NF-kb信号通路

合集下载

NF-KB信号通路综述

NF-KB信号通路综述
在Toll-like/IL-1信号通路中, TRAF6可与受体复合物发生作用, 激活IKK。但是, TRAF6的E3连接酶作用机制也是需要进一步证明 的。
因此,在NF-κB信号通路中, TRAF2、TRAF5和 TRAF6在激活IKK复合物方面起着重要的作用。
另外, TRAF蛋白家族成员中, TRAF3也是较广泛的研究成员。 ★ TRAF3是既可以介导NF-κB经典信号通路,也可以介导非经典 信号通路。在经典信号通路中, 其可以与受体直接作用激活IKK复合 物。而在非经典信号通路中, TRAF3通过NIK(NF-κB诱导激酶)激活 IKKα,从而激活信号通路。
是其具体作用机制还需要深入研究。
在TNFR1信号通路中,单一的敲 除TRAF2或TRAF5, NF-κB信号 通路的激活仍会出现。但是双敲除 TRAF2和TRAF5,则会造成 NFκB信号通路中,IKK复合物的激活 出现缺陷。因此,在TNFR1信号 通路中,需要TRAF2和TRAF5的 共同作用。
2
NF-κB二聚体的存在方式
一般, NF-κB是以二聚体的形式存在的,而它的二聚体又有两种 存在方式。
NF-κB二聚体与IκB蛋白结合 NF-κB二聚体与DNA结合
NF-κB二聚体结构
★ 氨基末端为免疫球蛋白相似区域,对某一种形式的κB位点具有选 择性。
★ C-末端疏水区域提供NF-κB各亚基之间的连接。
虽然一些实验证明在IKK复合物中,可能会含有一些其他成分,,如
IKK关联蛋白1( IKKAP1) 、促分裂原活化蛋白激酶1 (MEKK1) 、NF-κB
诱导激酶(NIK) 及调节蛋白IKAP 等,但是需要进一步的证明。
IKK复合物各组分的作用
IKKα:在经典的NF-κB信号途径中, IKKα并不是必需的。

NF-kb信号通路

NF-kb信号通路

NF-KB与微循环障碍目前经研究发现。

发现有四种,今天我代表我们小组给大家讲解其中的一种,即nf kb 在接下来的十分钟我们要解决四个问题1什么是NFKB2他又有怎样的结构特征3在细胞中信号是如何进行传导的4对生命活动又有怎样的意义于1986年,Sen 等首次从鼠B淋巴细胞核提取物在信号通路子-KB(nuclear factor-kappa B,NF-KB)•蛋白家族是一种多效性的转录因子,可以与多种基启动子部位的KB位点发生特异性的结合从而促进其转录表达。

其受氧化应激、细菌脂多糖,细胞因子等多种刺激而活化后,能调控前炎症性细胞因子、细胞表面受体、转录因子、粘附分子等的生成。

而这些刺激因素及其调控的因子与微循环障碍的发生、发展均有着密切的关系。

本文就NF-KB的组成结构,•活化调节及与微循环障碍的关系等方面做一综述,以期从一新的角度阐述微循环障碍发生的机制及改善的途径。

1.NF-KB的概述1.1 NF-KB/Rel蛋白家族及结构1986年,Sen 等首次从鼠B淋巴细胞核提取物中,发现一种能与免疫球蛋白K轻链基因增强子KB序列(GGGACTTTCC)特异结合,调节其基因表达的核蛋白因子,•称之为NF-KB。

随后大量的研究又陆续发现了NF-KB•家族的其它成员,•其构成亚基分别是NF-•KB1 (P50)、NF-KB2(P52)、P65(RelA)、c-Rel(Rel)、RelB等,因这些亚基的N-末端均崐有约300个氨基酸残基的Rel同源区(rel homology domain ,RHD)•,•故统称为NF-KB/Rel蛋白家族。

其RHD 内含DNA结合区,二聚体化区和核定位序列,分别具有与DNA KB序列结合、与同源或异源亚基二聚体化以及与NF-KB抑制蛋白(IKB)家族成员相互作用并携带核定位信号(NLS),参与活化的NF-KB由细胞质向细胞核的迅速移动等功能。

又根据结构、功能和合成方式的不同,Rel蛋白分为两类。

NF-KB信号通路

NF-KB信号通路

2
在Toll-like/IL-1信号通路中, TRAF6可与受体复合物发生作用, 激活IKK。但是, TRAF6的E3连接酶作用机制也是需要进一步证明。
因此,在NF-κB信号通路中, TRAF2、TRAF5和
TRAF6在激活IKK复合物方面起着重要的作用。
32
TRAF蛋白家族成员中, TRAF3也是较广泛的研究成员。 ★ TRAF3是既可介导NF-κB经典信号通路,也可介导非经典信号 通路。在经典信号通路中,其可与受体直接作用激活IKK复合物。而 在非经典信号通路中, TRAF3通过NIK(NF-κB诱导激酶)激活 IKKα,从而激活信号通路。
27
28
1. TRAFs——TNF受体相关因子
▲ TNF受体相关因子---TRAFs家族成员是一大类胞内接头蛋白,能直 接或间接与多种TNF 和IL-1/Toll-like 受体家族成员结合。介导多种下游 信号通路的信号传导 ,其中包括NF-κB 信号通路。从而影响细胞的生存 、增殖、分化和死亡,并参与多个生物学过程的调控。
9
NF-κB二聚体的存在方式
一般, NF-κB是以二聚体的形式存在的,而它的二聚体 又有两种存在方式。
NF-κB二聚体与IκB蛋白结合
NF-κB二聚体与DNA结合
NF-κB二聚体结构
★ 氨基末端为免疫球蛋白相似区域,对某一种形式的κB位点具 有选择性。
★ C-末端疏水区域提供NF-κB各亚基之间的连接。
4
NF-κB信号通路
NF-κB经典 和非经典通路
NF-κB的 经典信号通路 和非经典信号通路的主 要区别就在于:
☆经典信号通路中, IκB 蛋白的降解使NF-κB二聚 体得到释放。
☆非经典信号通路中,通 过P100到P52的加工处理, 使信号通路激活。

NF-κB信号通路与炎症反应

NF-κB信号通路与炎症反应
A)、Rel B和Rel(c—Rel)蛋白。NF—KB家族成员的
诱导阶段 潜伏阶段
功能可能存在互补性,这些蛋白可以诱导成百上千 种基因的表达…;NF-KB的诱导过程既包括抑制物 的消除,又包括多种次级共价修饰过程,其诱导过程 存在多种生物化学机制;NF—KB的活化会与很多转 录调节因子的活化整合在一起旧J。 NF.KB在维持机体的正常生理功能中起很重要 的作用。经典的NF.KB信号通路与机体的自身免 疫有关∞J,脊椎动物的炎症反应就是自身免疫的重 要表现形式,这是一个包含很多步骤的复杂过程,既
表达量很低,称为“基础水平”,即处于潜伏阶段。
这种处于潜伏阶段的基因中部分基因在诱导前虽然 一直处于静止状态,只要与NF—KB结合即可以表
达,这种基因通常具有未甲基化的CpG区域;而另
由NF—KB通过非经典通路诱导调节的。NF.KB也 可以保护机体免受其他伤害,比如有毒的化学物质 和射线等。此外,NF.KB信号通路在细胞凋亡、细胞 周期调控与细胞分化等也起重要的调节作用。 本文将对NF—KB介导炎症反应的相关研究进
△通阶段:潜伏阶段、诱导阶段、应答阶段和消退阶段。 这几个阶段各具特点并包含了精细的分子调节过程
(图1)。
万方数据
生堡挝堂进屋垫!堡生筮笪鲞筮!翅
的沉默状态,这是因为NF.KB存在部分非诱导的随 机活化,因此保证下游基因不会对此种活化产生应 答是很重要的;Rel.B和c—Rel同样有表达,由于编 码这些NF.KB/Rel家族的基因同样需要NF—KB的 诱导,所以其在潜伏期的表达量较少B J。 (二)诱导阶段NF—KB活化的诱导物种类很 多:包括促炎因子、TNF仅(肿瘤坏死因子d)、整合 素1、抗原、谷氨酸盐、AngⅡ(血管紧张素Ⅱ)、损伤 DNA的化学物质和辐射以及近期引起广泛关注的 PM2.5等心'5’6J。每一个诱导物都可以被细胞表面 或细胞内的受体所识别和结合,进而引起信号转导 过程。其中,AngⅡ刺激NF—KB的活化后可以抑制 小鼠心肌纤维母细胞中rIliR-26a的表达,使胶原蛋 白I和CTGF(结缔组织生长因子)表达增加,从而 引起心肌纤维化M J。另外,某些信号通路的活化也 会诱导产生NF—KB的活化,比如Notch信号通路的 活化。近期有研究表明Notch信号通路可以通过活 化NF—KB诱导小鼠巨噬细胞中白细胞介素6(IL_6) 的表达"J,IL一6是一种多效性的促炎因子,在慢性炎 症反应的发生和发展中到重要的作用。 这些诱导物和信号通路分别通过不同的机制产 生活化作用。对于这些活化机制并没有统一的解 释,但其过程中都包含了信号蛋白复合物的形成和 泛素聚合物的形成。这些复合物的共同点是它们都 能活化IKK(IKB激酶)复合物,IKK复合物通常由 三种主要的蛋白构成:IKK仅、IKKB和IKK^y。IKKB 能够磷酸化与p65.p50异二聚体结合的IKB,而后 IKB上的Lys48发生多聚泛素化,从而迸一步被蛋 白酶体降解¨1。 IKB被降解后,p65一p50异二聚体进入细胞核, 与DNA上的特定位点结合,这些特定位点被称作 KB位点(图2)。诱导不仅是NF—KB进人细胞核的 过程,同时还包含NF—KB亚族的共价修饰旧,8j。这 些共价修饰具有一定的基因特异性:某些基因的诱 导在一定程度上依赖于共价修饰;另一些基因不依 赖于这种共价修饰,敲除与共价修饰相关的基因并 不影响其表达旧j。被NF—KB活化的基因除了上文 中提到的以外,还包括编码NF.KB亚族的基因。因 此,在诱导后,NF—KB亚族形成复杂的混合物,所形 成的二聚体此后继续参与NF—KB的诱导过程当中, 特别是c—Rel一p50和p65一p65。 NF—KB诱导产生的细胞因子中与慢性炎症反应 相关的包括促炎因子、趋化因子、粘附因子以及产生 次级炎症介质的酶,比如环氧合酶.2(cOx-2)和诱 万方数据

NF-KB信号通路综述

NF-KB信号通路综述
☆3.被激活的IKK可磷酸化下游的酶作 用底物(如IκB s),从而激活NF-κB信号通 路。
被激活的IKK还可磷酸化IKKβ的丝氨酸 740和NEMO的丝氨酸68,使得NEMO二聚体与IKK 的分离,阻止激酶的反复激活。
☆ TRAF蛋白家族:
TRAF蛋白家族一共有7个成员,分别是TRAF1、 TRAF2、 TRAF3、 TRAF4、 TRAF5、 TRAF6、 TRAF7。
TRAF蛋白的结构
TRAF蛋白质在结构上具有很 高的同源性,同源性一般大于30%, 其特征性的结构是所有成员在羧基 端都有一个C-末端TRAF结构域,即 包括一个卷曲螺旋结构,介导同型 和异型蛋白之间的相互作用。
181ikk复合物ikk又称ikk185kdikk又称ikk287kdnemo又称ikk48kd具有较高的序列同源性和相似的结在n末端均含有蛋白激酶区靠近中间区域的亮氨酸拉链区lz及螺旋环螺旋hlh包括大段的卷曲螺旋coiledcoil及靠近c末端的亮氨酸拉链区虽然一些实验证明在ikk复合物中可能会含有一些其他成分如ikk关联蛋白1ikkap1促分裂原活化蛋白激酶1mekk1nfb诱导激酶nik及调节蛋白ikap等但是需要进一步的证明
☆ RIPs既可以通过蛋白结合区域直接作用于信号通路的上游, 也可以通过与NEMO结合激活IKK复合物。并且,在大多数的TRAF依赖型 信号通路中, RIPs都被牵涉其中。
☆ RIP蛋白家族一共有7个成员,分别为RIP1-7。
域。
☆ RIP蛋白的结构特征是:都具有保守的丝氨酸/苏氨酸激酶区
三.IκB激酶的结构和激活方式
在Toll-like/IL-1信号通路中, TRAF6可与受体复合物发 生作用,激活IKK。但是, TRAF6的E3连接酶作用机制也是需要进一 步证明的。

NF-KB信号通路综述

NF-KB信号通路综述

1. TRAFs——TNF受体相关因子
▲ TNF受体相关因子TRAFs家族成员是一大类胞内接头蛋白,能直
接或间接与多种TNF 和IL-1/Toll-like 受体家族成员结合。介导多种下游 信号通路的信号传导 ,其中包括NF-κB 信号通路。从而影响细胞的生
存、增殖、分化和死亡,并参与多个生物学过程的调控。
TRAFS的功能 1
通过TRADD,TRAF2和 TNF-α的 受体TNFR1结合,向下传递信号, 激活IKK。在此过程中,其RING 指区域作为E3连接酶是必须的。但 是其具体作用机制还需要深入研究。 在TNFR1信号通路中,单一的敲 除TRAF2或TRAF5, NF-κB信号 通路的激活仍会出现。但是双敲除 TRAF2和TRAF5,则会造成 NFκB信号通路中,IKK复合物的激活 出现缺陷。因此,在TNFR1信号 通路中,需要TRAF2和TRAF5的 共同作用。
★ C-末端疏水区域提供NF-κB各亚基之间的连接。
背景3
IκB蛋白家族
IκB蛋白家族包括七个成员: IκBα、IκBβ、 IκBζ 、IκBε、 Bcl-3、p100和p105 。 作用:在细胞质中与NF-κB二 聚体结合,并对信号应答具有 重要作用。 IκB蛋白的结构特点:存在锚蛋 白重复区域(即多个紧密相连 的钩状重复序列,每个重复序 列含有33个氨基酸 )。
录。
NF-κB信号通路
NF-κB经典和非经典通路
NF-κB的 经典信号通路和非 经典信号通路的主要区别就在 于: ☆在NF-κB的 经典信号通路 中, IκB蛋白的降解使NF-κB 二聚体得到释放。 ☆而在NF-κB非经典信号通路 中,则是通过P100到P52的加
工处理,使信号通路激活。
背景2

NF-kb信号通路

NF-kb信号通路

NF-KB与微循环障碍核因子-KB(nuclear factor-kappa B,NF-KB)•蛋白家族是一种多效性的转录因子,可以与多种基启动子部位的KB位点发生特异性的结合从而促进其转录表达。

其受氧化应激、细菌脂多糖,细胞因子等多种刺激而活化后,能调控前炎症性细胞因子、细胞表面受体、转录因子、粘附分子等的生成。

而这些刺激因素及其调控的因子与微循环障碍的发生、发展均有着密切的关系。

本文就NF-KB的组成结构,•活化调节及与微循环障碍的关系等方面做一综述,以期从一新的角度阐述微循环障碍发生的机制及改善的途径。

1.NF-KB的概述1.1 NF-KB/Rel蛋白家族及结构1986年,Sen 等首次从鼠B淋巴细胞核提取物中,发现一种能与免疫球蛋白K轻链基因增强子KB序列(GGGACTTTCC)特异结合,调节其基因表达的核蛋白因子,•称之为NF-KB。

随后大量的研究又陆续发现了NF-KB•家族的其它成员,•其构成亚基分别是NF-•KB1 (P50)、NF-KB2(P52)、P65(RelA)、c-Rel(Rel)、RelB等,因这些亚基的N-末端均崐有约300个氨基酸残基的Rel同源区(rel homology domain ,RHD)•,•故统称为NF-KB/Rel蛋白家族。

其RHD内含DNA结合区,二聚体化区和核定位序列,分别具有与DNA KB序列结合、与同源或异源亚基二聚体化以及与NF-KB抑制蛋白(IKB)家族成员相互作用并携带核定位信号(NLS),参与活化的NF-KB由细胞质向细胞核的迅速移动等功能。

又根据结构、功能和合成方式的不同,Rel蛋白分为两类。

•一类为P50(•NF-•KB1)和P52(•NF-•KB2),•分别由含有C-末端锚蛋白重复序列(ahkrin ••repeat motif)的前体蛋白p105和p100通过ATP依赖蛋白水解过程裂解而形成。

该类蛋白含有RHD,但缺乏转录活性区,无独立激活基因转录的功能。

NF-κB信号通路

NF-κB信号通路

已证实异常的炎症反应在自身免疫性疾病的发生和发展中起到决定性作用。

很多学者认为患者对自身免疫性疾病的易感性,甚至疾病的严重度来说,基因起到至关重要的作用。

但近年来发现某些环境因素可能也会影响,甚至决定疾病的病程发展。

目前已有证据表明核转录因子NF -KB可能通过信号传导通路,调控基因的表达,从而参与了很多自身免疫性和炎症性疾病的发生和发展。

在正常情况下,NF-KB位于细胞胞浆内,一般由两个功能亚单位,即P65和P50所组成,同时和其天然性的抑制因子IKB-a和IKB-b结合在一起,而后者阻止NF-KB进入细胞核,调控相关的靶基因。

一旦细
胞受到刺激(感染、氧化和抗原等),IKB磷酸化,相应的蛋白酶体发生降解,NF—KB激活,进入细胞核,与靶基因结合,后者可产生大量的炎症介质(如白介素1b和肿瘤坏死因子a),引起炎症反应的发生,同时基因的产物会进一步激活NF-KB,从而扩大局部的异常炎症反应。

已知糖皮质激素可以抑制某些转录因子和相应基因的表达,如AP-1和NF—KB,从而抑制炎症反应。

有证据显示,糖皮质激素可能是目前最强力的NF-KB抑制因子。

糖皮质激素可通过结合糖皮质激素受体,抑制活化的NF-KB(细胞胞浆内和细胞核核内),同时能抑制NF-KB 与靶基因结合,起到抑制异常炎症反应的作用。

最新研究显示,糖皮质激素还能增加NF-KB的抑制因子IKB的转录和表达
综上所述,糖皮质激素具有非常强的抗炎作用,而后者与其强有力地抑制NF-KB密切相关。

正是由于NF-KB在免疫性疾病中的关键作用,所以前者已做为一种新型的抗炎靶向,成为治疗各种自身免疫性疾病的研究热点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NF-kb信号通路NF-KB与微循环障碍目前经研究发现。

发现有四种,今天我代表我们小组给大家讲解其中的一种,即nf kb 在接下来的十分钟我们要解决四个问题1什么是NFKB2他又有怎样的结构特征3在细胞中信号是如何进行传导的4对生命活动又有怎样的意义于1986年,Sen 等首次从鼠B淋巴细胞核提取物在信号通路子-KB(nuclear factor-kappa B,NF-KB)•蛋白家族是一种多效性的转录因子,可以与多种基启动子部位的KB位点发生特异性的结合从而促进其转录表达。

其受氧化应激、细菌脂多糖,细胞因子等多种刺激而活化后,能调控前炎症性细胞因子、细胞表面受体、转录因子、粘附分子等的生成。

而这些刺激因素及其调控的因子与微循环障碍的发生、发展均有着密切的关系。

本文就NF-KB的组成结构,•活化调节及与微循环障碍的关系等方面做一综述,以期从一新的角度阐述微循环障碍发生的机制及改善的途径。

1.NF-KB的概述1.1 NF-KB/Rel蛋白家族及结构1986年,Sen 等首次从鼠B淋巴细胞核提取物中,发现一种能与免疫球蛋白K轻链基因增强子KB序列(GGGACTTTCC)特异结合,调节其基因表达的核蛋白因子,•称之为NF-KB。

随后大量的研究又陆续发现了NF-KB•家族的其它成员,•其构成亚基分别是NF-•KB1 (P50)、NF-KB2(P52)、P65(RelA)、c-Rel(Rel)、RelB等,因这些亚基的N-末端均崐有约300个氨基酸残基的Rel同源区(rel homology domain ,RHD)•,•故统称为NF-KB/Rel蛋白家族。

其RHD内含DNA结合区,二聚体化区和核定位序列,分别具有与DNA KB序列结合、与同源或异源亚基二聚体化以及与NF-KB抑制蛋白(IKB)家族成员相互作用并携带核定位信号(NLS),参与活化的NF-KB由细胞质向细胞核的迅速移动等功能。

又根据结构、功能和合成方式的不同,Rel蛋白分为两类。

•一类为P50(•NF-•KB1)和P52(•NF-•KB2),•分别由含有C-末端锚蛋白重复序列(ahkrin ••repeat motif)的前体蛋白p105和p100通过ATP依赖蛋白水解过程裂解而形成。

该类蛋白含有RHD,但缺乏转录活性区,无独立激活基因转录的功能。

另一类为p65(RelA),Rel(c-Rel),Rel B和果蝇的dorsal、Dif和Relish,它们没有前体,除N端的RHD外,•其C-端有一个或多个转录活性区,具有直接作用转录设备而激活基因转录的功能。

Rel蛋白成员间可形成多种形式的同源或异源二聚体,•如p50/RelA、•p50/p50、RelA/Rel等,但并不是都可构成二聚体,如RelB只能与p50或p52二聚体化,•而不能构成同源二聚体。

Rel间的二聚化作用是其与DNA结合的特性所决定的,因为KB位点为二元对称结构,二聚体中的每一成员只与半个识别序列发生作用。

而且不同的NF-KB/Rel•蛋白二聚体具有不同的结合序列(KB位点),因而具有各自的特性。

如NF-KB的KB序列为十聚体的5'-GGGRNNYYCC-3',而p65/c-Rel二聚体的KB序列为十聚体的5'-HGGARNYYCC-3',(H代表A,C或T,R代表嘌呤,Y代表嘧啶)。

这样保证了NF-KB/Rel•家族对基因调控的特异性,这种特异性还与细胞类型、亚细胞结构定位、相互作用的IKB•类型及激活的方式等有关。

通常所指的NF-KB的组成为p50/p65异源二聚体,其几乎存在于体内所有细胞,且含量常常最高。

除RHD外,其组分p50有很少其它序列,而P65则有250个氨基酸残基的C-未端,内含2-3•个独立的转录活性区,有增强靶基因转录激活的作用,而且p65的另一个重要功能是与IKB成员直接偶然。

其他的同源或异源二聚体的核因子-KB在体内含量极少,但可能对某些特定的启动子有独特和重要的作用。

Lehming等报道存在于淋巴细胞中p50同源二聚体能以结构型与DNA链KB序列结合,对转录起抑制作用。

讫今为止的体内外实验发现NF-KB/Rel蛋白复合物大多以这样有二种类型存在于胞浆中:同源或异源二聚体与IKB蛋白家族构成的三聚体;Rel蛋白(如p65•)与未裂解的前体(如p105)组成的二聚体。

信号转导可诱导IKB•和p105•磷酸化而降解,•从而使NF-KB活化再由胞浆转核而发挥效应。

1.2 IBK家族IKB蛋白家族成员有IKBα(MAD-3,pp40)、IKBβ、IKBγ/p105、IKBδ/p100、IKBε、Bcl-3以及果蝇属的Cactus等。

•其家族结构特点是均有多个约33•个氨基酸的重复序列,•称为崐SWI6/锚蛋白重复序列,主要参与与Rel蛋白的RHD相互作用。

IKB•蛋白主要有以下三个部分构成:1.与蛋白降解有关的N-末端区;2.能与NF-KB•相互作用的内部区(区内含有锚蛋白重复序列);3.称为PEST的C•-端区,•主要参与“囚禁”NF-KB在细胞浆中。

1.2.1 IKBα,IKBβ主要与含有p65和c-•Rel•的二聚体具有高亲和力,•与其它Rel蛋白亲和力低,是体内NF-KB(p50-p65)的主要调控抑制蛋白。

IKB•α的基因启动子上有KB位点,故其合成也受到NF-KB的调控,因此形成对NF-KB的负反馈调节。

IKBβ则无这种机制。

这种调节差异可致NF-KB调控的靶基因的表达表现在时间上和水平上的差异。

1.2.2 IKBγ, IKBδ作为p50和p52蛋白前体的p105和p100,由于在结构上有能与RHD相互作用锚蛋白的重复序列,在功能上有类于NF-KB抑制剂的作用,因此将之归于IKB•家族,•称为p105/IKBγ,p100/IKBδ。

例如:p105既含有在N-未端区的p50,又含有3-4•个锚蛋白重复序列的C-未端区,因而它既能掩蔽p65、c-Rel,又可以通过蛋白水解释放出p50。

1.2.3 IKBε,Bcl-3 IKBε主要与p65发生抑制作用,专一性地与p65和c-•Rel结合,与IKB α具有多方面的共同特性。

Bcl-3位于胞核,虽然表现出能抑制含有p50•的二聚体,但与p52在DNA上结合后却发挥了转录共激活的功能。

1.3 NF-KB的活化信号转导途径非活化状态的NF-KB以与IKB聚合的三聚体形式或与前体蛋白聚合的二聚体的形式存在于细胞浆中,在多种因素的刺激作用下,通过多种信号转导途径使IKB磷酸化,再在蛋白水解酶作用下发生降解,从而使NF-KB得以活化而转核发挥其调控作用。

•这个过程大致分三部分:1.3.1刺激因素的信号转导:多种因素如细胞因子(TNF-α、IL-1β、IL-2)、病毒(流感病毒、•鼻病毒)、双链ANA、氧化剂、细菌脂多糖、多种抗原及紫外线照射等均是NF-KB活化的刺激信号,能通过多种不同的信号转导途径,由胞外向胞内传递,使NIK(NF-KB-inducing kinase)或活化途径中的其它激酶激活,而致NF-KB的活化。

Cao等提出IL-1的活化途径是:IL-1与胞膜上的IL-1受体(IL-1R)识别结合后,IL-1R 胞浆内组份立即与IL-1R辅助蛋白(IL-1R accessory protein,IL-RAcP)联结,IL-1RAcP再聚集活化一种接合体蛋白髓细胞样分化蛋白(Myeloid differentiation protein MyD88),MyD88再聚集两种丝氨酸/苏氨酸激酶:IL-1受体活化激酶(IL-1 •receptor-•activated •kinase IRAK)•和IRAK2而共同形成受体复合体。

IRAK、IRAK2又随后又跟一种接合体分子TNF•受体结合因子6(TNF receptor-associated factor 6,TRAF6)相互作用。

TRAF-6使IRKA、IRAK2•与NF-KB诱导激酶(NF-KB-inducing kinase NIK)相联结,NIK被激活。

zhang等则通过实验证明,LPS与其受体结合后要通过IL-1的浆内信号介导途径激活NIK.从而活化NF-KB的。

而Takeuchi等揭示TNF•激活NIK•是通过TNF•受体、TNF受体结合死亡区•(TNF •reeeptor •associated •death •domain,TRADD)、TRAF2及丝氨酸/苏氨酸激酶RIP的过程。

双链DNA(double-stranded DNA,dsDNA)和佛波酯(PMA)则分别通过dsDNA依赖的蛋白激酶(dsDNA-dependent•protein kinase, PKR)和PKC、丝裂原激活蛋白激酶(MAPK-PP90rsk)来使IKB磷酸化。

1.3.2 IKB的磷酸化及降解NIK属于丝裂原激活蛋白激酶MAPKKK家族的。

NIK活化IKB激酶复合体IKKα、IKK β, IKKα、IKKβ催化IKB•上Ser32/36磷酸化,•然后IKB•上Lys21/22遍在•蛋白化(ubiquitination),再遍在蛋白连接酶(ubiquitin conjugation enzymes)作用下与蛋白酶小体(proteasome)连接,•在蛋白酶小体作用下IKB降解,NF-KB活化。

1.3.3 NF-KB核转位及调控基因表达。

IKB降解后,暴露NF-KB上的核定位信号,NF-KB迅速发生转核,与调控基因启动子上的KB位点结合,启动基因转录。

2.NF-KB在微循环障碍发生发展中的作用。

NF-KB•活化后能调控一系列基因的表达:如粘附分子家族的细胞间粘附分子-1•(intercellular adhesion nolecule-1,ICAM-1)、•血管细胞粘附分子-1(•vascullar cell adhesion molecule-1,VCAM-1)、E-•选择素(E-•selectin)•、•p-•选择素(P-selectin)前炎症性细胞因子TNF-α、IL-1β、IL-2、IL-6,化学趋化因子单核细胞趋化蛋白-1(Monocyte chemoattoactant protein-1,MCP-1)、IL-8•以及一些受体分子IL-2受体、T细胞受体α、β链,等等。

•而这些物质都能直接或间接地作用于微血管内皮细胞或血细胞或者介导它们之间的相互作用,从而导致微循环障碍。

2.1 NF-KB介导的微管内皮细胞的损伤。

2.1.1炎症性浸润引发的损伤已知ICAM-1基因启动子上有1个基本的NF-KB位点,VCAM-1基因有2个NF-KB位点,E-sel基因有3个NF-KB位点。

相关文档
最新文档