随机变量的定义及分类
第二章随机变量及其分一、基本要求、重点与难点

第二章随机变量及其分一、基本要求、重点与难点(一)基本要求1.理解随机变量的概念。
2.掌握离散型随机变量和连续型随机变理的描述方法。
3.理解分布列与概率密度的概念及其性质。
4.理解分布函数的概念及性质。
5.会应用概率分布计算有关事件的概率。
6.掌握二项分布、泊松分布、均匀分布、正态分布和指数分布。
7.会求简单随机变量函数的分布。
(二)重点1.离散型随机变量的分布列和分布函数的概念及性质。
2.连续型随机变量的密度函数和分布函数的概念及性质。
3.掌握二项分布、泊松分布、均匀分布、正态分布和指数分布。
4.随机变量的一些简单函数的概率分布的求法。
(三)难点1.离散型随机变量的分布列与分布函数的关系。
2.连续型随机变量的密度函数与分布函数的关系。
3.随机变量函数的分布的计算。
二、重点内容简介§1 随机变量的概念及分类定义定义在样本空间Ω上的一个实值函数X=X(ω),使随机试验的每一个结果ω都可用一个实数X(ω)来表示,且实数X满足1)X是由ω唯一确定;2)对于任意给定的实数x,事件{X≤x}都是有概率的,则称X为一随机变量,一般用大写字母X,Y,Z等表示。
引入随机变量后,随机事件就可以通过随机变量来表示,这样,我们就把对事件的研究转化为对随机变量的研究。
随机变量一般可分为离散型和非离散型两大类。
非离散型又可分为连续型和混合型。
由于在实际工作中我们经常遇到的是离散型和连续型的随机变量,因此一般情况下我们仅讨论这两个类型的随机变量。
§2 随机变量的分布函数及其性质定义 设X 为一随机变量,x 是任意实数,称函数 F(x)=P(X ≤x) (-∞<x<+∞) 为随机变量X 的分布函数。
分布函数是一个以全体实数为其定义域,以事件{ω|∞<X(ω)≤∞}的概率为函数值的一个实值函数。
分布函数具有以下的基本性质: 1) 0≤F(x )≤1;2) F(x )是非减函数; 3) F(x )是右连续的; 4)lim ()0,lim ()1;x x F x F x →−∞→+∞==设随机变量X 的分布函数为F(x ),则可用F(x )来表示下列概率:(1) ()();(2) ()(0);(3) ()1()1();(4) ()1()1(0);(5) ()()()()(0);(6) (||)()()()(0)();P X a F a P X a F a P X a P X a F a P X a P X a F a P X a P X a P X a F a F a P X a P a X a P X a P X a F a F a ≤=<=−>=−≤=−≥=−<=−−==≤−<=−−<=−<<=<−≤−=−−−§ 3 离散型随机变量1 定义定义 如果随机变量X (ω)所有可能取值是有限个或可列多个,则称X (ω)为离散型随机变量(discrete random variable )简写作d .r .v .。
概率统计教学资料-1-2节第2章随机变量及其分布

因此事件A在n次试验中发生k次的概率为
n
P (X k ) C n kp k q n k ,k 0 ,1 , ,n
C
k n
p
k
q
n k C n 0 p 0 q n C n 1 p q n 1 C n n p n q 0 1
.
k 0
2019/11/18
13
二项分布(Binomial distribution)
k! n
nn
li(1 m )n k li(1 m )nli(1 m ) k
n nln in C lnm in k m p (1kqn nn )k nn ( k )k !ee n ,k0,1,2,
2019/11/18
将 样 本 空 间 与 实 数 值 之 间 建 立 一 种 对 应 关 系 , 以 便 利 用 数 学
分 析 的 方 法 对 随 机 试 验 的 结 果 进 行 深 入 广 泛 的 研 究 和 讨 论 .
2019/11/18
4
1. 随机变量的定义
定义: 设随机试验E的样本空间为 S {e}, 若对于每 一个样本点 eS, 变量X 都有唯一确定实数与之对应, 则X是定义在 S上的单值实函数, 即 XX(e), 称
辆汽车通过的概率.
解: 由题意知
P(X0)0e0.2, 则1.61.
0! 而 P ( X 1 ) 1 P ( X 0 ) P ( X 1 )
10.21 e 1 0 .2 1 .6 0 1 .2
1!
0.478.
2019/11/18
19
P ( X 2 ) P ( A ) P ( A B ) P ( B |A ) 0 . 7 0 . 8 5 0 . 6
随机变量

• 例1:“抛硬币”实验 • 样本空间S={正面,反面}={e}
令X=X(e)=
1 0 当e=正面 当e=反面
• 则X=X(e)为一离散型随机变量。 • 例2:“掷骰子”实验 • 样本空间S={e}={1,2,3,4,5,6} • 令X=X(e)=e, • 则X=X(e)=e为一离散型随机变量。
• 5、多维随机变量 • 二维随机变量: • 定义:设随机实验E的样本空间为S={e},X=X(e)和 Y=Y(e)是定义在S上的随机变量,则称(X,Y)为二维 随机变量。
x1 <x 2
• 二维随机变量的分布函数(联合分布函数) • 定义:设(X,Y)是二维随机变量,对于任意实 数,x,y的二元函数 • F(x,y)=P(X<=x,Y<=y) • 称为二维随机变量(X,Y)的分布函数(联合分 布函数)。其中P(X<=x,Y<=y)表示随机变量 X<=x,Y<=y的概率。 • 二维随机变量的联合概率密度函数 • 定义:若存在分布函数F(x,y)连续,且存在 二阶混合偏导数。
第1章 随机变量(复习)
复习一下随机变量,为后面学随机过程打 基础
§1.1 随机变量及其分布
• 1、随机变量的概念 定义:设E为一个随机实验,其样本空间为S={e}, 若对每一个 e S 都有一个实数X(e)与之对应,而 且对于任何实数x,X(e)<=x有确定的概率,则称 X(e)为随机变量。
xi x
F(x)= p (t ) 连续型:
x
F ( x)是p(x)的一个原函数, 则:
dF ( x) p ( x) dx F ( x2 ) F ( x1 ) p( x)dx
随机变量定义

第一节 随机变量
一、随机变量的定义
1.引入随机变量的原因
① 随机试验表现出来的随机现象种类繁多,要把众多的随机 现象的统计规律完全掌握是不现实的; ②即使某些简单的随机试验的统计规律容易掌握,也是从静态的 角度去把握。 例1、一口袋中有m+n个完全相同的小球,m个红球,n个白球, 从中任取一球。 引入如下的量化指标:
事件及 事件概率 随机变量及其 取值规律
二、随机变量的分布函数
1.随机变量分布函数的定义
设X是一个随机变量,称定义在(-∞,+∞),取值在【0,1】 上的函数F ( x ) P( X Nhomakorabea x )
为随机变量X的分布函数。其中,X表示随机变量,x表示随机变量 的取值。 例一:一口袋中装有六个完全相同的小球,分别标以标号1,2, 2,3,3,3,从中任取一球。用X表示取得的球上的标号,球X的分布 函数,并画出分布函数图形。
随机变量分布函数F(x)的性质: (1)0≤F(x) ≤1;
(2)单调不减的。即若x1<x2,则F(x1) ≤F(x2);
F ( x) 0, lim F ( x) 1 (3) xlim x
(4)右连续性。
例2.已知F(x1) F(x2) 是分布函数,a>0,b>0,且a+b=1, 证明:aF(x1)+bF(x2)也是分布函数。
通过以上分析知道,随机变量具有下列两个特点: 1.它随试验结果的不同而取不同的值,因而在试验之前只知 道它可能取值的范围,而不能预先肯定它将取哪个值. ; 2.随机变量取各值的可能性大小有确定的统计规律性。
随机变量概念的产生是概率论发展史 上的重大事件.引入随机变量后,对随机 现象统计规律的研究,就由对事件及事 件概率的研究扩大为对随机变量及其取 值规律的研究.
概率论数理统计课件第6讲

(2) X的分布函数为
F x
x
5 3 5 3 (3) P X F F 2 2 2 2 1 0.9375 0.0625
2.3.3 常见的连续型随机变量
均匀分布、指数分布、正态分布
1. 均匀分布 (Uniform) 若随机变量X 的概率密度为:
(2).
f ( x) dx 1;
这两条性质是判定函数 f(x) 是否为某随机变量 X 的概率密度函数的充 要条件。
f(x)与x轴所围 面积等于1。
(3). 对 f(x)的进一步理解:
若x是 f(x)的连续点,则 x x f (t )dt P( x X x x) x lim lim x 0 x 0 x x =f(x), 故, X的概率密度函数f(x)在 x 这一点的值, 恰 好是X 落在区间 [x , x +△x]上的概率与区间长 度△x 之比的极限。 这里, 如果把概率理解为 质量,f (x)相当于物理学中的线密度。
这100个数据中,最小值是128,最大值是155。
作频率直方图的步骤
(1). 先确定作图区间 (a, b); a = 最小数据-ε/ 2,b = 最大数据+ε/ 2,
ε 是数据的精度。 本例中 ε = 1, a = 127.5, b = 155.5 。
(2). 确定数据分组数 m = 7, 组距 d = (b − a) / m=28/7=4,
1
。
p k 0, k 1,2,,
2。
p
k 1
k
1.
随机变量X 的所有取值 随机变量X的 各个取值所 对应的概率
常用的离散型随机变量的分布
1.两点分布( 0-1分布) 模型:一个人射击,射中的概率为p,不中的概 率为 q=1-p. 规定:
概率论与数理统计教案随机变量及其分布

概率论与数理统计教案-随机变量及其分布教案章节一:随机变量的概念1.1 教学目标了解随机变量的定义与分类理解随机变量分布函数的概念掌握随机变量期望的计算方法1.2 教学内容随机变量的定义随机变量的分类:离散型与连续型随机变量分布函数的定义与性质随机变量期望的计算方法1.3 教学方法采用讲授法,讲解随机变量的概念及其分类通过例题,讲解随机变量期望的计算方法开展小组讨论,巩固随机变量分布函数的理解教案章节二:离散型随机变量的概率分布2.1 教学目标掌握离散型随机变量的概率分布的定义与性质学会计算离散型随机变量的概率分布理解离散型随机变量期望与方差的计算方法2.2 教学内容离散型随机变量的概率分布的定义与性质几种常见的离散型随机变量概率分布:伯努利分布、二项分布、几何分布、泊松分布离散型随机变量期望与方差的计算方法2.3 教学方法采用讲授法,讲解离散型随机变量的概率分布的定义与性质通过例题,讲解几种常见的离散型随机变量概率分布的计算方法开展小组讨论,巩固离散型随机变量期望与方差的计算方法教案章节三:连续型随机变量的概率密度3.1 教学目标理解连续型随机变量的概念掌握连续型随机变量的概率密度的定义与性质学会计算连续型随机变量的概率密度3.2 教学内容连续型随机变量的概念连续型随机变量的概率密度的定义与性质几种常见的连续型随机变量概率密度:均匀分布、正态分布、指数分布3.3 教学方法采用讲授法,讲解连续型随机变量的概念及其概率密度的定义与性质通过例题,讲解几种常见的连续型随机变量概率密度的计算方法开展小组讨论,巩固连续型随机变量概率密度的理解教案章节四:随机变量的期望与方差4.1 教学目标理解随机变量期望与方差的概念与性质掌握计算随机变量期望与方差的方法学会运用期望与方差描述随机变量的特征4.2 教学内容随机变量期望与方差的概念与性质计算随机变量期望与方差的方法期望与方差在描述随机变量特征中的应用4.3 教学方法采用讲授法,讲解随机变量期望与方差的概念与性质通过例题,讲解计算随机变量期望与方差的方法开展小组讨论,巩固期望与方差在描述随机变量特征中的应用教案章节五:随机变量及其分布的综合应用5.1 教学目标掌握随机变量及其分布的基本知识学会运用随机变量及其分布解决实际问题培养运用概率论与数理统计思维分析问题的能力5.2 教学内容随机变量及其分布的综合应用实例实际问题中随机变量及其分布的建模方法运用概率论与数理统计思维分析问题的方法5.3 教学方法采用案例教学法,讲解随机变量及其分布的综合应用实例通过实际问题,讲解随机变量及其分布的建模方法开展小组讨论,培养运用概率论与数理统计思维分析问题的能力教案章节六:大数定律与中心极限定理6.1 教学目标理解大数定律的含义及其在实际中的应用掌握中心极限定理的条件及其意义学会运用大数定律和中心极限定理分析随机变量序列的性质6.2 教学内容大数定律的定义及其表述中心极限定理的定义及其表述大数定律和中心极限定理在实际中的应用6.3 教学方法采用讲授法,讲解大数定律和中心极限定理的定义及其表述通过例题,讲解大数定律和中心极限定理在实际中的应用开展小组讨论,巩固大数定律和中心极限定理的理解教案章节七:随机样本及抽样分布7.1 教学目标理解随机样本的概念掌握抽样分布的定义及其性质学会计算样本统计量的分布7.2 教学内容随机样本的概念抽样分布的定义及其性质样本统计量的分布的计算7.3 教学方法采用讲授法,讲解随机样本的概念和抽样分布的定义及其性质通过例题,讲解计算样本统计量的分布的方法开展小组讨论,巩固抽样分布的理解教案章节八:假设检验与置信区间8.1 教学目标理解假设检验的基本原理掌握构造检验统计量的方法学会判断假设检验的结果8.2 教学内容假设检验的基本原理构造检验统计量的方法假设检验的结果的判断8.3 教学方法采用讲授法,讲解假设检验的基本原理和构造检验统计量的方法通过例题,讲解判断假设检验结果的方法开展小组讨论,巩固假设检验的理解教案章节九:回归分析与相关分析9.1 教学目标理解回归分析的概念及其应用掌握线性回归模型的建立与估计学会利用回归分析解决实际问题9.2 教学内容回归分析的概念及其应用线性回归模型的建立与估计利用回归分析解决实际问题9.3 教学方法采用讲授法,讲解回归分析的概念及其应用和线性回归模型的建立与估计通过例题,讲解利用回归分析解决实际问题的方法开展小组讨论,巩固回归分析的理解教案章节十:总结与展望10.1 教学目标总结本门课程的主要内容和知识点了解概率论与数理统计在实际中的应用激发学生继续学习概率论与数理统计的兴趣10.2 教学内容本门课程的主要内容和知识点的总结概率论与数理统计在实际中的应用对未来学习的展望10.3 教学方法采用讲授法,总结本门课程的主要内容和知识点通过案例分析,讲解概率论与数理统计在实际中的应用鼓励学生发表对概率论与数理统计学习的看法和展望重点和难点解析:1. 随机变量的概念与分类:理解随机变量的定义以及离散型和连续型随机变量的区别是本章节的核心。
随机变量的基本概念

随机变量的基本概念随机变量是概率论与数理统计中的重要概念,它是对随机试验结果的数值化描述。
在实际问题中,我们常常需要研究某个随机试验的结果与某个数值之间的关系,这时就需要引入随机变量来描述试验结果的数值特征。
一、随机变量的定义随机变量是定义在样本空间上的实值函数,它的取值是由随机试验的结果决定的。
随机变量可以是离散的,也可以是连续的。
离散随机变量:如果随机变量的取值是有限个或可列无限个,那么它就是离散随机变量。
例如,掷一枚骰子,随机变量X表示出现的点数,X的取值为1、2、3、4、5、6。
连续随机变量:如果随机变量的取值是一个区间上的任意实数,那么它就是连续随机变量。
例如,某地一天的降雨量,随机变量X表示降雨量的大小,X的取值范围是[0, +∞)。
二、随机变量的分布函数随机变量的分布函数是描述随机变量取值概率的函数。
对于离散随机变量,分布函数可以用概率质量函数来表示;对于连续随机变量,分布函数可以用概率密度函数来表示。
离散随机变量的分布函数:设X是一个离散随机变量,其取值为x1、x2、x3、...,对应的概率为p1、p2、p3、...,则X的分布函数F(x)定义为F(x)=P(X≤x)=p1+p2+...+pk,其中k为使得xk≤x的最大整数。
连续随机变量的分布函数:设X是一个连续随机变量,其概率密度函数为f(x),则X的分布函数F(x)定义为F(x)=∫f(t)dt,其中积分区间为(-∞, x)。
三、随机变量的概率密度函数和概率质量函数概率密度函数和概率质量函数是描述随机变量取值概率的函数。
离散随机变量的概率质量函数:设X是一个离散随机变量,其取值为x1、x2、x3、...,对应的概率为p1、p2、p3、...,则X的概率质量函数p(x)定义为p(x)=P(X=x),其中x为X的取值。
连续随机变量的概率密度函数:设X是一个连续随机变量,其概率密度函数为f(x),则X的概率密度函数f(x)满足以下两个条件:1. f(x)≥0,对于任意的x∈(-∞, +∞);2. ∫f(x)dx=1,其中积分区间为(-∞, +∞)。
概率统计 第二章 随机变量及其分布

引入适当的随机变量描述下列事件: 例1:引入适当的随机变量描述下列事件: 个球随机地放入三个格子中, ①将3个球随机地放入三个格子中,事件 A={有 个空格} B={有 个空格} A={有1个空格},B={有2个空格}, C={全有球 全有球} C={全有球}。 进行5次试验, D={试验成功一次 试验成功一次} ②进行5次试验,事件 D={试验成功一次}, F={试验至少成功一次 试验至少成功一次} G={至多成功 至多成功3 F={试验至少成功一次},G={至多成功3次}
例2
xi ∈( a ,b )
∑
P( X = xi )
设随机变量X的分布律为 设随机变量X
0 1 2 3 4 5 6 0.1 0.15 0.2 0.3 0.12 0.1 0.03
试求: 试求:
P( X ≤ 4), P (2 ≤ X ≤ 5), P ( X ≠ 3)
0.72 0.7
F ( x) = P{ X ≤ x} =
k : xk ≤ x
∑p
k
离散型随机变量的分布函数是阶梯函数, 离散型随机变量的分布函数是阶梯函数 分布函数的跳跃点对应离散型随机变量的 可能取值点,跳跃高度对应随机变量取对应 可能取值点 跳跃高度对应随机变量取对应 值的概率;反之 反之,如果某随机变量的分布函数 值的概率 反之 如果某随机变量的分布函数 是阶梯函数,则该随机变量必为离散型 则该随机变量必为离散型. 是阶梯函数 则该随机变量必为离散型
X
x
易知,对任意实数a, 易知,对任意实数 b (a<b), P {a<X≤b}=P{X≤b}-P{X≤a}= F(b)-F(a) ≤ = ≤ - ≤ = -
P( X > a) = 1 − F (a)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机变量的定义及分类
随机变量是概率论中的重要概念,它是指一种随机试验中可能发生的
某种事件或结果。
下面将会从定义、分类两个方面来详细介绍随机变量。
一、定义
随机变量可以用数学式子来表示,在一些可能发生的结果中,随机变
量X可以代表某种结果的取值,比如抛硬币出现正面朝上的概率,X可以表示正面朝上时的取值为1;反面朝上时的取值为0。
换言之,随机
变量X就是一个函数,用于描述随机事件中某种结果的取值。
二、分类
2.1 离散型随机变量:如果随机变量X只能取有限个或可数个数值时,那么X就是离散型随机变量。
比如,抛一枚硬币正面朝上的概率为
1/2,反面朝上的概率也为1/2,用0表示反面朝上,1表示正面朝上,那么X就是一个离散型随机变量。
2.2 连续型随机变量:如果随机变量X的取值可以是从一个范围内的
任意数,那么X就是连续型随机变量。
比如,取人的身高作为X值,
虽然人的身高并不是无限小数,但是因为可以无限分割人的身高,所
以X是连续型随机变量。
2.3 二项分布随机变量:二项分布随机变量是指在重复的n次独立试
验中,每次试验只有两种结局的事件(成功或失败),且每次试验成
功的概率相等。
比如,在10次抛掷硬币的过程中,每次正面朝上的概
率是相等的,试验结果可以用二项分布随机变量X表示。
2.4 正态分布随机变量:正态分布随机变量也叫高斯分布随机变量,
通常被用于描述一些连续型随机变量。
其概率密度函数呈钟形,且均值、方差完全决定了正态分布曲线的性质。
此类随机变量在自然界的
统计学中有广泛应用。
综上所述,随机变量是概率论中的一个基本概念,主要包含离散型随
机变量、连续型随机变量、二项分布随机变量、正态分布随机变量等
类型。
对不同类型的随机变量,需要采用不同的计算方法和应用方式。