线性代数自测习题及答案
线性代数考试题及答案

线性代数考试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|等于()。
A. 6B. 12C. 24D. 48答案:C2. 若非零向量α和β满足α⊥β,则α和β的内积α·β等于()。
A. 0B. 1C. -1D. 无法确定答案:A3. 设A和B是两个n阶方阵,若AB=BA,则称A和B是可交换的。
若A和B可交换,则下列说法正确的是()。
A. A+B也是可交换的B. A-B也是可交换的C. A^2和B^2也是可交换的D. 所有选项都正确答案:D4. 线性方程组的系数矩阵的秩等于增广矩阵的秩,则该线性方程组()。
A. 有唯一解B. 无解C. 有无穷多解D. 可能无解答案:A二、填空题(每题5分,共20分)5. 若矩阵A的行列式等于0,则矩阵A的______是可逆的。
答案:逆矩阵6. 设向量组α1, α2, ..., αn线性无关,则向量组α1+α2,α2+α3, ..., αn+α1也是______的。
答案:线性无关7. 若线性变换T: R^n → R^m,且T(α)=β,则T(kα)=______,其中k为任意实数。
答案:kβ8. 设A是3阶方阵,若A^2=0,则称A是______矩阵。
答案:幂零三、简答题(每题10分,共30分)9. 证明:若矩阵A可逆,则A的转置矩阵也是可逆的。
答案:设A是可逆矩阵,存在逆矩阵A^(-1)使得AA^(-1)=A^(-1)A=I。
考虑A的转置矩阵A^T,我们有(A^T)^T=A,且(A^T)(A^(-1))^T=(A^(-1))^TA^T=I。
因此,A^(-1)^T是A^T的逆矩阵,证明A^T是可逆的。
10. 给定线性方程组:\[\begin{cases}x + 2y - z = 1 \\3x - y + 4z = 2 \\x + y + z = 3\end{cases}\]求该方程组的解。
线性代数试题及答案

线性代数试题及答案一、选择题(每题5分,共20分)1. 下列矩阵中,哪个是可逆矩阵?A. \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:C2. 矩阵\(A\)的行列式为0,那么\(A\)的秩是:A. 0B. 1C. 2D. 3答案:A3. 向量\(\vec{a} = (1, 2, 3)\)和向量\(\vec{b} = (4, 5, 6)\)的点积为:A. 14B. 32C. 8D. 22答案:A4. 矩阵\(A\)的转置矩阵记作\(A^T\),那么\((A^T)^T\)等于:A. \(A^T\)B. \(A\)C. \(A^{-1}\)D. \(A^2\)答案:B二、填空题(每题5分,共20分)1. 若矩阵\(A\)的行列式为-5,则\(A^{-1}\)的行列式为______。
答案:\(\frac{1}{5}\)2. 矩阵\(A\)的秩为2,那么\(A\)的零空间的维数为\(\_\_\_\_\)。
答案:\(n-2\)(其中n为\(A\)的列数)3. 向量\(\vec{a} = (1, 2)\)和向量\(\vec{b} = (3, 4)\)的叉积为______。
答案:\(-2\)4. 若\(\vec{a} = (1, 0, 0)\),\(\vec{b} = (0, 1, 0)\),\(\vec{c} = (0, 0, 1)\),则\(\vec{a} \times \vec{b} =\_\_\_\_\_\)。
线性代数考试题及答案

线性代数考试题及答案一、选择题(每题5分,共20分)1. 线性代数中,矩阵的秩是指()。
A. 矩阵中非零行的个数B. 矩阵中非零列的个数C. 矩阵中线性无关行向量的最大个数D. 矩阵中线性无关列向量的最大个数答案:C2. 如果A和B是两个n阶方阵,那么AB和BA的秩()。
A. 一定相等B. 可能相等C. 不一定相等D. 一定不相等答案:C3. 对于一个n阶方阵A,下列说法中正确的是()。
A. A的行列式为0时,A可逆B. A的行列式不为0时,A不可逆C. A的行列式为0时,A不可逆D. A的行列式不为0时,A可逆答案:D4. 如果矩阵A和B相似,那么()。
A. A和B的秩相等B. A和B的行列式相等C. A和B的特征值相同D. A和B的迹相等答案:C二、填空题(每题5分,共20分)5. 设A是一个3×3矩阵,其行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|=______。
答案:86. 如果矩阵A的特征值为λ1=3,λ2=-2,λ3=5,则矩阵A的迹tr(A)=______。
答案:67. 矩阵A=[1 2; 3 4]的逆矩阵A^(-1)=______。
答案:[-2 1; 1.5 -0.5]8. 若向量α=(1,2,3)和β=(4,5,6)线性相关,则α和β的线性相关系数为______。
答案:2三、解答题(每题20分,共60分)9. 已知矩阵A=[1 2; 3 4],求矩阵A的秩。
解:首先计算矩阵A的行列式|A|=1×4-2×3=-2≠0,所以矩阵A 为满秩矩阵,其秩为2。
10. 设矩阵A和B满足AB=0,证明A和B至少有一个是奇异矩阵。
证明:假设A和B都不是奇异矩阵,则它们都是可逆矩阵。
由于AB=0,两边同时左乘A^(-1),右乘B^(-1),得到I=0,这与单位矩阵的性质矛盾。
所以A和B至少有一个是奇异矩阵。
11. 已知矩阵A的特征值为λ1=2,λ2=-1,λ3=3,求矩阵A^2的特征值。
线性代数自考试题及答案

线性代数自考试题及答案一、单项选择题(每题2分,共20分)1. 矩阵A的行列式为0,则矩阵A()。
A. 可逆B. 不可逆C. 可逆且不可逆D. 以上都不对答案:B2. 向量组α1,α2,α3线性无关的充分必要条件是()。
A. 由它们构成的矩阵的行列式不为0B. 由它们构成的矩阵的行列式为0C. 由它们构成的矩阵的秩等于向量的个数D. 由它们构成的矩阵的秩小于向量的个数答案:C3. 矩阵A和B等价的充分必要条件是()。
A. |A| = |B|B. r(A) = r(B)C. A和B的秩相等D. A和B的行列式相等答案:B4. 对于n阶方阵A,下列命题不正确的是()。
A. A^2 = 0,A≠0B. |A| = 0,A不可逆C. A可逆,|A|≠0D. A可逆,|A| = 0答案:D5. 向量组α1,α2,α3线性相关的充分必要条件是()。
A. 由它们构成的矩阵的行列式不为0B. 由它们构成的矩阵的行列式为0C. 由它们构成的矩阵的秩小于向量的个数D. 由它们构成的矩阵的秩等于向量的个数答案:C6. 矩阵A和B相似的充分必要条件是()。
A. A和B的行列式相等B. A和B的秩相等C. A和B的特征值相同D. A和B的迹相等答案:C7. 对于n阶方阵A,下列命题不正确的是()。
A. A可逆,|A|≠0B. A可逆,|A| = 0C. |A| = 0,A不可逆D. |A|≠0,A可逆答案:B8. 向量组α1,α2,α3线性无关的充分必要条件是()。
A. 由它们构成的矩阵的行列式不为0B. 由它们构成的矩阵的行列式为0C. 由它们构成的矩阵的秩等于向量的个数D. 由它们构成的矩阵的秩小于向量的个数答案:C9. 矩阵A和B等价的充分必要条件是()。
A. |A| = |B|B. r(A) = r(B)C. A和B的秩相等D. A和B的行列式相等答案:B10. 对于n阶方阵A,下列命题不正确的是()。
A. A^2 = 0,A≠0B. |A| = 0,A不可逆C. A可逆,|A|≠0D. A可逆,|A| = 0答案:D二、填空题(每题2分,共20分)11. 矩阵A的秩为3,矩阵B的秩为2,则矩阵AB的秩最大为_________。
线性代数考试题及答案

线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。
答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。
答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。
答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。
线性代数试题(试题与答案)

线性代数试题(试题与答案)一、选择题(每题5分,共25分)1. 设矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \),则 \( A^2 \) 的特征值是()A. 5, 9B. 1, 16C. 5, -5D. 10, -102. 设 \( \alpha_1, \alpha_2, \alpha_3 \) 是线性无关的向量组,则下列向量组线性无关的是()A. \( 2\alpha_1 + \alpha_2 - \alpha_3 \)B. \( \alpha_1 + 2\alpha_2 + 3\alpha_3 \)C. \( \alpha_1 - \alpha_2 + \alpha_3 \)D. \( 3\alpha_1 - 2\alpha_2 + \alpha_3 \)3. 设 \( A \) 是一个 \( n \) 阶可逆矩阵,则 \( A^{-1} \) 的行列式等于()A. \( \frac{1}{|A|} \)B. \( |A| \)C. \( |A^{-1}| \)D. \( -|A| \)4. 设 \( A \) 是一个 \( n \) 阶实对称矩阵,则下列结论正确的是()A. \( A \) 的特征值都是实数B. \( A \) 的特征值都是正数C. \( A \) 的特征值都是负数D. \( A \) 的特征值既有正数也有负数5. 设 \( A \) 是一个 \( n \) 阶矩阵,且 \( A \) 的秩为\( n \),则下列结论正确的是()A. \( A \) 是可逆矩阵B. \( A \) 的行列式不为0C. \( A \) 的特征值不全为0D. \( A \) 的任意一行都可以作为主行二、填空题(每题5分,共25分)6. 若 \( A \) 是一个 \( n \) 阶矩阵,且 \( |A| = 0 \),则称 \( A \) 为________矩阵。
2+2线性代数自测题

线性代数测试题第一章自测练习题一、填空题1、n 阶行列式0000000000000000=a b b a a b a b a.2、5阶行列式 1101100011000110001=---------aa a aa a a aa.3、n 阶行列式111110*********110111110=.4、设T )1,0,1(-=α,矩阵T A αα=,n 为正整数,则 ||=-nA aE .5、设行列式2235007022220403--=D ,则第四行各元素余子式之和为 . 6、设B A ,均为n 阶矩阵,2||=A ,3||-=B ,则 |2|1=-*B A .7、设3阶矩阵B A ,满足E B A B A =--2,其中E 为3阶单位矩阵,若⎪⎪⎪⎭⎫⎝⎛-=102020101A ,则 ||=B .二、选择题1、方程0347534453542333322212223212=---------------x x x x x x x x x x x x x x x x 的根的个数为【 】(A )1(B )2(C )3 (D )4 2、设A 是n 阶可逆矩阵, *A 是A 的伴随矩阵,则【 】(A )1||||-*=n A A (B )||||A A =* (C )n A A ||||=* (D )n A A ||||1-*= 3、若21321,,,,ββααα都是四维列向量,且4阶行列式m =|,,,|1321βααα,n =|,,,|3221αβαα,则|,,,|21123ββααα+等于【 】(A )n m + (B ))(n m +- (C )m n -(D )n m -三、计算证明题1、设A 为1010⨯矩阵,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=000001010000001000001010 A ,计算行列式||E A λ-,其中E 为10阶单位矩阵,λ为常数.2、已知3阶实矩阵)(ij a A =满足条件:(1))3,2,1,(==j i A a ij ij ,其中ij A 是ij a 的代数余子式;(2)011≠a ,计算行列式||A . 3、设A 是n 阶方阵,且n 2,,4,2 是A 的n 个特征值,计算行列式|3|E A -的值.自测练习题答案或提示一、填空题1、n n nb a 1)1(+-+ 2、54321a a a a a -+-+- 3、)1()1(1---n n 4、)2(2n a a -5、28-6、3212--n 7、24 8、21二、选择题1、B2、A3、C三、计算证明题1、101010-λ2、13、!)32()32(31--=-⋅⋅⋅-n n第二章自测练习题一、填空题1、设α为三维列向量,若⎪⎪⎪⎭⎫ ⎝⎛----=111111111T αα,则=ααT. 2、设⎪⎪⎪⎪⎪⎭⎫⎝⎛---=7600054000320001A ,E 为4阶单位矩阵,且)()(1A E A EB -+=-,则 )(1=+-B E .3、设矩阵⎪⎪⎭⎫⎝⎛-=3211A ,E A A B 232+-=,则 1=-B . 4、设B A ,均为3阶矩阵,E 为3阶单位矩阵,已知B A AB +=2,⎪⎪⎪⎭⎫ ⎝⎛=202040202B ,则)(1=--E A .5、已知A B AB =-,其中⎪⎪⎪⎭⎫⎝⎛-=200012021B ,则 =A .二、选择题1、设B A ,为n 阶矩阵,满足等式O AB =,则必有【 】(A )O A =或O B =(B )O B A =+ (C )0||=A 或0||=B (D )0||||=+B A2、设n 维行向量)21,,0,21( =α,矩阵, ααT E A -=,ααT E B 2+=,其中E 为n 阶单位矩阵,则AB 等于【 】(A )0 (B )E - (C )E (D )ααTE +3、设B A ,均为n 阶矩阵,**B A ,分别为B A ,的伴随矩阵,则分块矩阵⎪⎪⎭⎫⎝⎛=B OO A C 的伴随矩阵为【 】(A )⎪⎪⎭⎫⎝⎛**B B OO A A ||||(B )⎪⎪⎭⎫⎝⎛**A A OO B B |||| (C )⎪⎪⎭⎫ ⎝⎛**A B OO B A ||||(D )⎪⎪⎭⎫ ⎝⎛**B A OO A B ||||4、设11,,,--++B A B A B A 均为n 阶可逆矩阵,则111)(---+B A 等于 【 】(A )11--+B A(B )B A + (C )B B A A 1)(-+ (D )1)(-+B A5、设矩阵n m A ⨯的秩n m A r <=)(,m E 为m 阶单位矩阵,则下述结论正确的是【 】(A )A 的任意m 个列向量必线性无关 (B )A 的任意一个m 阶子式不等于零(C )A 通过初等变换,必可化为),(O E m 的形式 (D )非齐次线性方程组b Ax =一定有无穷多组解6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100B ,已知矩阵A 相似于B ,则)2(E A r -与)(E A r -之和等于【 】(A )2 (B )3(C )4(D )5三、计算证明题1、已知⎪⎪⎪⎭⎫ ⎝⎛=-3111211111A ,求1)(-*A .2、已知3阶方阵A 满足矩阵方程O E A A =--232,其中A 给定,而E 是单位矩阵,证明A 可逆,并求出1-A .3、假设矩阵A 和B 满足关系式B A AB 2+=,其中⎪⎪⎪⎭⎫⎝⎛-=321011324A ,求矩阵B .4、设n 阶矩阵A 和B 满足条件AB B A =+,(1)证明E A -为可逆矩阵;(2)已知⎪⎪⎪⎭⎫⎝⎛-=200012031B ,求A .5、设⎪⎪⎪⎭⎫⎝⎛=101020101A ,矩阵X 满足X A E AX +=+2,其中E 是3阶单位矩阵,试求矩阵X .6、设⎪⎪⎪⎭⎫ ⎝⎛--=100111111A ,且E AB A =-2,其中E 是3阶单位矩阵,求矩阵B .7、设11)2(--=-C A B C E T,其中E 是4阶单位矩阵,且⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1000210032102321B ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000210002101021C ,求矩阵A .8、设⎪⎪⎪⎭⎫ ⎝⎛---=111111111A ,矩阵X 满足X A X A 21+=-*,求矩阵X . 9、已知⎪⎪⎪⎭⎫ ⎝⎛=111011001A ,⎪⎪⎪⎭⎫ ⎝⎛=011101110B ,矩阵X 满足E BXA AXB BXB AXA ++=+,求矩阵X .10、已知B A ,为3阶矩阵,且满足E B B A 421-=-,其中E 是3阶单位矩阵,(1)证明:矩阵E A 2-可逆;(2)若⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求A . 自测练习题答案或提示一、填空题1、32、⎪⎪⎪⎪⎪⎭⎫⎝⎛---43000320002100013、⎪⎪⎭⎫⎝⎛--112/10 4、⎪⎪⎪⎭⎫ ⎝⎛001010100 5、⎪⎪⎪⎭⎫ ⎝⎛-200012/102/11二、选择题1、C2、C3、D4、C5、D6、C三、计算证明题1、⎪⎪⎪⎭⎫⎝⎛----101022125 2、)3(21E A - 3、⎪⎪⎪⎭⎫ ⎝⎛-----91226926834、(2)⎪⎪⎪⎭⎫ ⎝⎛-200013/102/115、⎪⎪⎪⎭⎫⎝⎛201030102 6、⎪⎪⎪⎭⎫⎝⎛000000160 7、⎪⎪⎪⎪⎪⎭⎫⎝⎛---12100121001200018、⎪⎪⎪⎭⎫⎝⎛101110011419、⎪⎪⎪⎭⎫ ⎝⎛10021052110、(2)⎪⎪⎪⎭⎫ ⎝⎛---200011020第三章自测练习题一、填空题1、设向量组),0,(1c a =α,)0,,(2c b =α,),,0(3b a =α线性无关,则c b a ,,必满足关系式 .2、已知向量组)1,1,2,1(1-=α, )0,,0,2(2t =α,)2,5,4,0(3--=α的秩为2,则=t .二、选择题1、若向量组γβα,,线性无关,δβα,,线性相关,则【 】(A )α必可由δγβ,,线性表示 (B )β必不可由δγα,,线性表示 (C )δ必可由γβα,,线性表示(D )δ必不可由γβα,,线性表示2、设m ααα,,,21 均为n 维向量,则下列结论正确的是【 】(A )若02211=+++m m k k k ααα ,则m ααα,,,21 线性无关;(B )若对任意一组不全为零的数m k k k ,,,21 ,都有02211≠+++m m k k k ααα ; (C )若m ααα,,,21 线性相关,则对任意一组不全为零的数m k k k ,,,21 ,都有02211=+++m m k k k ααα ;(D )若000021=+++m ααα ,则m ααα,,,21 线性无关.3、设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k ,必有【 】(A )21321,,,ββααα+k 线性无关 (B )21321,,,ββααα+k 线性相关 (C )21321,,,ββαααk +线性无关(D )21321,,,ββαααk +线性相关4、设向量组)4,2,1,1(1-=α,)2,1,3,0(2=α,)14,7,0,3(3=α,)0,2,2,1(4-=α,)10,5,1,2(3=α,则该向量组的极大线性无关组是【 】(A )321,,ααα(B )421,,ααα(C )521,,ααα (D )5421,,,αααα三、计算证明题1、已知T)2,0,4,1(1=α,T)3,1,7,2(2=α,T a ),1,1,0(3-=α,Tb )4,,10,3(=β,问: (1)b a ,取何值时,β不能由321,,ααα线性表示?(2)b a ,取何值时,β可由321,,ααα线性表示?并写出此表示式.2、已知向量组⎪⎪⎪⎭⎫ ⎝⎛-=1101β,⎪⎪⎪⎭⎫ ⎝⎛=122a β,⎪⎪⎪⎭⎫ ⎝⎛=013b β与向量组⎪⎪⎪⎭⎫ ⎝⎛-=3211α, ⎪⎪⎪⎭⎫ ⎝⎛=1032α,⎪⎪⎪⎭⎫⎝⎛-=7693α具有相同的秩,且3β可由321,,ααα线性表出,求b a ,的值.3、设有向量组(Ⅰ):T )2,0,1(1=α,T )3,1,1(2=α,T a )2,1,1(3+-=α和向量组(Ⅱ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,T a )4,1,2(3+=β. 试问:当a 为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a 为何值时,向量组(Ⅰ)与(Ⅱ)不等价?4、设向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T p )2,1,2,3(3+-=α,T p ),10,6,2(4--=α, (1) p 为何值时,该向量组线性无关? 并在此时将向量T )10,6,1,4(=α用该向量组线性表出; (2) p 为何值时,该向量组线性相关? 并在此时求出它的秩和一个极大无关组.自测练习题答案或提示一、填空题1、0≠abc2、3二、选择题1、C2、B3、A4、B三、计算证明题1、(1)2≠b ;(2)1,2≠=a b 时有唯一表示式:32102αααβ++-=;当1,2==a b 时:321)2()12(αααβk k k +++--=.2、5,15==b a3、当1-≠a 时,向量组(Ⅰ)与(Ⅱ)等价;当1-=a 时,向量组(Ⅰ)与(Ⅱ)不等价.4、(1)2≠p 时,向量组4321,,,αααα线性无关,4321212432ααααα--++--+=p pp p ; (2)2=p 时,向量组4321,,,αααα线性相关;321,,ααα为其一个极大无关组。
线性代数自考试题及答案

线性代数自考试题及答案一、单项选择题(每题2分,共10题,共20分)1. 矩阵A的行列式为0,则矩阵A是()。
A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 如果矩阵A的秩等于其列数,则矩阵A()。
A. 可逆B. 不可逆C. 有零行D. 有零列答案:A3. 对于齐次线性方程组,下列说法正确的是()。
A. 只有零解B. 有无穷多解C. 无解D. 有唯一解答案:B4. 矩阵A的特征值是()。
A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A - λI| = 0的λ值答案:D5. 向量α和β线性相关,则()。
A. α和β共线B. α和β不共线C. α和β垂直D. α和β平行答案:A6. 矩阵A和B的乘积AB等于零矩阵,则()。
A. A和B中至少有一个是零矩阵B. A和B中至少有一个是不可逆的C. A和B中至少有一个是奇异矩阵D. A和B中至少有一个是单位矩阵答案:C7. 矩阵A的转置矩阵记作()。
A. A'B. A^TC. A^HD. A^*答案:B8. 矩阵A的逆矩阵记作()。
A. A'B. A^TC. A^-1D. A^H答案:C9. 向量组α1, α2, ..., αn线性无关,则()。
A. 向量组中至少有一个向量为零向量B. 向量组中任意向量不能由其他向量线性表示C. 向量组中任意向量可以由其他向量线性表示D. 向量组中任意两个向量共线答案:B10. 矩阵A的迹是()。
A. 矩阵A的行列式B. 矩阵A的秩C. 矩阵A对角线元素的和D. 矩阵A的列数答案:C二、填空题(每题3分,共5题,共15分)11. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|等于________。
答案:412. 矩阵A的特征多项式为f(λ)=λ^2-3λ+2,则矩阵A的特征值是________。
答案:1, 213. 若向量α=(1, 2, 3),β=(4, 5, 6),则向量α和β的内积α·β等于________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自测复习题2
1填空题 (1) 向量组[][][]1232,2,7,3,1,2,1,5,12a a a T T T ==-=线性 关。
(2) 4维向量组[]11,4,0,2a T =-,[]25,11,3,0a T =-,[]33,2,4,1a T =--,[]42,9,5,0a T =--, []50,3,1,4a T
=-的秩是 ,且一个极大无关组为 。
的秩为,则向量组的秩为)已知向量组(321321,3,,4a a a a a a - 。
=⨯m A A n m 则的行向量组线形无关,,且的秩为矩阵)已知(35 ,m n 。
(6)已知秩为3的向量组
1234,,,a a a a 可由向量组123,,βββ线性表示,则向量组123,,βββ必线性 。
(7)设20,,k k βT ⎡⎤=⎣⎦能由[]11,1,1a k T =+,[]21,1,1a k T =+,[]31,1,1a k T =+唯一线性表出,则k 满足 。
(8)设A 为4阶方阵,且()2r A =,则*0A x =的基础解系所含解向量的个数为 。
2选择题
(1)设向量组()I 123,,a a a ;1234(),,,a a a a II ;1235(),,,a a a a III ;()V I 12345,,,a a a a a +,
且()()3r r I =II =,()4,r III =则()r V I =( )。
(A)2 (B)3 (C)4 (D)5
(2)设向量β可由向量组12,,....m a a a 线性表示,但不能由向量组121(),,....m a a a -I 线性表示,若向量组
121(),,...,m a a a β-II ,则m a ( )。
(A )既不能由(I )线性表示,也不能由(II )线性表示
(B )不能由(I )线性表示,但可由(II )线性表示
(C )可由(I )线性表示,也可由(II )线性表示
(D )可由(I )线性表示,但不可由(II )线性表示
(3)n 维向量组12,,.....(3)s a a a s n ≤≤线性无关的充要条件是( )。
(A ) 存在不全为零的数0......,...,2211,21≠++s s s a k a k a k k k k 使
(B ) s a a a ,.....,21中任意两个向量均线形无关
(C ) s a a a ,.....,21中存在一个向量不能由其余向量线性表示
(D ) s a a a ,.....,21中任意一个向量都不能由其余向量线性表示
(4)n 维向量组s a a a ,.....,21线性无关的充分条件是( )。
(A )s a a a ,.....,21中不含零向量
(B )n s ≤
(C )s a a a ,.....,21中任意两个向量的分量不成比例
(D )某向量β可由s a a a ,.....,21线性表示,且表示式唯一
(5) 齐次方程组0Ax =仅有零解的充要条件是系数矩阵A 的( )。
(A )行向量组线性无关
(B )列向量组线性无关
(C )行向量组线性相关
(D )列向量组线性相关
(6)齐次方程组0Ax =有非零解的充要条件是( )
(A )A 的任意两个列向量线性相关
(B )A 的任意两个列向量线性无关
(C )必有一列向量是其余列向量的线性组合
(D )任意一列向量都是其余列向量的线性组合
(7)设A 为n 阶方阵,()3r A n =- ,且123,,a a a 是0Ax =的三个线性无关的解向量,则0Ax =的基础解系为( )。
(A )122331,,a a a a a a +++
(B )213213,,a a a a a a ---
(C )21321312,,2
a a a a a a --- (D )1233213,,2a a a a a a a ++---
(8)设向量组12,,....s a a a 的秩为r ,则( )。
(A )
必定r s < (B )
向量组中任意小于r 个向量的部分组无关 (C )
向量组中任意r 个向量线性无关 (D ) 向量组中任意r +1个向量必线性相关
(9)设()I 12,,....s a a a 和()
II 12,,......t βββ为两个n 维向量组,且()()r r I =II =r ,则( )。
(A )
向量组()I 与()II 等价 (B )
1212(,,....,,,...)s t r a a a r βββ= (C )
()I 可由()II 线性表出时,()II 也可由()I 线性表出 (D ) 当s t =时两向量等价
(10)设1a =[][][]12321233123,,,,,,,,a a a a b b b a c c c T T T ==,则三条直线
220(1,2,3,0)i i i i i a x b y c i a b ++==+≠其中交于一点的充要条件是( )
(A )123,,a a a 线性相关
(B )123,,a a a 线性无关
(C )12312(,,)(,)r a a a r a a =
(D )123,,a a a 线性相关,12,a a 线性无关
3计算证明题
(1) 设[][][][][]12341,0,0,3,1,1,1,2,1,2,3,1,1,2,2,,0,1,,1,a a a a a a b βT T T T T
==-=-=-=-问,a b 取何值时,
①β能由1234,,,a a a a 线性表出,且表达式唯一
②β不能由1234,,,a a a a 线性表出
③β能由1234,,,a a a a 线性表出,但表达式不唯一,写出一般式。
(2),a b 为何值时,向量组[][][]1231,1,0,0,0,1,1,0,0,0,1,1a a a T
T T ===与向量
组
[][][]1231,,1,2,1,1,2,0,1,2,1b βββT T T
===,a 等价。
(4)设向量组12123,a a βββ及,,满足
1111122
22112223311322
c a c a c a c a c a c a βββ=+⎧⎪=+⎨⎪=+⎩
判定123,,βββ的线性相关性。
(5)设[]2,,,.....,m n n m m A B r r T
⨯⨯1且m>n,又AB=r 讨论向量组12,,.....m r r r 的线性相关性。
(8)①设向量组1234123512354(),,,;(),,,;(),,,,a a a a a a a a a a a a a I II III -若()3,()4,r r I =II =证明()4r III =。
②已知向量组123,,a a a 线性相关,向量组124,,a a a 线性无关,证明向量3a 可由向量12,a a 唯一线性表出。
自我检查题四答案及提示1
1(1)相;(2)4;1234,,,a a a a ;(4)2;(5)3,≤;
(6)无关;(7)0≠,-3;(8)4.
2(1)C ;(2)B ;(3)D ;(4)D ;(5)B ;(6)C ;(7)A ;(8)D ;(9)C ;(10)D . 3(1)①1,a b R ≠∈;② 1,1a b =≠-;③,1,1-==b a
ααααβ4433243143)221()1(x x x x x x ++--+++-= ,其中R x x ∈43,。
(2)12a b =≠。
(4)由123(,,)2r βββ≤可得123,,βββ线性相关。
(5)线性相关。