涡轮增压系统分类
简述各种增压系统的原理

简述各种增压系统的原理
增压系统是一种将进气压力增加的装置,用于提高发动机的功率和扭矩输出。
增压系统的原理可以分为以下几种:
1. 机械增压器:机械增压器是通过机械传动方式将进气压力增加的装置。
它通常由压气机和涡轮叶轮组成。
进气气流经过压气机产生高速旋转的气流,然后由涡轮叶轮转动,并通过连接在同一轴上的压气机向进气道送气。
机械增压器通常由发动机的曲轴带动,因此在低转速和负荷下压力较小。
2. 涡轮增压器:涡轮增压器是利用高速旋转的涡轮叶轮来压缩进气气流的装置。
涡轮增压器通过曲轴带动,旋转的涡轮叶轮与压气机叶轮相连,进气气流经过涡轮叶轮时,叶轮高速旋转,并将压气机叶轮带动,从而增加进气的压力。
涡轮增压器的压气机叶轮和涡轮叶轮是通过一个共享轴连接在一起。
涡轮增压器具有快速响应和高压力的特点,适用于中高转速和负荷。
3. 机械增压加涡轮增压:机械增压加涡轮增压系统是将机械增压器和涡轮增压器结合在一起的系统。
机械增压器在低转速和负荷下工作,而涡轮增压器在高转速和负荷下工作。
这种组合可以提供宽广的涡轮特性,即在各种转速和负荷条件下实现增压。
4. 电动增压器:电动增压器是通过电动机的高速旋转将进气气流压缩的装置。
电动增压器通过电动机带动压气机叶轮旋转,从而增加进气的压力。
与传统涡轮
增压器相比,电动增压器具有更高的响应速度和可控性。
以上是常见的增压系统的原理,不同的增压系统适用于不同的工况和发动机性能需求。
汽车发动机进气系统工作方式的常见分类

汽车发动机进气系统工作方式的常见分类汽车发动机进气系统的主要功用是为发动机输送清洁、干燥、充足而稳定的空气以满足发动机的需求,避免空气中杂质及大颗粒粉尘进入发动机燃烧室造成发动机异常磨损。
目前,发动机进气系统常见工作方式为自然吸气、涡轮增压、机械增压、双增压等。
一、自然吸气自然吸气(Normally Aspirated)是汽车进气的一种,是在不通过任何增压器的情况下,大气压将空气压入燃烧室的一种形式,更加稳定,自然吸气发动机在动力输出上的平顺性与响应的直接性上,要远优于增压发动机。
如本田飞度1.5AT炫酷运动版搭载了1.5L自然吸气发动机:二、涡轮增压涡轮增压(Turbocharger)发动机是指利用废气冲击涡轮来压缩进气的增压发动机,简称Turbo或T。
如在一些轿车尾部看到Turbo或T,即表明该车采用涡轮增压发动机。
这种发动机是利用发动机排放出废气的能量,冲击装在排气系统中的涡轮,使之高速旋转,通过一根转轴带动进气涡轮以同样的速度高速旋转使之压缩进气,并强制地将增压后的进气压送到气缸中。
由于发动机功率与进气量成正比,因此可提高发动机功率。
它利用的是发动机排出的废气,所以,整个增压过程基本不会消耗发动机本身的动力。
涡轮增压拥有良好的加速持续性,用通俗的话说就是后劲十足。
而且最大转矩输出的转速范围宽广,转矩曲线平直,但低速时由于涡轮不能及时介入,从而导致动力性稍差。
如奥迪A4L 2013款2.0TFSI AT采用了2.0L涡轮增压发动机:三、机械增压与涡轮增压相比,机械增压(Supercharger)的原理则完全不同。
它并不是依靠排出的废气能量来压缩空气,而是通过一个机械式的空气压缩机与曲轴相连,通过发动机曲轴的动力带动空气压缩机旋转来压缩空气。
压缩机是通过两个转子的相对旋转来压缩空气的。
正因为需要通过曲轴转动的能量来压缩空气,机械增压会对发动机输出的动力造成一定程度的损耗。
机械增压器的特性刚好与涡轮增压相反,由于机械增压器始终在“增压”,因此在发动机低转速时,其转矩输出就十分出色。
电动涡轮增压系统的工作原理

自然进气(NA)发动机——空气是被动地被吸入汽缸内的。
也就是说,引擎所需的空气完全依靠活塞下行时产生的负压而进入,即便汽缸吸满了空气,缸中气压也就小于或等于一个大气压。
如果在相同的单位时间里,能够把更多的空气及燃油的混合气强制挤入汽缸(燃烧室)进行压缩燃爆动作(小排气量的引擎能“吸入”和大排气量相同的空气,提高容积效率),便能在相同的转速下产生较自然进气发动机更大的动力输出。
所以NA发动机的升功率始终不如能将空气与燃油强制送入的汽缸中,可轻松提高马力的增压发动机。
电动涡轮增压系统就是通过强制进气使进入发动机的气体大于自然进气效率,形成的旋转脉动涡流,流速大,空气密度高,含氧密度增加,达到成倍的空燃比;燃油雾化提高.从源头上实现发动机在单位时间内进入成倍的混合气。
达到更强的动力输出。
一.详解:为什么电动涡轮增压能够提高动力1.电动涡轮增压提高动力的基本原理:正常车辆在使用到一定时间后,由于空滤芯被灰尘阻塞——进气量减少,这时真空压力传感器(MAP)监测得到——进气量少K——通过ECU做出指令(减少喷油频率,同时转速不再上升)——混合气总量减少——由于转速没有提升,发动机功率输出保持在一个相对稳定状态。
这时,再深踩油门——节气门位置传感器TPS得到大负荷信号——同时ECU没有得曲轴位置传感器CP S提升信号——故不会增加喷油频率。
这就是感觉动力差的原因之一.另外由于节气门和转速传感器同时参与采集信号,加上进气量的不准确很容易使ECU做出错误指令,导致喷油嘴的喷油频率的不稳定.以至会增加油耗.如果这时给发动机提供了较大的进气量.ECU就能自我判断控制喷嘴增大喷油量,此时发动机得到一个成倍比例的混合气.在单位时间内也增大了发动机的容积效率,等于发动机增大了排量,这就是说只要提高混合气总量就能提供发动机功率。
涡轮增压器的结构与工作原理

充气系数: 充气系数: 指在进气冲程中, 指在进气冲程中,实际进入气缸的混合气或新鲜 空气的质量与在标准大气压和温度状态下充满气缸的 混合气或新鲜空气的质量之比。 混合气或新鲜空气的质量之比。汽油发动机在节气门 全开时充气系数约为0.75-0.85左右 左右, 全开时充气系数约为0.75-0.85左右,柴油机充气系数约 为0.8~0.9。充气系数随发动机转速有关,在经济转速 ~ 。充气系数随发动机转速有关, 时基本达到最大值。 时基本达到最大值。
一、涡轮增压器的作用
作用:可增大发动机扭矩,从而提高发动机功率, 作用:可增大发动机扭矩,从而提高发动机功率, 降低燃油消耗。它与非涡轮发动机不同的是: 降低燃油消耗。它与非涡轮发动机不同的是:在进 气管中安装一个涡轮强制向进气管内供气, 气管中安装一个涡轮强制向进气管内供气,使进气 压力增大,充气系数增大。 压力增大,充气系数增大。 实践证明,采取增压措施后, 实践证明,采取增压措施后,发动机的功率可增 加25%以上。所以,增压就成为不增加发动机排量 %以上。所以, 而提高功率的有效措施。 而提高功率的有效措施。因此被广泛应用在大功率 柴油发动机上。近年来汽油机也开始采用。 柴油发动机上。近年来汽油机也开始采用。
涡轮增压器的原理
热量 中冷器 发动机排气驱动涡轮 压缩并加热后的 空气进入中冷器
进气管
排气管
压缩机压缩 吸入的空气
废气涡轮驱 动压缩器
增压器实物
四、旁通式涡轮增压器
1.8T 1.8T 1.8T 1.8T 1.8T 1.8T 1.8T 1.8T
的
旁
通
阀式涡ຫໍສະໝຸດ 轮增旁通阀
进气控制系统

5)涡轮增压系统-内循环工作原理
机械式空气内循环阀安装在增压器前,它是由真 空打开,用来卸掉节气门前多余的空气,避免发 动机产生喘震。因此当功率不足或由于负荷变化 产生的发动机抖动时,需要检查内循环系统。 发动机控制单元在超速切断,怠速和部分负荷时 打开。防止进气管进气过量。
涡轮增压系统-内循环演示
进气控制系统
一、进气控制系统
目的:提高进气量,改善发动机动力性能。 类型:动力阀控制系统、谐波进气增压系统(ACIS)、可变配气 相位控制系统(VTEC)、可变气门正时(VVT)等多种。 动力阀控制系统:是控制发动机进气道的空气流通截面大小,以 适应发动机不同转速和负荷时的进气量需求,从而改善发动机的 动力性。 谐波进气增压系统:利用了进气管内的压力波与进气门的开启配 合,当进气门开启时,使反射回来的压力波正好传到该气门附近, 从而形成进气增压的效果,提高发动机的充气效率和功率。 可变配气相位控制系统:根据发动机转速、负荷等参数变化来控 制VTEC机构工作,改变驱动同一气缸两进气门工作的凸轮,以调 整进气门的配气相位及升程,并实现单进气门工作和双进气门工 作的切换。
3)可变配气相位控制系统VTEC (1)对配气相位的要求 要求配气相位随着发动机转速的变化, 适当的改变进、排气门的提前或推迟开启角 和迟后关闭角。
(2)结构
如图,同一缸有主进气门和次进气门,主摇臂驱动主进气门, 次摇臂驱动次进气门,中间摇臂在主次之间,不与任何气门直接 接触。 进气摇臂总成如图 与不同配气机构相比较, 主要区别是:凸轮轴上的凸轮 较多,且升程不等,结构复杂。
3、涡轮增压系统-特点 1)增压发动机对高海拔地区有很强的适应力,由 于增压器在高工况下增压力有富余,因此可以用 放气阀晚关的方法来提高空气密度,从而减缓发 动机功率的下降。增压发动机控制单元都有海拔 高低传感器,一般安装在其内部。
发动机废气涡轮增压

增压的概念
• 增压是将空气压缩并供入气缸,用以提高 充气密度、增加进气量的一项措施。
• 增压的目的在于提高功率,伴随着空气量 增加,相应地增加循环供油量,即可增加 功率
发动机增压的特点
1)可以减少缸数或气缸直径,减少整机外形 尺寸和单位功率的重量,这对提高车辆使 用经济性很有意义。 2)提高了热效率,降低了发动机的油耗率。 3)减少了排气污染及噪声。 4)降低了单位功率的造价。 5)对补偿高原功率损失十分有利。 6)零部件的机械负荷和热负荷增加
第三节 废气能量的利用
• 自然吸气的活塞式内燃机,间断燃烧而 能做到从高温吸热,热效率高,但不能 做到完全膨胀。 • 涡轮式机械能完全膨胀,适应的转速高, 单位功率的体积与重量比较小。但工作 温度不可能太高。 • 两者合理结合,有利于能量的充分利用
四冲程涡轮增压发动机理论示功图
恒压增压系统与脉冲增压系统
经济性改善
影响经济性改善的因素
• 负荷率:增压使功率范围扩大,高负荷的经 济运行范围扩大了;而在低负荷区,增压器 的能量转换不好,进、排气阻力及换气损失 增加,对低负荷经济性没有明显作用。 • 转速:保持原有功率和较高扭矩的情况下, 适当降低发动机转速 • 与车辆参数合理配合 • 增压中冷 • 压气机效率
废气涡轮增压器的基本结构和工作原理
1—压气机蜗壳 4—推力轴承 7—卡环
2—压气机叶轮 5—挡油板 8—涡轮机叶轮
3—密封套 6—隔热板 9—涡轮机蜗壳
离心式压气机的工作原理
•
压气机中气流参数的变化
括压器的工作
压气机的绝热效率
• 空气的压缩过程
空气的压缩功
• 耗功最小的是可逆绝热过程,所需的绝 热压缩功:
影响经济性改善的因素——负荷率
增压器总成部件详解
叶轮端面被异物打坏的情形 钢轮径向被异物打坏的情形
5、增压器两轮由于铸造原因损坏
检查方法:将故障增压器从发动机上拆下,检查涡轮和叶轮的损坏情况,确定是否为两轮叶片本身质量问题。 1、压气机叶轮单独一个叶片掉落、或从中间裂开或叶轮背面部分从基体上裂开,存在明显铸造冷隔缺陷。 2、钢轮涡轮单独一个叶片掉落或存在叶片断裂的情形。 责任判定:增压器本身铸造质量问题造成的两轮叶片损坏,为厂方责任。
5、机油清洁或机滤滤芯无堵塞、不缺油但增压器擦壳等故障,则为增压器零件质量。
转子轴烧蚀严重,与浮动轴承接触部位严重的干磨痕迹。
密封套烧蚀、发兰
4、增压器两轮被异物打坏损坏
检查方法:将故障增压器从发动机上拆下,检查涡轮和叶轮的损坏情况,有否异物击打痕迹,增压器进排气内是否有异物存在。 1、压气机叶轮端面被异物损坏,这是由于异物从进气管或空滤器进入压气机壳造成的 2、涡轮径向被异物损坏,这是由于异物从柴油机排气支管进入涡壳所造成的。
一 、增压器构成及工作原理:
涡轮增压器总成详解
增压器三维立体图
1、J、K 系列三维爆炸图
01、涡轮箱 02、钢轮 03、密封环 04、隔热 套 05、热端压板 06、 螺钉 07、挡圈 08、轴承 套 09、轴承体 10、止推片 11、止推轴承 12、挡油板 13、止推套 14、 密封套)15、O 型密封圈 16、O 型密封圈 17、背盘 18、垫片 19、 螺钉 20、螺钉 21、冷端压板 22、压气机壳 23、铭牌 24、铆钉 25、 叶轮 26、锁紧螺母)
3、涡轮增压器两轮蹭壳
检查方法:将故障增压器从发动机上拆下,用手指捏住转子的两端上下左右进行摇动,若转子轴向间隙≥0.12mm、或转子径向间 隙≥0.40mm,用手转动叶轮不灵活,有发卡或擦壳现象;涡轮和叶轮有明显的摩擦痕迹。 责任判定:1、若因为机油或油路脏、机油焦结等引起增压器芯部零件异常磨损,转子轴出现轴向和径向间隙偏离工艺值,引起两 轮蹭壳导致的增压器损坏为用户责任。 2、若因进气管路及压气机内腔灰尘多或进气短路引起增压器芯部零件异常磨损,两轮蹭壳导致的增压器损坏为用户责任。
汽车新技术配置-6增压系统
授人以鱼不如授人以渔
增压系统概述 ----增压系统的种类
朱明工作室
zhubob@
4.涡轮增压器的优点 提升的功率幅度较大,适合赛车及高速行驶发动机乘用; 缺点 末增压前的发动机输出,比同排气量的自然进气发动机还差,且高温废气, 使涡轮及外壳等承受相当高的温度。 最新的涡轮增压科技, 如Audi装用在A41.8L的小型轻增 庄涡轮增压器,能将原来93kW的最大功 率提升至112kW,同时将17.1k8’m/3,500r/min 的最大转矩,提升至 1,750r/rain至4,600ffmin的宽广转速范围内,均能维持21.4kg· m的 高 转矩输出, 此种转矩特性,不但中、高转速性能优异,也十分适合市区的低速行驶;且 Audi此具涡轮增压器,几无增压迟滞的情形发生。
增压发动机的种类
朱明工作室
zhubob@
1.机械增压系统:装置在发动机上并由皮带与发动机曲轴相连接,从发 动机输出轴获得动力来驱动增压器的转子旋转,从而将空气增压吹到进气岐 道里。 优点:所以没有滞后或超前,动力输出更为流畅; 缺点:由于它要消耗部分引擎动力,会导致增压效率不高。 2.废气涡轮增压系统:压气机由内燃机废气驱动的涡轮来带动。一般增压 压力可达180~200kPa,或300 kPa左右,需要增设空气中间 冷却器来给高温压缩空气进行冷却。 优点:增加效率高于机械增压; 缺点:发动机动力输出略滞后于油门的开启。 3.复合增压系统:即废气涡轮增压和机械增压并用,大功率柴油机上用 的较多。 4.气波增压系统:利用高压废气的脉冲气波迫使空气压缩。这种系统低 速增压性能好、加速性好、工况范围大;但尺寸大、笨重和噪声大。
授人以鱼不如授人以渔
柴油机的增压
柴油机的增压(一)增压的目的增压技术是提高柴油机功率最有效的措施之一,目前已广泛应用于船舶柴油机上。
pVnmi,eh根据: P, e60000可知,有效功率只与平均有效压力、气缸工作容积、柴油机转速、冲程系数及PpVnmeeh气缸数i等参数有关,故提高柴油机功率的措施,可以归纳为三个方面。
1.增加工作容积加大DiS、和,均能增加气缸工作容积,但这一措施会加大柴油机总重量和总尺寸,使造价增加,并给维修工作带来困难。
2.增加单位时间内的工作循环次数提高(或活塞平均速度)和采用二冲程柴油机(使=1),皆可增加单位时间内的工Cnmm作循环次数,但是,此措施会导致柴油机机械负荷和热负荷的增大,充气系数和机械效率,,vm的下降,使燃油燃烧恶化,影响柴油机工作可靠性和使用寿命。
3.提高平均有效压力P e由可知,要提高可通过提高机械效率或者提高平均指示压力来达到,P,P,,P,Peimemi但的变化范围很小,从减少机械损失来提高是有限的,所以的提高主要是依靠提高。
,,PPmmei由燃烧理论得知,增加每一工作循环的喷油量,能提高,但必须相应地增加气缸充气量,Pi以确保燃油完全燃烧。
在气缸容积不变的条件下,欲增加气缸充气量,必须增加进气密度,即先将空气进行压缩,然后使之进入气缸。
所谓增压,就是指通过提高柴油机进气压力来增加气缸的充气量。
这样,可以相应地增加喷入气缸的燃油量,提高柴油机平均有效压力,从而有效地提高柴油机功率。
(二)中冷的作用中冷即将经压缩的空气,在进入气缸前进行中间冷却,以降低进气温度,增大进气密度。
中冷配合增压,可进一步增大气缸充气量。
中冷器(即增压空气中间冷却器)往往以舷外水作为冷却介质。
提高进气压力的方法一般是用空气压缩机来完成。
通常把这一设备称为增压器,而把实现增压所设置的成套附件及管路系统称为增压系统。
根据驱动增压器不同的能量来源,增压系统通常可分为三类。
(一)机械增压系统增压器由柴油机直接驱动的增压系统称为机械增压系统。
涡轮增压名词解释
涡轮增压名词解释
涡轮增压(turbocharging是汽车动力系统中的一项技术,它通过在排气系统中增加一个额外的涡轮增压器来提高发动机的输出功率。
它的工作原理是利用排出的热气体来转动涡轮,涡轮就像一个小型风扇,它可以在发动机进气口提供超压,从而提高发动机内部的进气量,这样就可以在同一个排量的情况下产生更多的功率。
涡轮增压有很多优点,比如有效地提升发动机功率,减少油耗,降低汽车排放,提高燃油经济性以及对发动机结构的要求较低。
涡轮增压器由涡轮和增压器两部分组成,涡轮的转速是取决于发动机的转速的,而增压器的工作原理是把涡轮把排出的热气体压缩成压缩空气,压缩空气的压力要高于进气口的压力,从而把进气口的空气压缩比提高,使得发动机内的空气压力升高,这样发动机内的燃料也会增加,从而提高发动机的功率输出。
涡轮增压系统还有一个名为“增压器调节器”的装置,它可以根据发动机的负荷和转速来调节涡轮增压器的压力,从而达到节能的目的。
另外,涡轮增压系统还有一个安全装置,即减压阀,它的功能是当发动机负荷过大时,涡轮增压器的压力会过高,从而可能破坏发动机,这时减压阀会自动打开,以减少涡轮增压器的压力,从而保护发动机。
涡轮增压系统的应用范围很广,它不仅可以用于汽车,也可以用于火车、拖拉机、飞机等机械设备,使其具有更高的功率和经济性。
总之,涡轮增压是一种有效的提高发动机功率的技术,它的主要功能是把热气体压缩成压缩空气,这样就可以在同一排量的情况下获得更高的功率,也可以节约燃料,降低汽车排放,提高燃油经济性,是汽车发动机的技术进步的重要一步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d涡轮增压系统基本分四类:机械式增压、废气涡轮增压、复合式增压和气波增压。目前市场上大部分用的都是废气涡轮增压。 废气涡轮增压系统包括一个涡轮机和压气机,他们是同轴的,涡轮机利用废气能力带动其叶轮旋转,进而同轴的压气机也跟着旋转,压缩空气滤清器过来的空气。 从原理上讲,它就是将气体在进入气缸前预先进行压缩,提高进入气缸的气体密度,减小气体的体积,这样,在单位体积里,气体的质量就大大增加了,进气量即可满足燃料的燃烧需要,从而达到提高发动机功率和扭矩的目的。 缺点:发动机动力输出略滞后于油门的开启,加大油门后一般需要等片刻,稍后发动机会有惊人的动力爆发。 什么是涡轮增压器? 涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入汽缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入汽缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率。
原理 涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了。 涡轮增压原理 在进入正题之前先让我们复习一下涡轮增压的工作原理,是利用弓障的废气排放经头段头段进入排气侧涡轮Housing内的涡卷室中,此刻排废气将来推动驱动轮(Turbine)的叶片,所以排气侧叶片是整颗涡轮增压器的动力来源,废气一边绕行著驱动轮叶一边流向排气管前段,由前段排气出口排出(FrontPipe),藉由驱动输旋转带动连接反侧的进气侧压缩叶片,因此当废气推动排气侧叶片时,另一端的进气侧压缩叶片也会顺势跟著运转。此时进气侧压缩的中间吸气口便开始积极从中央吸气口吸入空气,使将空气吸入涡旋室中,被吸入的空气在先经过轮毂内压缩叶片的运转压缩后,再进入内管径越柬越小的压缩通道作二次压缩後送入出气口,直接经过中间冷却器进入节气门内,最后使这些已获得高压缩处理的空气被注入汽缸内燃烧。
Hybrid混合型Turbine 增压值是影响引擎动力的参数之一,“增压值”所指的是涡轮送入引擎中的空气压力,一般大多是kg/m、bar或是psi为单位,至于是否涡轮的增压值越高就可以榨出越大的动力呢?如果以两个排气量结构完全相同,但增压值分别为0.7kg/cm和1.2kg/cm的引擎来比较,只要引擎能够提供足够的供油品质,由于Boost高的引擎能送入引擎中的空气压力较多,那么气缸内的容积效率也提升,因此在动力输出上必然是以Hi=Boost的引擎比较占优势。 面对于Tubro引擎再Boost Up之后最重要的改装便是将扮演着把空气压缩成高密度进入引擎的重要角色-涡轮本体。由于量产车为了顾及运转精度、油耗、耐用性等多方面考虑,在涡轮容量、增压值或者A/R值方面通常都采取比较保守的设定,所以就改装的观点来看,原厂的Turbine当然还有在升级的空间。而在进行Turbine升级的时候很多人都会感到困惑,到底是选择能够发挥大马力的最高速式样涡轮?还是要擅长反应低转速就能够发挥扭力型Tubrine好呢?事实上内部容量大小不过是配合各式涡轮有所不同的特性来设计的,而引擎当然也有属于自己的特性,单凸和双凸就各有长处,选择涡轮时也要考虑其引擎的特性,此外排气量也非常重要,举例来说,大排量的引擎上装置扭力型的小容量涡轮,虽然它有低转反应佳的优点,Tubro很快就出现效果,但容量很快也就塞满了,转眼间Turbine转速已经达到高点了,压力也很难再增加上去,因此到了排气量比较大的高转区域,增压值已经到了极限早成过给效率不足,无法提供引擎所需的空气量,这是要它再将马力随引擎转速向上提升实在非常勉强。当然也无法期待能够输出高马力,这便是小型涡轮的不利点。 相反的若是想让涡轮到高转速产生大马力才开始发挥作用,则加大涡轮本体的体积是提升增压风量最快的方法。不过,涡轮的容量越大,虽能够将更多的空气送入气缸内,但是驱动涡轮的动力也就必须加大。也就是说,要驱动容量越大的涡轮并使其完全发挥增压效果,引擎本身也就必须具备越大的排气量。而如果在小拍量的引擎上采用过大尺寸的涡轮,在引擎排放废气很少的低转速区域,涡轮本身的旋转速率相对的无法提高,增压值也很难提升上去,所以只要叶片的转速降下去便也很难再快速的加上来,也就形成了涡轮最严重的缺点Tubro leg。所以引擎再同样增压值得情况下,分别使用一大一小不同容量的涡轮时,就动力输出来看,使用大涡轮的引擎再马力方面绝对比较有利,但是在增压反应和整体运作上来看大涡轮显然无法和小的抗衡。所以如何能同时拥有马力和反应是许多性能狂的梦想。因此便有厂家推出进气侧大配合排气侧小的Hybrid混合型Turbine,十分受到欢迎,日本最近流行的原厂交换式涡轮,也是以此为设计中心点。其优点在于有反应很快的高马力输出,可兼顾全转速域表现。以HKS 2530为例,其便是由A/R80的驱动轮再组合A/R60的压缩轮。不过,这种搭配太过极端的话,很容易发生排气压过大烧毁叶片,对英方发出了使用动作灵敏的排气卸压筏、大口径FrontPipe之外,最彻底的方法还是使用高强度的钛合金排气叶片,当然,其轻量化的材质顺道对应Turbine反应的增进也有不少帮助。
几号涡轮的由来: 大家经常听到3号4号5号甚至6号涡轮,到底3号体积有多大,这个台湾本地测量方法到底从何而来?就要追溯到90年代初期曾在台湾叱诧风云的穷人跑车Misubish Eclipse,因为当时这台车非常热买,所以造成车上那颗为三菱制造的TD-04 Turbine也很有名,之后台湾便以它作为一个基准,和它看来相同大小的就叫4号涡轮,小一点的3号,大一点的5号以此类推。
Ball Bearing滚珠轴承 理论上引擎排气量的多少,应该和涡轮的体积成正比,如果将同一涡轮使用在2.0升和3.0升引擎上,结果也必然会产生两种完全不同的出力特性。可是Turbine并不能完全依据容量体积设计的多少来决定,这还和轴承的设计、进排气配置、叶片的设计、出入口口径、Trim比和重要的A/R值等都有极大的关联。 对于大多数驾驶者而言,最佳的涡轮类型莫过于是高转速域能提供充足的出风量,而低速不会出现Tubro leg。所以各大涡轮制造厂也用尽心力以此方向为目标,由赛车经验和不断测试发展出许多Turbine的改良构造。谈到目前最新的开发架构上,基础的进化点就是把中心轮轴形式改为能减少摩擦损耗提升增压反应特性的Ball Bearing滚珠轴承,其优点也是摩擦系数小,对增压反应极限的提升更是有帮助。但缺点是耐用性不如传统的波司式轴承,大约7-8万公里就要达到寿命极限,且昂贵、维修不易。 大家常听到A/R值是指涡轮进气侧(housing)的形式,A指的是排气入口处最狭窄的横切面积部分(入口第一个弯角),R为涡轮轴承中心到排气出口横切面中心点的距离,两者的比值为A/R值。基本上,A/R值越小,也就是说排放废气的流量虽然小,但由于流速较高,涡轮在地转速的增压反应越快,涡轮迟滞显现便能获得减低,也就是说,废气气流强烈撞击涡轮叶片,涡轮的运转速度当然能加快,也就能在较低的转速区域取得较高的增压。但因为A/R值小的关系,高转速气流量将不足,同时排气背呀也会跟着增大,这些都对高转速进气效益不利,因此当转速提升后,出力也比较有限。相对的,A/R值越大,涡轮在地转速的反应越差,但尽管引擎的低转速增压难以上升,不过在高转速区域可以产生更大的动力,高转出高力的倾向相当明显。总而言之,A/R值小属于低速扭力型涡轮,而A/R值大则是高转大出力涡轮。
进气外毂(housing)间隙 就Tubrbine本体的构造来看,压缩轮叶端缘和进气外毂(housing)间隙是对涡轮性能十分重要的设计,如果这两者的间隙能做到最小限度的话,冲填效率自然大幅提高,因为相形之下吸入的压缩空气就不会出现逆流现象,并还可降低进气温度,进而激发更大的马力。所以很改装多涡轮厂商都用填充树脂或Coating将间隙做到只有0.06mm的超薄境界。 涡轮增压 这是目前全世界汽车厂商运用最为广泛的发动机增压技术,国内非常常见的国产的奥迪、帕萨特、宝来的1.8T发动机就是采用的这种技术。这种技术的优势很明显,它可以利用发动机排出废气产生的能量,来大幅度提高发动机的动力输出。 这里简单介绍一下涡轮增压的工作原理:发动机排出的废气驱动废气涡轮高速旋转,废气涡轮再带动进气涡轮以同样的速度旋转,进气涡轮将空气压缩到气缸内燃烧,。这种状况下产生的进气压力,要远远高于大气压力;换句话说,通过涡轮增压器产生的进气量,远远超过了自然吸气产生的进气量。 由于大大提升了进气量,一台小排量的发动机在安装了涡轮增压器以后,能输出比他排量大很多的发动机的功率。例如:一台涡轮增压值为1.5bar的2.0排量发动机,它的实际输出功率能够相当于一台3.0排量的自然吸气式发动机。 除了大幅度增加功率输出以外,涡轮增压发动机在获得相等功率的同时,比与它相等功率的自然吸气式发动机的尺寸和重量都要小很多。显而易见,装配涡轮增压发动机的车子,比装配相同功率的自然吸气式发动机的车子提速更快,制动也更快。同时由于发动机的重量减轻还有利于获得更好的操控性能。 除了性能上的提高以外,涡轮增压发动机比同等功率的自然吸气发动机更省油,这在如今能源极度紧张的今天显得尤为重要。 涡轮增压发动机虽然有上述的众多优点,但它也有先天的缺陷:涡轮迟滞。特别是在早期的涡轮增压发动机上,这种情况更加明显,以至于影响到当时涡轮增压发动机的发展和普及。 最早的汽油涡轮增压发动机运用在量产车型是在60年代。当时的通用集团率先在它的量产车型雪佛兰Corvair上采用了涡轮增压发动机。当时,这个车有一个让人很难容忍的缺点,那就是在低转速的时候动力非常差,甚至还比不上一台同等排量的自然吸气式发动机,这种强烈的涡轮迟滞使得这台发动机的动力输出很不流畅。 涡轮迟滞是涡轮增压发动机面临的最大难题。尽管涡轮增压能给发动机带来更强的动力输出,但是作为一台民用汽车,流畅的动力输出也是非常重要的。早期的涡轮增压器,其涡轮迟滞非常严重,发动机要保持在3500转以上才能获得充沛的动力,在低转速时发动机动力输出非常弱。除此之外,涡轮增压发动机的压缩比还得降低到6.5:1以下,来避免气缸过热。即便采用了这些保护发动机的设计,当时的涡轮增压发动机仍然比自然吸气式发动机的可靠性差。 涡轮迟滞会给普通民用车的日常行驶带来很大麻烦:在低转速时,涡轮增压器没有介入,同时废气仍然要驱动涡轮旋转,排气没有自然吸气发动机顺畅,此时的发动机扭力输出比同等排量的自然吸气式发动机还要弱。随着发动机的转速升高,例如突破3500转以后,涡轮增压器突然介入,这个时候的产生的动力将陡增。这种动力的突然“陡增”不但损害了动力输出的平顺性,让开车和坐车的人感觉很不舒服,同时还会使车辆难以控制,因为这个时候产生的扭力的增加是非常大而且非常突然的,在路面湿滑的情况下甚至会出现车轮打滑,对于驾驶员的操作是很大的考验。 涡轮迟滞还会破坏汽车的操控精度。对于喜欢玩操控的驾驶者来说,他希望发动机的动力输出是线性的,在每个转速范围扭力都能线性输出,这样才能更精确的控制转向的时点。但是涡轮增压发动机这种迟滞,会让喜欢玩操控驾驶者很难把握其扭力的输出,因为驾驶者经常会遇到踩下油门几秒钟以后发动机才响应的情况,这足以让这位驾驶者抓狂。可以想象,在当时驾驶一台装配这样的涡轮增压发动机的汽车在城市和弯道公路上行驶,是一件多么痛苦的事情!这也就是为什么这种严重迟滞的涡轮增压发动机从来就没有装配在跑车上的原因。 第一台装配涡轮增压的跑车出现在1975年,它是保时捷911 Turbo 3.0。为了减小涡轮迟滞,保时捷的工程师们设计了一套机械装置,它能在涡轮增压介入之前允许空气从旁通阀进入到气缸。这样的核心是旁通导管和旁通阀的设计。在废气达到驱动废气涡轮的压力之前,废气通过旁通阀绕过涡轮增压器直接排出。当废气压力升高到足以驱动涡轮时,旁通阀关闭,此时废气才能驱动废气涡轮高速旋转,从而带动进气涡轮高速压缩新鲜空气。这样,就可以解决由于安装了涡轮增压器而导致低转速时发动机的排气阻力大的问题,可以相对提高涡轮