
(1)加法原理中的“分类”要全面,不能遗漏;但也不能重复;“类”与“类”之间是并列的、互斥的、独立的。

(2)乘法原理中的“分步”程序要正确。

“步”与“步”之间是连续的,不间断的,缺一不可;但也不能重复、交叉。

描述分类计数原理和分步计数原理的诗:
两大原理妙无穷,解题应用各不同; 多思慎密最重要,茫茫数理此中求。

1、习题册69、70页。

2、课后拓展(选做题):如图,一蚂蚁沿着长方体的棱,从它
的一个顶点爬到相对的另一个顶点的最近路线共有多少条?
总 结 提 升
引 导 启 发 教 学
反 思
体 会 得 失
欣 赏 体 会 复 习
练 习
A
C。

相关文档
最新文档