抗疲劳设计
混凝土结构中的疲劳与耐久性设计原则及应用

混凝土结构中的疲劳与耐久性设计原则及应用一、引言混凝土结构是建筑工程中最常见的建筑材料之一,其优点在于其强度大、耐久性高、施工方便等。
但是,在实际使用中,混凝土结构也会面临疲劳与耐久性问题。
因此,本文将详细介绍混凝土结构中的疲劳与耐久性设计原则及应用。
二、混凝土结构中的疲劳问题1. 疲劳的定义疲劳是指材料在受到重复载荷作用时发生的损伤和破坏。
在混凝土结构中,疲劳主要是由于受到重复荷载引起的。
2. 疲劳的危害混凝土结构的疲劳问题会导致混凝土结构的强度和刚度的降低,甚至会引起结构的崩塌。
因此,疲劳问题在混凝土结构设计中是必须考虑的问题。
3. 疲劳的影响因素混凝土结构中的疲劳问题受到多种因素的影响。
其中,主要包括以下几个方面:(1)荷载频率:荷载频率越高,疲劳损伤越严重。
(2)荷载幅值:荷载幅值越大,疲劳损伤越严重。
(3)荷载形式:不同形式的荷载对混凝土结构的疲劳损伤也不同。
(4)材料本身的性能:不同材料的抗疲劳性能不同。
4. 疲劳的设计原则为了解决混凝土结构中的疲劳问题,需要在设计阶段采取一系列措施。
具体的设计原则如下:(1)减小荷载频率:可以通过增加支撑点、减小振动源的频率等方式来减小荷载频率。
(2)减小荷载幅值:可以通过加强结构刚度、减小荷载大小等方式来减小荷载幅值。
(3)选择合适的荷载形式:需要根据实际情况选择合适的荷载形式,例如单向、双向、多向、随机等荷载形式。
(4)选择合适的材料:需要选择具有良好抗疲劳性能的材料。
5. 疲劳的解决方法除了在设计阶段采取一系列措施外,还可以通过以下几种方式来解决混凝土结构中的疲劳问题:(1)加强结构的刚度:可以通过增加结构的截面尺寸、增加加劲板的数量等方式来加强结构的刚度,从而减小结构的振动。
(2)采用防疲劳材料:可以采用具有良好抗疲劳性能的材料来替代传统的混凝土材料,例如纤维加强混凝土等。
(3)加装减振器:可以在混凝土结构的支撑点或节点处加装减振器,从而减小结构的振动。
钢结构桥梁抗疲劳设计的解析

钢结构桥梁抗疲劳设计的解析摘要:随着我国的经济的快速发展,公路桥梁建设项目越来越多。
公路钢结构桥梁具有跨径大、自重轻等特点,由于长期承受自重和车辆荷载循环作用的影响,由于钢结构桥梁应力分布不均,各部分具有不同的疲劳强度,除此以外还有桥梁自身的截面发生突变以及焊接连接的部分和反复应力等等情况造成的裂纹,久而久之会导致桥梁断裂的发生。
由于上述的原因,不同的安全隐患存在于桥梁的服役期间,因此在进设计考虑的时候应当从全局上来进行桥梁结构的设计。
对于疲劳设计而言,在我国现行公路桥梁钢结构设计规范中相对落后,从公路的疲劳问题来看,我们现有的研究认知还不是很全面,因此能够对公路以及桥梁的疲劳进行设计是一项十分必要的工程。
为了降低钢结构桥梁出现疲劳问题的几率,在制订抗疲劳设计方法时,就需要先对影响钢结构桥梁疲劳的因素进行仔细研究。
关键词:钢结构桥梁;抗疲劳设计方法;研究1影响钢结构桥梁疲劳的因素1.1 钢结构材料特性钢结构材料特性的好坏是会直接影响到公路以及桥梁的抗疲劳强度的,其特性所受的影响比较多,除了材料本身的性能之外,钢结构的大小也对其抗疲劳强度造成一定的影响,在起初只有一点点的小裂纹出生,随着时间的推移,之前产生的小裂纹会越来越大,其疲劳的性能也会随之增加,除此以外钢结构的强度增强也会使得其疲劳性能增加,由于这样的原因,还是应当使用强度较为合适的材料。
一般的情况下我们能够总结出,当钢结构表面具有比较高的应力的时候,钢结构的表面在之前一般都会产生裂纹。
1.2钢结构内部和外部因素会对公路结构桥梁疲劳性能而言,钢结构内部因素和外部因素也会对其造成影响,疲劳的性能会因此而发生一定的变化。
公路桥梁的建设结构以及每一个钢构件之间的连接形式都是钢结构构造的一个方面,影响钢结构应力分布的因素包括焊接技术、钢结构制造、焊接处理方法、设计方法等。
钢结构自身缺陷也会影响疲劳性能,除此以外钢结构疲劳的产生还会受到其他外部环境因素的影响,外部影响因素一般包括自然环境发生变化、昼夜温差变化过大、外界施加给桥梁的压力、强冻强高温等。
焊接结构抗疲劳设计若干问题的思考

① 内因与外 因的对立统 一 , 是抗疲劳设计 的一个 重要 出发点 ; ②在 比较 中追求相 对最优 , 是抗 疲劳设 计 的
一
焊缝之 问的以“ 治 “ ” ② 降低应 力集 中的 以“ ” 刚” ③ 躲开应力 集 中避 “ ” 虚 ” 文中几个 疏” 堵 ; 柔 克“ ; 实 就“ .
有代表性 的工程案例证 明了上述观点 的科学性及有效性 . 关键词 : 焊接结构 ; 劳 ; SN曲线法 ; 疲 主 - 应力集 中
哪 一些 焊缝 将来 有 可能会 出问题 .
力 的路 径是 唯 一 的. 在拓 扑优 化设 计 工程 中 , 力 传
化 范 围的微 小增 长 , 将 导 致 疲 劳 寿命 的 高度 非 都
线性 下 降 . 意 味着 忽视 “ 因” 这 外 是有 风 险 的.
所 谓外 因 , 的是 作 用在 焊接 结构 外部 的 、 指 广 义 变化 的载 荷 , : 则 或 随机 变 化 的 载荷 、 如 规 变化 的温度 载荷 等 等. 我们 将 一 个 车 辆 投 放 到 一个 当
第3 2卷 第 5期 21 0 1年 1 O月
大 连 交 通 大 学 学 报
J OURN OF D I J AO ONG AL AL AN I T UNI RS T VE I Y
V 1 3 No 5 0. 2 .
0c. t201 1
文 章 编 号 :6 3 99 (0 )50 0 —5 17 —5 0 2 1 0 —09 0 1
显 然 , 者互 为 高度 非线性 的双 曲线 型关 系 , 二
因为焊 接过 程本 身 的热 行 为 复 杂 , 后 残余 应 力 焊
,
a A " ( ) ( o)一 △
钢桥的疲劳分析ppt课件

➢ 疲劳破坏定义: 疲劳破坏是材料在低于强度极限的反复荷载作用下,由于缺陷局
部微细裂纹的形成和发展直到最后发生脆性断裂的一种破坏。 ➢ 疲劳破坏产生的原因:
钢桥在反复交变荷载作用下,先在其缺陷处生成一些极小的裂痕, 此后这种微观裂痕逐渐发展成宏观裂缝,试件截面削弱,而在裂 纹根部出现应力集中现象,使材料处于三向拉伸应力状态,塑性 变形受到限制,当反复荷载达到一定的循环次数时,材料终于破 坏,并表现为突然的脆性断裂。
二、钢桥抗疲劳设计原理
标准疲劳车为一四轴单车,轴重均为80kN,总重为320kN。标准车示意 图如图1、图2所示:
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“精 准扶贫 ”项目
二、钢桥抗疲劳设计原理
2欧洲规范EC1中所规定的疲劳疲劳荷载谱 欧洲疲劳规范了5种不同的疲劳荷载模型(Fatigue Load Modle,简称
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“精 准扶贫 ”项目
二、钢桥抗疲劳设计原理
➢ 疲劳荷载模型二 疲劳荷载模型二采用一系列的理想加载车成,共有5种货车形式,加
载车辆的轴数、轴距轴重以及车轮形式如表3所示。
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“精 准扶贫 ”项目
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“精 准扶贫 ”项目
二、钢桥抗疲劳设计原理
基于人机工程学的抗疲劳汽车座椅设计

基于人机工程学的抗疲劳汽车座椅设计摘要:据不完全统计,每年世界上发生的数不胜数的交通事故很大一部分是由于驾驶员疲劳驾驶造成的,疲劳驾驶也因此成为造成交通事故的一大杀手。
汽车座椅作为与驾驶员接触最紧密的工具,它的设计科学与否直接影响了驾驶员的疲劳程度,这也在相当大的程度上决定了交通事故发生的几率。
本文将从汽车座椅对驾驶员疲劳的影响和从人机工程学方面对汽车座椅的设计两个方面做一些简单介绍。
关键词:汽车座椅抗疲劳人机工程学传统的汽车座椅设计因为没有充分考虑到对驾驶员疲劳的影响,所以极易导致驾驶员的疲劳驾驶,从而造成一次次的令人痛心的交通事故。
人机工程学作为一种新兴的交叉学科,它在充分掌握了人的心理和生理的基础上,对人、机和环境之间的相互作用规律做了深入研究。
把人机工程学的相关原理应用于汽车座椅的科学设计,不仅有益于驾驶员,而且使交通事故的发生率大大降低。
1 传统汽车座椅影响驾驶员疲劳的表现1.1 座椅没有合适的高度以及前后距离有些汽车座椅高度过高,因此当汽车在高低不平的路上行驶而使汽车上下颠簸时,这样驾驶员的头部就很容易碰触到车顶,不仅影响了驾驶员的人身安全,更影响到了汽车行车安全。
相反,倘若汽车的座椅高度太低的话,这样就容易使驾驶员的腿不能正常弯曲,这样就容易使驾驶员身体感到极不舒适,从而影响到汽车正常驾驶。
另一方面,汽车座椅的前后位置是否合适也是影响驾驶员产生疲劳感的一个因素。
如果汽车座椅的位置过于靠后,这样就需要驾驶员在操作时极力伸脚来踩踏板,这就增加了交通事故发生的概率;如果汽车座椅的位置过于靠前,这就使驾驶员在踩踏板时腿部感到过于憋屈,从而影响了驾驶效果。
1.2 汽车座椅缺乏科学合理的结构和尺寸汽车座椅的结构和尺寸不合理,一方面使汽车驾驶员的脊柱形态始终不能处于正常的自然状态,这样就会增加了驾驶员腰椎的负荷和背部肌肉群的负担,这样也就容易导致驾驶员的疲劳驾驶。
另一方面,不合理的座椅结构不能够科学承受来自坐垫和靠背上的人体的体压分布,从而使驾驶员在驾驶过程中很快感到疲劳。
增强免疫力、缓解体力抗疲劳的中药口服液及其设备制作方法与设计方案

图片简介:本技术涉及中药口服液,尤其涉及一种增强免疫力、缓解体力抗疲劳的中药口服液及其制备方法。
一种增强免疫力、缓解体力抗疲劳的中药口服液,该中药口服液的有效成分由以下重量份的原料药制得:肉苁蓉40~70份,刺五加30~60份,西洋参20~50份,蜂蜜5~8份。
本技术原料天然,色、香、味俱佳,经动物功效实验证明具有增强免疫力、缓解体力疲劳功效,具有科学性、合理性。
技术要求1.一种增强免疫力、缓解体力抗疲劳的中药口服液,其特征在于,该中药口服液的有效成分由以下重量份的原料药制得:肉苁蓉 40~70份,刺五加 30~60份,西洋参 20~50份,蜂蜜 5~8份。
2.根据权利要求1所述的一种增强免疫力、缓解体力抗疲劳的中药口服液,其特征在于,该中药口服液的有效成分由以下重量份的原料药制得:肉苁蓉 50~60份,刺五加 40~50份,西洋参 30~40份,蜂蜜 6~7份。
3.一种制备权利要求1或2所述的中药口服液的制备方法,其特征在于,该方法包括以下操作步骤:1)去除原料药中的杂质和非药用部位;2)将肉苁蓉药材粗粉过10~16目筛后称取配比量;3)将刺五加药材粗粉过10~16目筛后称取配比量;4)将西洋参药材粗粉过10~16目筛后称取配比量;5)将步骤1)-步骤4)所得到的过筛后配量比的肉苁蓉粗粉、刺五加粗粉、西洋参粗粉均匀混合,得到混合粉;6)在混合粉加入8~12倍量60%~80%的乙醇常温浸泡2小时后,回流提取2~3次,每次1.5~3小时,合并提取液,减压浓缩成流浸膏,用乙醇将流浸膏溶解在4~6℃环境中静置,取上清液并过滤,低压浓缩至无醇味,加水溶解,在4~6℃环境中静置,取上清液过滤至澄清,加入蜂蜜,调整PH到4.5-6.0,灭菌,即得本口服液。
4.根据权利要求3所述的制备方法,其特征在于,用乙醇将流浸膏溶解,乙醇质量比浓度为40~60%。
5.根据权利要求3所述的制备方法,其特征在于,加水溶解,溶解后的密度为1.05~1.15g/cm3。
7_飞机结构疲劳设计(二)

(3) 疲劳寿命估算方法分类 估算疲劳寿命的方法可分为名义应力法和局部应力应变法。名义应力法是最早形成的抗疲劳设计方法,它 以材料或构件的S-N曲线为基础,对照试件或结构疲劳 危险部位的应力集中系数和名义应力,结合疲劳损伤累 积理论,校核疲劳强度或计算疲劳寿命。局部应力-应 变法是一种较新的疲劳寿命估算方法,它以材料或构件 的循环应力-应变曲线和应变-寿命曲线为基础,将构件 上的名义应力谱转换成危险部位的局部应力应变谱,结 合疲劳损伤累积理论,进行疲劳寿命估算,主要应用于 高应力、低循环疲劳(低周疲劳)寿命的估算。对于一些 具有良好设计传统的设计、制造单位,也可采用类比法, 即利用已知寿命的部件,通过类比原理来确定未知部件 的寿命,但这需要原有经验和资料数据的积累。疲劳寿 命估算方法的分类如下:
2)计算应变谱
得到载荷变程Δ P(或名义应力变程Δ S)之后,就可 以从载荷谱(或名义应力谱)计算局部应变谱。其具体 步骤有: (1) 确定加载过程中的局部应力—应变过程 (2) 确定卸载过程的局部应力—应变过程 (3) 计算记忆效应的加载局部应力—应变过程
3) 计算载荷谱造成的损伤
按照 Miner 线性累积损伤理论,载荷对疲劳危险部位造成的损伤为每一个 疲劳应变循环所造成的损伤的和。 计算各疲劳应变循环造成的损伤的步骤如下。 式中 m —材料常数。 1. 计算每一个疲劳应变循环造成的疲劳损伤 从 -N 曲线上查找对应疲劳应变循环幅值的疲劳寿命 N fi ,则对于完全疲 劳应变循环,造成的损伤为
(2) 无裂纹寿命的地位 在全寿命中,无裂纹寿命和裂纹扩展寿命所占 的比重各是多大,谁是主要的,还是平分秋色, 这同结构形式、载荷条件、环境、材料等因素 有关。例如,对于疲劳试验中的标准小试件(一 般直径为6mm~10mm),试验中一旦出现裂纹, 则很快就会断裂。这说明该试件裂纹形成寿命 是主要的,而裂纹扩展寿命所占的比例则很小, 甚至可以忽略不计。可是,对带有缺陷的板材 的试验则不同,裂纹扩展寿命所占的比例比较 大,约占1/2,甚至更大。但是,随着冶金技术、 加工工艺水平、无损探伤技术的不断提高,在 结构的关键部位、危险的方向上确保无明显初 始裂纹(缺陷)的存在,既是必要的,也是可能 的。这样,结构的无裂纹寿命所占的比例必然 会提高。因此,对于飞机结构,考虑其无裂纹 寿命是必要的。
浅论钢结构的脆性断裂和抗疲劳设计

未达到材料的抗拉 强度 , 甚至还低于屈服点 。 尤其是在焊接 结构
大量取代铆接结构 的过程 中, 脆断发生频率一度增高 , 中不 乏 其 后果严重者。究其 原因, 有如下 一些 :
() 1焊缝缺陷的存在, 使裂纹萌生的概率增大 。
() 缝结构 中数值可观 的残 余应力 , 为初 应力场 , 2焊 作 与荷 载应 力场 的叠加可导致 驱动开裂 的不利应力组合 。 () 3 焊缝连接通 常使得结 构的刚度增大 , 结构的变形 , 括 包 塑性 变形的发展得 到更 大的限制 。尤其 是三 角焊缝 在空间相互
低温 的 结构 要 选 择 高 韧 性 的材 质 来 避 免 脆 性破 坏 发 生 。
为 了防止脆性破坏 , 需要从五个方面着手: () 1正确选用钢材, 使之具有足够 的韧性 K 。 目前工程中常
破坏 ( 如在钢 筋混凝土结构 中避免设计超筋 梁) 其道理就在于 ,
此。
用冲击韧 性作为 材料韧性 指标 ,因其试样 截面一 律用 1mmx 0
疲劳 。
还使钢结构具有优越 的抗震性能。
() 2 材质 均匀 , 和力学计算 的假定 比较符合。钢材 内部组织 比较接近于匀质和各 向同性体 ,而 且在一定 的应力幅度 内几乎 是完全弹性的。
() 5 氢脆疲劳: 氢可 以在冶炼和焊接过程 中侵入 金属造成材 料韧性降低而可能导致 的断裂。焊条在 使用前需要烘干 , 就是 为
为, 强度越高则对 应力腐蚀断裂越敏感。其 中, 尤其是含碳量高 的钢材表现 出对应力腐蚀断裂 比较敏感 。
() 量减小初 始裂 纹的尺寸, 2尽 避免在构造处理 中形 成类 似 于裂纹的间隙。 对于焊接结构来说 , 减小初始裂纹尺寸主要是保 证焊缝质量 , 限制和避免焊接缺陷。焊缝表面不得有裂纹。焊缝
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抗疲劳设计邢兴钟华锋目录◆简介◆1.什么是金属疲劳?◆2.金属疲劳的分类◆3.金属疲劳破坏机理(为什么会产生金属疲劳?)◆4.怎样确定疲劳强度?(疲劳寿命计算方法)◆5.轴的抗疲劳设计(典型设计)◆6.有限元进行抗疲劳设计◆7.国内外形势与期望连发生了两起坠毁事故,这使得“金属疲劳”一词出现在新闻头条中,引起公众持久的关注。
这种飞机也是第一批使用增压舱的飞行器,采用的是方形窗口。
增压效应和循环飞行载荷的联合作用导致窗角出现裂纹,随着时间的推移,这些裂纹逐渐变宽,最后导致机舱解体。
Comet空难夺去了68人的生命,这场悲剧无时无刻不在提醒着工程师创建安全、坚固的设计。
◆1998年6月3日,德国一列高速列车在行驶中突然出轨,造成100多人遇难身亡的严重后果。
事后经过调查,人们发现,造成事故的原因竟然是因为一节车厢的车轮内部疲劳断裂而引起。
从而导致了这场近50年来德国最惨重铁路事故的发生。
◆人们所见到的金属,看起来熠光闪闪、铮铮筋骨,被广泛用来制作机器、兵刃、舰船、飞机等等。
其实,金属也有它的短处。
在各种外力的反复作用下,可以产生疲劳状态,而且,一旦产生疲劳就会因不能得到恢复而造成十分严重的后果。
实践证明,金属疲劳已经是十分普遍的现象。
据150多年来的统计,金属部件中有80%以上的损坏是由于疲劳而引起的。
在人们的日常生活中,也同样会发生金属疲劳带来危害的现象。
一辆正在马路上行走的自行车突然前叉折断,造成车翻人伤的后果。
炒菜时铝铲折断、挖地时铁锨断裂、刨地时铁镐从中一分为二等现象更是屡见不鲜。
◆为什么金属疲劳时会产生破坏作用呢?这是因为金属内部结构并不均匀,从而造成应力传递的不平衡,有的地方会成为应力集中区。
与此同时,金属内部的缺陷处还存在许多微小的裂纹。
在力的持续作用下,裂纹会越来越大,材料中能够传递应力部分越来越少,直至剩余部分不能继续传递负载时,金属构件就会全部毁坏。
◆在金属材料中添加各种“维生素”是增强金属抗疲劳的有效办法。
例如,在钢铁和有色金属里,加进万分之几或千万分之几的稀土元素,就可以大大提高这些金属抗疲劳的本领,延长使用寿命。
随着科学技术的发展,现已出现“金属免疫疗法”新技术,通过事先引入的办法来增强金属的疲劳强度,以抵抗疲劳损坏。
此外,在金属构件上,应尽量减少薄弱环节,还可以用一些辅助性工艺增加表面光洁度,以免发生锈蚀。
对产生震动的机械设备要采取防震措施,以减少金属疲劳的可能性。
在必要的时候,要进行对金属内部结构的检测,对防止金属疲劳也很有好处。
◆设计人员通常认为最重要的安全因素是零部件、装配体或产品的总体强度。
为使设计达到总体强度,工程师需要使设计能够承载可能出现的极限载荷,并在此基础上再加上一个安全系数,以确保安全。
但是,在运行过程中,设计几乎不可能只承载静态载荷。
在绝大多数的情况下,设计所承载的载荷呈周期性变化,反复作用,随着时间的推移,设计就会出现疲劳。
金属疲劳是指材料、零构件在循环应力或循环应变作用下.在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。
* 当材料和结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。
◆金属疲劳在交变应力作用下,金属材料发生的破坏现象。
机械零件在交变压力作用下,经过一段时间后,在局部高应力区形成微小裂纹,再由微小裂纹逐渐扩展以致断裂。
◆疲劳破坏具有在时间上的突发性,在位置上的局部性及对环境和缺陷的敏感性等特点,故疲劳破坏常不易被及时发现且易于造成事故。
◆应力幅值、平均应力大小和循环次数是影响金属疲劳的三个主要因素。
与静力破坏的区别◆材料力学是根据静力实验来确定材料的机械性能(比如弹性极限、屈服极限、强度极限)的,这些机械性能没有充分反映材料在交变应力作用下的特性。
因此,在交变载荷作用下工作的零件或结构,如果还是按静载荷去设计,在使用过程中往往就会发生突如其来的破坏。
◆疲劳破坏与传统的静力破坏有着许多明显的本质区别:◆(1)静力破坏是一次最大载荷作用下的破坏:疲劳破坏是多次反复载荷作用下的破坏,它不是短期内发生的,而是要经历一定的时间,甚至很长时间才发生破坏。
◆(2)当静应力小于屈服极限或强度极限时,不会发生静力破坏;而交变应力在远小于静强度极限,甚至小于屈服极限的情况下,疲劳破坏就可能发生。
◆(3)静力破坏通常有明显的塑性变形产生:疲劳破坏通常没有外在宏观的显著塑性变形迹象,哪怕是塑性良好的金属也这样,就像脆性破坏一样,事先不易觉察出来,这就表明疲劳破坏具有更大的危险性。
2.疲劳的分类◆按研究对象分:材料疲劳和结构疲劳,是研究材料的失效机理,化学成分和微观组织对疲劳强度的影响,结构疲劳是以零部件,接头,和整机为研究对象,研究它们的疲劳性能、抗疲劳设计方法、寿命估算方法和疲劳试验方法、形状,尺寸和工艺因素的影响,以及提高疲劳强度的方法。
金属疲劳研究对象失效周次应力状态载荷变化载荷工况和工作环境材料疲劳结构疲劳高周疲劳低周疲劳单轴疲劳多轴疲劳横幅疲劳变幅疲劳随机疲劳常规疲劳高低温疲劳热疲劳。
3.金属疲劳破坏机理3.金属疲劳破坏机理◆裂纹开始出现的时间以及裂纹增长到足以导致零部件失效的时间由下面两个主要因素决定:零部件的材料和应力场。
材料疲劳测试方法可以追溯到19世纪,由AugustWhler第一次系统地提出并进行了疲劳研究。
标准实验室测试采用周期性载荷,例如旋转弯曲、悬臂弯曲、轴向推拉以及扭转循环。
科学家和工程师将通过此类测试获得的数据绘制到图表上,得出每类应力与导致失效的周期重复次数之间的关系,或称S-N曲线。
工程师可以从S-N曲线中得出在特定周期数下材料可以承受的应力水平。
◆S-N曲线是作为一种模型来描述疲劳强度,材料的疲劳性能用作用的应力范围S与到破坏时的寿命N之间的关系描述,即S-N曲线。
◆寿命N定义为在给定的压力比R下,横幅载荷作用下循环到破坏的循环次数。
◆S-N曲线通过实验的方法获得。
4.怎样确定疲劳强度?4.怎样确定疲劳强度?◆该曲线分为高周疲劳和低周疲劳两个部分。
一般来说,低周疲劳发生在10,000个周期之内。
曲线的形状取决于所测试材料的类型。
某些材料,例如低碳钢,在特定应力水平(称为耐疲劳度或疲劳极限)下的曲线比较平缓。
不含铁的材料没有耐疲劳度极限。
◆大体来说,只要在设计中注意应用应力不超过已知的耐疲劳度极限,零部件一般不会在工作中出现失效。
5.轴的抗疲劳设计◆6.1传统思路◆先构思新产品方案,然后按照企业内部或行业规定做出设计,这些规定大多数并不考虑实际的动载荷,不要求进行疲劳寿命计算;设计完成后,制造出若干样机。
再按照规定对样机进行疲劳试验。
例如,汽车要做试车场考核试验,飞机要做全尺寸结构疲劳试验。
如果试验结果符合规定,那么就认为产品合格,否则需要重新修改设计,重新制造样机,重新试验直至通过。
可以想象,由于疲劳试验非常耗时,这种基于试验的产品开发将会非常的费时和费钱,并且一旦试验出了问题,修改设计也是盲目的。
另外,即使通过了试验,也可能不知道为什么能通过。
有时候甚至会发生试验通过的产品在实际使用时仍然出现严重的问题。
可是,大多数中国的企业目前都在采用这样一种设计思路,据调查显示,疲劳问题实际上正在困扰着国内的一些企业。
◆6.2那么,有没有更好的办法呢?◆其实,国际上很多专业公司早已形成了全套的抗疲劳技术解决方案和软件产品。
一体化抗疲劳解决方案实际上是和计算机、有限元以及数据采集和信号处理等技术一起发展起来的,我在这里只给大家归纳一下它的一些主要特点。
这些主要特点有:◆第一,以寿命为设计目标;◆第二,全方位调查用户用途及使用环境,尽量获取寿命设计所需的实际动载荷;◆第三,在设计阶段进行广泛的“虚拟”分析,应用疲劳理论进行寿命优化分析设计;◆第四,试验只对“好”的设计进行;◆第五,用试验关联验证理论,用理论指导试验,两者互相配合取得信心;◆第六,企业内部数据采集、实验室模拟及分析设计各部门互相配合,进行数据流、信息流一体化管理。
6.有限元进行抗疲劳设计有限元分析是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状因而成为行之有效的工程分析手段。
有限元是那些集合在一起能够表示实际连续域的离散单元。
有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
◆有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。
20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。
不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。
◆对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。
有限元求解问题的基本步骤通常为:◆第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
◆第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。
显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。
◆第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。
◆第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。