(完整版)高三物理高考第一轮专题复习——电磁场(含答案详解)[1],推荐文档

合集下载

高三物理一轮复习1 电磁感(含真题)

高三物理一轮复习1 电磁感(含真题)

咐呼州鸣咏市呢岸学校专题10 电磁感1.〔2021〕如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。

那么磁场〔A〕逐渐增强,方向向外〔B〕逐渐增强,方向向里〔C〕逐渐减弱,方向向外〔D〕逐渐减弱,方向向里答案:CD解析:此题考查了楞次律,感电流的磁场方向总是阻碍引起闭合回路中磁通量的变化,表达在面积上是“增缩减扩〞,而回路变为圆形,面积是增加了,说明磁场是在逐渐减弱.因不知回路中电流方向,故无法判磁场方向,故CD都有可能。

2.[2021·课标卷Ⅰ] 在法拉第时代,以下验证“由磁产生电〞设想的中,能观察到感电流的是( ) A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化答案:D解析:产生感电流的条件是:只要穿过闭合电路的磁通量发生变化,电路中就会产生感电流.此题中的A、B选项都不会使电路中的磁通量发生变化,不满足产生感电流的条件,故不正确.C选项虽然在插入条形磁铁瞬间电路中的磁通量发生变化,但是当人到相邻房间时,电路已到达稳状态,电路中的磁通量不再发生变化,故观察不到感电流.在给线圈通电、断电瞬间,会引起闭合电路磁通量的变化,产生感电流,因此D选项正确.3.[2021·课标卷Ⅰ] 如图(a)所示,线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd 间电压如图(b)所示.线圈内部的磁场与流经线圈的电流成正比,那么以下描述线圈ab 中电流随时间变化关系的图中,可能正确的选项是( )答案:C解析: 此题考查了电磁感的图像.根据法拉第电磁感律,ab 线圈电流的变化率与线圈cd 上的波形图一致,线圈cd 上的波形图是方波,ab 线圈电流只能是线性变化的,所以C 正确.4.[2021·卷] 如下图,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感电动势为( )A.Ba 22ΔtB.nBa 22ΔtC.nBa 2ΔtD.2nBa 2Δt答案:B解析: 根据法拉第电磁感律知E =n ΔΦΔt =n ΔB ·S Δt ,这里的S 指的是线圈在磁场中的有效面积,即S =a 22,故E =n 〔2B -B 〕S Δt =nBa 22Δt,因此B 项正确. 5..[2021·卷] 如下图,一端接有值电阻的平行金属轨道固在水平面内,通有恒电流的长直绝缘导线垂直并紧靠轨道固,导体棒与轨道垂直且接触良好,在向右匀速通过M、N两区的过程中,导体棒所受安培力分别用F M、F N表示.不计轨道电阻.以下表达正确的选项是( )A.F M向右 B.F N向左C.F M逐渐增大 D.F N逐渐减小答案:BCD解析:根据安培那么可判断出,通电导线在M区产生竖直向上的磁场,在N区产生竖直向下的磁场.当导体棒匀速通过M区时,由楞次律可知导体棒受到的安培力向左.当导体棒匀速通过N区时,由楞次律可知导体棒受到的安培力也向左.选项B正确.设导体棒的电阻为r,轨道的宽度为L,导体棒产生的感电流为I′,那么导体棒受到的安培力F安=BI′L=B BLvR+r L=B2L2vR+r,在导体棒从左到右匀速通过M区时,磁场由弱到强,所以F M逐渐增大;在导体棒从左到右匀速通过N区时,磁场由强到弱,所以F N逐渐减小.选项C、D 正确.6.[2021·卷] 如下图,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固在框上,H、P 的间距很小.质量为0.2 kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m的正方形,其有效电阻为0.1 Ω.磁场,磁感强度随时间变化规律是B=(0.4-0.2t) T,图示磁场方向为正方向.框、挡板和杆不计形变.那么( )A.t=1 s时,金属杆中感电流方向从C到DB.t=3 s时,金属杆中感电流方向从D到CC.t=1 s时,金属杆对挡板P的压力大小为0.1 ND.t=3 s时,金属杆对挡板H的压力大小为0.2 N答案:AC解析:由于B=(0.4-0.2 t) T,在t=1 s时穿过平面的磁通量向下并减少,那么根据楞次律可以判断,金属杆中感电流方向从C 到D ,A 正确.在t =3 s 时穿过平面的磁通量向上并增加,那么根据楞次律可以判断,金属杆中感电流方向仍然是从C 到D ,B 错误.由法拉第电磁感律得E =ΔΦΔt =ΔB ΔtS sin 30°=0.1 V ,由闭合电路的欧姆律得电路电流I =E R=1 A ,在t =1 s 时,B =0.2 T ,方向斜向下,电流方向从C 到D ,金属杆对挡板P 的压力水平向右,大小为F P =BIL sin 30°=0.1 N ,C 正确.同理,在t =3 s 时,金属杆对挡板H 的压力水平向左,大小为F H =BIL sin 30°=0.1 N ,D 错误.7.[2021·卷] 英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如下图,一个半径为r的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B ,环上套一带电荷量为+q 的小球.磁感强度B 随时间均匀增加,其变化率为k 电场对小球的作用力所做功的大小是( )A .0 B.12r 2qk C .2πr 2qk D .πr 2qk 答案:D解析: 此题考查电磁感、动能理知识点,考查对“变化的磁场产生电场〞的理解能力与推理能力.由法拉第电磁感律可知,沿圆环一周的感生电动势E 感=ΔΦΔt =ΔB Δt·S =k ·πr 2,电荷环绕一周,受环形电场的加速作用,用动能理可得W =qE 感=πr 2qk .选项D 正确。

高三物理一轮复习 专题10 磁场(含2012年高考真题)(2021年整理)

高三物理一轮复习 专题10 磁场(含2012年高考真题)(2021年整理)

2018版高三物理一轮复习专题10 磁场(含2012年高考真题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高三物理一轮复习专题10 磁场(含2012年高考真题))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高三物理一轮复习专题10 磁场(含2012年高考真题)的全部内容。

专题10 磁场1.(2012天津卷).如图所示,金属棒MN 两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M 向N 的电流,平衡时两悬线与竖直方向夹角均为θ,如果仅改变下列某一个条件,θ角的相应变化情况是( ) A .棒中的电流变大,θ角变大 B .两悬线等长变短,θ角变小 C .金属棒质量变大,θ角变大 D .磁感应强度变大,θ角变小 答案A 。

解析:水平的直线电流在竖直磁场中受到水平的安培力而偏转,与竖直方向形成夹角,此时它受拉力、重力和安培力而达到平衡,根据平衡条件有mgBILmgF ==安θtan ,所以棒子中的电流增大θ角度变大;两悬线变短,不影响平衡状态,θ角度不变;金属质量变大θ角度变小;磁感应强度变大θ角度变大。

2.(2012全国理综)质量分别为m 1和m 2、电荷量分别为q 1和q 2的两粒子在同一匀强磁场中做匀速圆周运动,已知两粒子的动量大小相等。

下列说法正确的是 A 。

若q 1=q 2,则它们作圆周运动的半径一定相等 B 。

若m 1=m 2,则它们作圆周运动的周期一定相等 C. 若q 1≠q 2,则它们作圆周运动的半径一定不相等 D. 若m 1≠m 2,则它们作圆周运动的周期一定不相等 答案:AC解析:根据半径公式qB mv r =及周期公式qBmT π2=知AC 正确。

2019届高考物理大一轮复习金考卷:磁场(含解析)

2019届高考物理大一轮复习金考卷:磁场(含解析)

阶段示范性金考卷(八)(教师用书独具)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共110分.第Ⅰ卷 (选择题,共60分)一、选择题(本题共12小题,每小题5分,共60分.在第1、2、4、6、7、9、10、12小题给出的4个选项中,只有一个选项正确;在第3、5、8、11小题给出的四个选项中,有多个选项正确,全部选对的得5分,选对但不全的得3分,有选错的得0分.)1. 三根平行的直导线,分别垂直地通过一个等腰直角三角形的三个顶点,如图所示,现使每条通电导线在斜边中点O 所产生的磁感应强度的大小为B.下列说法正确的是( )A. O 点的磁感应强度大小为2BB. O 点的磁感应强度大小为5BC. O 点的磁感应强度方向水平向右D. O 点的磁感应强度方向沿OI 3方向指向I 3解析:由安培定则可知电流大小为I 3的导线在O 点产生的磁感应强度方向垂直于O 点指向I 2,同样由安培定则可知I 1与I 3在O 处磁感应强度相同,I 2在O 点磁感应强度方向指向I 3.由平行四边形定则可得B 0=+2+B 2=5B ,设方向与OI 3连线夹角为α,可得tan α=2B B=2,所以α=arctan2.答案:B2. 如图所示,在倾角为α的光滑斜面上,垂直斜面放置一根长为L 、质量为m 的直导线,当通以电流I 时,欲使导线静止在斜面上,外加匀强磁场B 的大小和方向可能是( )A. B =mgtan α/(IL),方向垂直斜面向上B. B =mgsin α/(IL),方向垂直斜面向下C. B =mgtan α/(IL),方向竖直向上D. B =mg/(IL),方向水平向右解析:当磁场方向垂直斜面向上时,由左手定则可知,安培力方向沿斜面向下,导线不可能静止,A 错误;同理可知C 、D 错误;磁场方向垂直斜面向下时,安培力沿斜面向上,由平衡条件得:BIL =mgsin α,解得B =mgsin αIL,故答案为B. 答案:B3. [2018·广州实验中学检测]如图所示,放在台秤上的条形磁铁两极未知,为了探明磁铁的极性,在它中央的正上方固定一导线,导线与磁铁垂直,给导线通以垂直纸面向外的电流,则( )A.如果台秤的示数增大,说明磁铁左端是N极B.如果台秤的示数增大,说明磁铁右端是N极C.无论如何台秤的示数都不可能变化D.如果台秤的示数增大,台秤的示数随电流的增大而增大解析:如果台秤的示数增大,说明导线对磁铁的作用力竖直向下,由牛顿第三定律知,磁铁对导线的作用力竖直向下,根据左手定则可判断,导线所在处磁场方向水平向右,由磁铁周围磁场分布规律可知,磁铁的左端为N极,选项A正确,选项B、C错误.由F=BIL可知选项D正确.答案:AD4. 如图所示,一个带正电的滑环套在水平且足够长的粗糙的绝缘杆上,整个装置处于方向如图所示的匀强磁场中,现给滑环一个水平向右的瞬时作用力,使其开始运动,则滑环在杆上的运动情况不可能的是( )A. 始终做匀速运动B. 始终做减速运动,最后静止于杆上C. 先做加速运动,最后做匀速运动D. 先做减速运动,最后做匀速运动解析:给滑环一个瞬时作用力,滑环获得一定的速度v,当qvB=mg时,滑环将以v做匀速直线运动,故A 正确.当qvB<mg时,滑环受摩擦阻力做减速运动,直到停下来,故B正确.当qvB>mg时,滑环先做减速运动,当减速到qvB=mg后,以速度v=mgqB做匀速直线运动,故D对.由于摩擦阻力作用,滑环不可能做加速运动,故C错,应选C.答案:C5. [2018·山西四校联考]如图所示,两个横截面分别为圆形和正方形的区域内有磁感应强度相同的匀强磁场,圆的直径和正方形的边长相等,两个电子以相同的速度分别飞入两个磁场区域,速度方向均与磁场方向垂直,进入圆形磁场的电子初速度方向对准圆心;进入正方形磁场的电子初速度方向垂直于边界,从中点进入.下面判断正确的是( )A. 两电子在两磁场中运动时,其半径一定相同B. 两电子在磁场中运动的时间一定不相同C. 进入圆形磁场区域的电子一定先飞离磁场D. 进入圆形磁场区域的电子一定不会后飞离磁场解析:两个电子以相同的速度分别飞入两个磁感应强度相同的磁场区域,两电子在两磁场中运动时,其半径一定相同,A 正确;当运动的轨道半径等于圆形磁场区域的半径时,两电子在磁场中运动的时间都为T/4,时间相同,B 错误;进入圆形磁场区域的电子不一定先飞离磁场,二者可能同时飞出磁场,进入圆形磁场区域的电子一定不会后飞离磁场,C 错误,D 正确.答案:AD6. 如图所示,一个带负电的物体由粗糙绝缘的斜面顶端由静止下滑到底端时速度为v ,若加一个垂直于纸面向外的匀强磁场,则带电体滑到底端时速度将( )A. 大于vB. 小于vC. 等于vD. 无法确定解析:由左手定则判断带负电的物体沿斜面下滑时所受洛伦兹力方向垂直斜面向下,所以使物体与斜面之间的弹力增大,滑动摩擦力增大,从顶端滑到底端的过程中克服摩擦力做的功增多,根据动能定理可知,滑到底端时的动能小于无磁场时滑到底端的动能,故速率变小.答案:B7. [2018·江西景德镇]如图所示是某离子速度选择器的原理示意图,在一半径为R 的绝缘圆柱形筒内有磁感应强度为B 的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔M 、N ,现有一束速率不同、比荷均为k 的正、负离子,从M 孔以α角入射,一些具有特定速度的离子未与筒壁碰撞而直接从N 孔射出(不考虑离子间的作用力和重力).则从N 孔射出的离子( )A. 是正离子,速率为kBR/cos αB. 是正离子,速率为kBR/sin αC. 是负离子,速率为kBR/sin αD. 是负离子,速率为kBR/cos α解析:根据左手定则可判断出,从N 孔射出的离子是正离子,从N 孔射出的离子在磁场中做匀速圆周运动,其运动轨迹所对圆心角等于入射离子的偏向角2α,如图所示,根据几何关系可得,粒子做圆周运动的轨道半径r =R/sin α,根据洛伦兹力提供向心力得,Bvq =mv2r,解得,v =kBR/sin α,B 项正确.答案:B8. [2018·江西重点中学联考]如图所示,一个半径为R 的导电圆环与一个轴向对称的发散磁场处处正交,环上各点的磁感应强度B 大小相等,方向均与环面轴线方向成θ角(环面轴线为竖直方向).若导电圆环上载有如图所示的恒定电流I ,则下列说法正确的是( )A. 导电圆环有收缩的趋势B. 导电圆环所受安培力方向竖直向上C. 导电圆环所受安培力的大小为2BIRD. 导电圆环所受安培力的大小为2πBIR解析:若导线圆环上载有如图所示的恒定电流I ,由左手定则可得导线圆环上各小段所受安培力斜向内,导电圆环有收缩的趋势,导电圆环所受安培力方向竖直向上,导电圆环所受安培力的大小为2πBIRsin θ,选项AB 正确.答案:AB9. 如图所示,有a 、b 、c 、d 四个离子,它们带等量同种电荷,质量不等,它们的质量关系有m a =m b <m c =m d ,以不等的速率v a <v b =v c <v d 进入速度选择器后,有两个离子从速度选择器中射出,进入磁感应强度为B 2的磁场,另两个离子射向P 1和P 2.由此可判定( )A. 射向P 1的是a 离子B. 射向P 2的是b 离子C. 射向A 1的是c 离子D. 射向A 2的是d 离子解析:通过在磁场中的偏转轨迹知,离子带正电.在速度选择器中,有qE =qvB.v =EB ,只有速度满足一定值的离子才能通过速度选择器.所以只有b 、c 两离子能通过速度选择器.a 的速度小于b 的速度,所以a 受到的电场力大于洛伦兹力,a 向P 1偏转,故A 正确、B 错误;b 、c 两离子通过速度选择器进入磁感应强度为B 2的磁场中,根据r =mvqB知,质量大的半径大,故射向A 1的是b 离子,射向A 2的是c 离子,故C 、D 错误.答案:A10. 利用如图所示装置可以选择一定速度范围内的带电粒子.板MN 下方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场.板上有一小孔O 和宽为d 的缝AC ,小孔与缝左端A 的距离为L.一群质量为m 、电荷量为q ,具有不同速度的粒子从小孔垂直于板MN 进入磁场,对于能够从宽为d 的缝射出的粒子,下列说法正确的是( )A. 这些粒子从缝射出的速度方向不一定垂直于MNB. 从缝右端C 点射出的粒子比从缝左端A 点射出的粒子在磁场中运动的时间长C. 射出粒子的最大速度为+mD. 保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差不变解析:由几何关系可知,当粒子垂直于MN 射入磁场时,一定以垂直于MN 的方向射出磁场,在磁场中运动的时间与速度大小无关,故选项A 、B 错误;射出粒子的最大半径为R =L +d 2,由Bqv =m v2R 得最大速度为+2m,选项C 错误;最小速度为LBq 2m ,最大速度与最小速度之差Δv =dBq2m,与L 无关,故选项D 正确.答案:D11. [2018·江苏扬州中学高三质检]如图所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向自A 点射入磁场,分别从AC 边上的P 、Q 两点射出,则( )A .从P 射出的粒子速度大B .从Q 射出的粒子速度大C .从P 射出的粒子,在磁场中运动的时间长D .两粒子在磁场中运动的时间一样长解析:作出各自的轨迹如图所示,根据圆周运动特点知,分别从P 、Q 点射出时,速度方向与AC 边夹角相同,故可判定从P 、Q 点射出时,半径R 1<R 2,所以从Q 点射出的粒子速度大,B 正确;根据图示可知,两个运动轨迹所对应的圆心角相等,所以从P 、Q 点射出时,两粒子在磁场中的运动时间相等.BD 正确.答案:BD12. 如图所示,有一长方体金属块放在垂直表面C 的匀强磁场中,磁感应强度大小为B ,金属块的厚度为d ,高为h ,当有稳恒电流I 沿平行平面C 的方向通过金属块时,金属块上、下两面M 、N 上的电势分别为j M 、j N ,则下列说法中正确的是( )A. 由于磁场力的作用,金属块中单位体积内参与导电的自由电子数目为BI ed |1j M -j N |B. 由于磁场力的作用,金属块中单位体积内参与导电的自由电子数目为BI eh |1j M -j N |C. M 面比N 面电势高D. 金属块的左面比右面电势低解析:由于洛伦兹力作用使电子堆积在金属块上表面且形成一附加电场,方向向上.设两面M 、N 上的电势差为U ,则U =|j M -j N |,稳定时电子所受的洛伦兹力与电场力相平衡,则evB =eU/h ,根据金属导电时的规律I =neSv ,式中S =dh ,联立各式可得金属块中单位体积内参与导电的自由电子数目n =BI ed |1j M -j N |,选项A 对,B错;由左手定则可知,电子积累在上端面,电势低,故C 错;由于电源外的电路中电流由高电势流向低电势,故D 错.答案:A第Ⅱ卷 (非选择题,共50分)二、计算题(本题共4小题,共50分)13. (12分)[2018·苏州模拟]如图所示为一电流表的原理示意图.质量为m 的均质细金属棒MN 的中点处通过一挂钩与一竖直悬挂的弹簧相连,绝缘弹簧劲度系数为k.在矩形区域abcd 内有匀强磁场,磁感应强度大小为B ,方向垂直纸面向外.与MN 的右端N 连接的一绝缘轻指针可指示标尺上的读数,MN 的长度大于ab .当MN 中没有电流通过且处于平衡状态时,MN 与矩形区域的cd 边重合,当MN 中有电流通过时,指针示数可表示电流强度.(1)当电流表示数为零时,弹簧伸长多少?(重力加速度为g) (2)若要电流表正常工作,MN 的哪一端应与电源正极相接?(3)若k =2.0 N/m ,ab =0.20 m ,cb =0.050 m ,B =0.20 T ,此电流表的量程是多少?(不计通电时电流产生的磁场的作用)(4)若将量程扩大2倍,磁感应强度应变为多大?解析:(1)设当电流表示数为零时,弹簧的伸长量为Δx ,则有mg =k Δx , ① 解得:Δx =mgk. ②(2)为使电流表正常工作,作用于通有电流的金属棒MN 的安培力必须向下,因此M 端应接正极. (3)设电流表满偏时通过MN 的电流强度为I m ,则有BI m ab +mg =k(cb +Δx), ③ 联立并代入数据得I m =2.5 A . ④(4)设量程扩大后,磁感应强度变为B′,则有 2B′I m ab +mg =k(cb +Δx). ⑤解得:B′=k cb2I m ab. ⑥代入数据得:B′=0.10 T.答案:(1)mgk(2)M 端 (3)2.5 A (4)0.10 T14. (12分)如图所示,在xOy 坐标平面的第一象限内存在有场强大小为E 、方向竖直向上的匀强电场,第二象限内存在有方向垂直纸面向外的匀强磁场.荧光屏PQ 垂直于x 轴放置且距y 轴的距离为L.一质量为m 、带电荷量为+q 的粒子(不计重力)自坐标为(-L,0)的A 点以大小为v 0、方向沿y 轴正方向的速度进入磁场,粒子恰好能够到达原点O 而不进入电场.现若使该带电粒子仍从A 点进入磁场,但初速度大小为22v 0、方向与x 轴正方向成45°角,求:(1)带电粒子到达y 轴时速度方向与y 轴正方向之间的夹角. (2)粒子最终打在荧光屏PQ 上的位置坐标.解析:(1)设磁场的磁感应强度为B ,则由题意可知,当粒子以速度v 0进入磁场时,设其圆周运动的半径为R ,有Bqv 0=m v 20R ,其中R =L2当粒子以初速度大小为22v 0、方向与x 轴正方向成45°角进入磁场时,设其圆周运动的半径为R′,则有Bq22v 0=m 8v 2R′由以上各式可解得R′=2L由几何关系可知粒子做圆周运动的圆心在y 轴上,所以该粒子必定垂直于y 轴进入匀强电场.故粒子到达y 轴时,速度方向与y 轴正方向之间的夹角为90°.(2)由几何关系可知CO =(2-1)L带电粒子在电场中做类平抛运动,设其运动时间为t ,在电场中向上运动的距离为h ,则有: L =22v 0t ,h =12at 2,a =qEm以上各式联立可解得:h =qEL216mv 20所以粒子最终打在荧光屏PQ 上的位置坐标为 (L ,qEL 216mv 20+(2-1)L) 答案:(1)90° (2)(L ,qEL216mv 20+(2-1)L) 15. (12分)如图所示,水平放置的矩形容器内充满垂直纸面向外的匀强磁场,容器的高为d ,右边足够宽,底面MN 为荧光屏,在荧光屏中心O 处置一粒子源,可以向纸面内以OA 、OB 为边界的区域内连续均匀发射速率为v 0、质量为m 、电荷量为q 的正粒子,其中沿OA 方向发射的粒子刚好不碰到容器的上板面打在荧光屏上产生荧光.OA 、OB 与MN 的夹角分别为α=60°,β=30°,不计粒子的重力及粒子间的相互作用.求:(1)磁场的磁感应强度B 的大小;(2)分别沿OA 、OB 方向发射的粒子在磁场中运动的时间差Δt. 解析:如图为粒子在匀强磁场中的运动轨迹.(1)设粒子源发出的粒子在磁场中运动的半径为r ,对于沿OA 方向发射的粒子,由几何关系得 r +rsin β=d 解得r =2d3由牛顿第二定律得Bqv 0=mv 2r联立解得B =3mv 02qd(2)沿OA 、OB 方向发射的粒子在磁场中运动的时间分别设为t 1、t 2,粒子做匀速圆周运动的周期设为T ,则 T =2πmBqt 1=23Tt 2=16TΔt =2T 3-16T联立解得Δt =2πd3v 0.答案:(1)3mv 02qd (2)2πd3v 016. (14分)如图所示,第一象限的某个矩形区域内,有方向垂直纸面向外的匀强磁场B 1,磁场的下边界与x 轴重合.一质量m =1×10-14kg 、电荷量q =1×10-10C 的带正电微粒以某一速度v 沿与y 轴负方向成60°角的方向从N 点射入,经P 点进入第四象限内沿直线运动,一段时间后,微粒经过y 轴上的M 点并沿与y 轴负方向成60°角的方向飞出.第四象限内有互相正交的匀强电场E 与匀强磁场B 2,E 的大小为0.5×103V/m ,B 2的大小为0.5 T ;M 点的坐标为(0,-10 cm),N 点的坐标为(0,30 cm),不计微粒重力.(1)求匀强磁场B 1的大小和微粒的运动速度v. (2)B 1磁场区域的最小面积为多少?解析:(1)带正电微粒以某一速度v 沿与y 轴负方向成60°角的方向从N 点射入,由于重力忽略不计,微粒在第一象限内仅受洛伦兹力做匀速圆周运动;微粒在第四象限内仅受电场力和洛伦兹力,且微粒做直线运动,速度的变化会引起洛伦兹力的变化,所以微粒必做匀速直线运动,因此,电场力和洛伦兹力大小相等,方向相反,由力的平衡有Eq =B 2qv所以v =E B 2=0.5×1030.5 m/s =1×103m/s根据题意画出微粒的运动轨迹如图:因为M 点的坐标为(0,-10),N 点的坐标为(0,30),由几何关系可知微粒在第一象限内做圆周运动的半径为R =2033 cm =315m 微粒做圆周运动的向心力由洛伦兹力提供,即qB 1v =m v 2R解得B 1=32T. (2)由图可知,磁场B 1的最小区域应该分布在图示的矩形PACD 内.由几何关系易得 PD =2Rsin60°=0.2 m PA =R(1-cos60°)=330m 所以,所求磁场的最小面积为 S =PD·PA=15×330 m 2=3150 m 2.答案:(1)32 T 1×103m/s (2)3150m 2。

(完整word版)高三物理高考第一轮专题复习——电磁场(含答案详解)(2),推荐文档

(完整word版)高三物理高考第一轮专题复习——电磁场(含答案详解)(2),推荐文档

高三物理第一轮专题复习——电磁场例1. (高考题)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少?例2.(调研)电子自静止开始经M 、N 板间(两板间的电压为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中, 电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁 场的磁感应强度.(已知电子的质量为m ,电量为e )例3.(高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0 =80m/s的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少? 例4.(北京市西城区)在高能物理研究中,粒子回旋加速器起着重要作用,如图甲为它的示意图。

它由两个铝v 0dab c · e制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。

两个D 型盒处在匀强磁场中并接有高频交变电压。

图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。

在磁场力的作用下运动半周,再经狭缝电压加速。

2025年高考人教版物理一轮复习阶段复习练四—电场和磁场 附答案解析

2025年高考人教版物理一轮复习阶段复习练四—电场和磁场  附答案解析

2025年⾼考⼈教版物理⼀轮复习阶段复习练(四)—电场和磁场(附答案解析)1.(2024·⼭西晋城市第⼀中学期中)如图甲所⽰,计算机键盘为电容式传感器,每个键下⾯由相互平⾏、间距为d的活动⾦属⽚和固定⾦属⽚组成,两⾦属⽚间有空⽓间隙,两⾦属⽚组成⼀个平⾏板电容器,如图⼄所⽰。

其内部电路如图丙所⽰,则下列说法正确的是( )A.按键的过程中,电容器的电容减⼩B.按键的过程中,电容器的电荷量增⼤C.按键的过程中,图丙中电流⽅向从a流向bD.按键的过程中,电容器间的电场强度减⼩2.(2023·⼴东深圳市期末)如图所⽰,将⼀轻质矩形弹性软线圈ABCD中A、B、C、D、E、F 六点固定,E、F为AD、BC边的中点。

⼀不易形变的长直导线在E、F两点处固定,现将矩形绝缘软线圈中通⼊电流I1,直导线中通⼊电流I2,已知I1≪I2,长直导线和线圈彼此绝缘。

则稳定后软线圈⼤致的形状可能是( )3.(多选)如图甲所⽰,为特⾼压输电线路上使⽤六分裂阻尼间隔棒的情景。

其简化如图⼄,间隔棒将6条输电导线分别固定在⼀个正六边形的顶点a、b、c、d、e、f上,O为正六边形的中⼼,A点、B点分别为Oa、Od的中点。

已知通电导线在周围形成磁场的磁感应强度与电流⼤⼩成正⽐,与到导线的距离成反⽐。

6条输电导线中通有垂直纸⾯向外、⼤⼩相等的电流,其中a导线中的电流对b导线的安培⼒⼤⼩为F,则( )A.A点和B点的磁感应强度相同B.其中b导线所受安培⼒⼤⼩为FC.a、b、c、d、e五根导线在O点的磁感应强度⽅向垂直于ed向下D.a、b、c、d、e五根导线在O点的磁感应强度⽅向垂直于ed向上4.(2024·江苏常州市检测)如图所⽰,ABCD为真空中⼀正四⾯体区域,M和N分别为AC边和AD边的中点,A处和C处分别有等量异种点电荷+Q和-Q。

则( )A.B、D处电场强度⼤⼩相等,⽅向不同B.电⼦在M点的电势能⼩于在N点的电势能C.将⼀试探正电荷从B沿直线BD移动到D静电⼒做正功D.将位于C处的电荷-Q移到B处时M、N点电场强度⼤⼩相等5.(2024·河南周⼝市期中)如图所⽰,在竖直平⾯内有⽔平向左的匀强电场,在匀强电场中有⼀根长为L的绝缘细线,细线⼀端固定在O点,另⼀端系⼀质量为m的带电⼩球。

高三物理电磁学试题答案及解析

高三物理电磁学试题答案及解析

高三物理电磁学试题答案及解析1.如图甲所示,空间存在一有界匀强磁场,磁场的左边界如虚线所示,虚线右侧范围足够大,磁场方向竖直向下.在光滑绝缘水平面内有一长方形金属线框,线框质量m=0.1kg,在水平向右的外力F作用下,以初速度v=1m/s一直做匀加速直线运动,外力F大小随时间t变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:(1)线框cd边刚进入磁场时速度v的大小;=0.27J,则在此过程中线框产生的焦耳热Q为多少?(2)若线框进入磁场过程中F做功为WF【答案】(1)2m/s (2)0.12J【解析】(1)当后,对线框:解得:又解得:(2)根据功能关系得:解得:【考点】功能关系;牛顿定律的应用.2.如图所示,在xoy平面第一象限里有竖直向下的匀强电场,电场强度为E。

第二象限里有垂直于纸面向外的匀强磁场,磁感应强度为B。

在x轴上-a处,质量为m、电荷量为e的质子以大小不同的速度射入磁场,射入时速度与x轴负方向夹角为。

不计空气阻力,重力加速度为g。

求:(1)在-x轴上有质子到达的坐标范围;(2)垂直于y轴进入电场的质子,在电场中运动的时间;(3)在磁场中经过圆心角为2的一段圆弧后进入电场的质子,到达x轴的动能。

【答案】(1)(2)(3)【解析】(1)设-x轴的第一个坐标点为x1(2)质子垂直进入电场时距x轴的距离:(3)在磁场中运动情景如图所示。

由牛顿定律可知:由动能定理:【考点】带电粒子在磁场中的运动;动能定理.3.如图在xoy坐标系第Ⅰ象限,磁场方向垂直xoy平面向里,磁感应强度大小为B=1.0T;电场方向水平向右,电场强度大小为E=N/C.一个质量m=2.0×10﹣7kg,电荷量q=2.0×10﹣6C的带射入第Ⅰ象限,恰好在xoy平面中做匀速直线运动.0.10s后改正电粒子从x轴上P点以速度v变电场强度大小和方向,带电粒子在xoy平面内做匀速圆周运动,取g=10m/s2.求:大小和方向;(1)带电粒子在xoy平面内做匀速直线运动的速度v(2)带电粒子在xoy平面内做匀速圆周运动时电场强度E′的大小和方向;(3)若匀速圆周运动时恰好未离开第Ⅰ象限,x轴上入射P点应满足何条件?【答案】(1)2m/s,方向斜向上与x轴正半轴夹角为60°;(2)1N/C,方向竖直向上.(3)0.27m【解析】(1)如图粒子在复合场中做匀速直线运动,设速度v与x轴夹角为θ,依题意得:解得所以:θ=60°即速度v大小2m/s,方向斜向上与x轴正半轴夹角为60°(2)带电粒子在xOy平面内做匀速圆周运动时,电场力F电必须与重力平衡,洛伦兹力提供向心力:解得E′=1N/C,方向竖直向上.(3)如图带电粒子匀速圆周运动恰好未离开第1象限,圆弧左边与y轴相切N点;PQ匀速直线运动,PQ=vt="0.2" m洛伦兹力提供向心力:,得R=0.2m由几何知识得:OP=R+Rsin60°-PQcos60°OP==0.27m故:x轴上入射P点离O点距离至少为0.27m【考点】带电粒子在复合场中的运动;4.图中L为自感系数足够大的理想电感,C是电容量足够大的理想电容,R1、R2是阻值大小合适的相同电阻,G1、G2是两个零刻度在中央的相同的灵敏电流表,且电流从哪一侧接线柱流入指针即向哪一侧偏转,E是可以不计内阻的直流电源.针对该电路下列判断正确的是( )A.电键S闭合的瞬间,仅电流计G1发生明显地偏转B.电键S闭合的瞬间,两电流计将同时发生明显的偏转C.电路工作稳定后,两电流计均有明显不为零的恒定示数D.电路工作稳定后再断开电键S,此后的短时间内,G1的指针将向右偏转,G2的指针将向左偏转【答案】BD【解析】电路接通瞬间,由于自感系数足够大,所以有电流通过R1,直流电不能通过电容器,则有电流通过R2,所以电键S闭合的瞬间,两电流计将同时发生明显的偏转,故A错误,B正确;L为理想电感,电路温度后,R1被短路,则没有电流通过,示数为零,故C错误;电路工作稳定后再断开电键S,此后的短时间内,电容器放电,电流从右端通过R1,从左端通过R2,则G1的指针将向右偏转,G2的指针将向左偏转,故D正确.故选BD.【考点】自感现象.【名师】此题考查自感以及电容器问题;解决本题的关键知道电感器对电流的变化有阻碍作用:当电流增大时,会阻碍电流的增大,当电流减小时,会阻碍其减小,而电阻没有此特点,当K断开电阻、电容构成一回路,电容器可以储存电荷。

2020版高考物理新设计一轮复习江苏专版讲义:第八章第1节磁场的描述磁场对电流的作用含答案

2020版高考物理新设计一轮复习江苏专版讲义:第八章第1节磁场的描述磁场对电流的作用含答案

第八章磁场第1节磁场的描述__磁场对电流的作用(1)磁场中某点磁感应强度的大小,跟放在该点的试探电流元的情况无关。

(√)(2)磁场中某点磁感应强度的方向,跟放在该点的试探电流元所受磁场力的方向一致。

(×)(3)垂直磁场放置的线圈面积减小时,穿过线圈的磁通量可能增大。

(√)(4)小磁针N极所指的方向就是该处磁场的方向。

(×)(5)在同一幅图中,磁感线越密,磁场越强。

(√)(6)将通电导线放入磁场中,若不受安培力,说明该处磁感应强度为零。

(×)(7)安培力可能做正功,也可能做负功。

(√)1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流的磁效应。

突破点(一)对磁感应强度的理解1.理解磁感应强度的三点注意事项(1)磁感应强度由磁场本身决定,因此不能根据定义式B=FIL认为B与F成正比,与IL成反比。

(2)测量磁感应强度时小段通电导线必须垂直磁场放入,如果平行磁场放入,则所受安培力为零,但不能说该点的磁感应强度为零。

(3)磁感应强度是矢量,其方向为放入其中的小磁针N极的受力方向,也是自由转动的小磁针静止时N极的指向。

2.磁感应强度B与电场强度E的比较磁感应强度 B 电场强度E 物理意义描述磁场强弱的物理量描述电场强弱的物理量定义式B=FIL(L与B垂直)E=Fq方向磁感线切线方向,小磁针N极受力方向(静止时N极所指方向)电场线切线方向,正电荷受力方向大小决定因素由磁场决定,与电流元无关由电场决定,与检验电荷无关场的叠加合磁感应强度等于各磁场的磁感应强度的矢量和合电场强度等于各电场的电场强度的矢量和3.地磁场的特点(1)在地理两极附近磁场最强,赤道处磁场最弱。

(2)地磁场的N极在地理南极附近,地磁场的S极在地理北极附近。

(3)在赤道平面(地磁场的中性面)附近,距离地球表面相等的各点,地磁场的强弱程度相同,且方向水平。

[题点全练]下列关于磁场或电场的说法正确的是________。

高考物理新电磁学知识点之磁场知识点总复习附答案(1)

高考物理新电磁学知识点之磁场知识点总复习附答案(1)

高考物理新电磁学知识点之磁场知识点总复习附答案(1)一、选择题1.如图所示,空间中存在在相互垂直的匀强电场和匀强磁场,有一带电液滴在竖直面内做半径为R的匀速圆周运动,已知电场强度为E,磁感应强度为B,重力加速度为g,则液滴环绕速度大小及方向分别为()A.EB,顺时针B.EB,逆时针C.BgRE,顺时针D.BgRE,逆时针2.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N2,则以下说法正确的是()A.N1>N2,弹簧长度将变长B.N1>N2,弹簧长度将变短C.N1<N2,弹簧长度将变长D.N1<N2,弹簧长度将变短3.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间4.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B和2B。

一带正电粒子(不计重力)以速度v从磁场分界线MN上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN成60 角,经过t1时间后粒子进入到磁场区域Ⅱ,又经过t2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则()A.ω1∶ω2=1∶1B.ω1∶ω2=2∶1C.t1∶t2=1∶1D.t1∶t2=2∶15.如图所示,虚线为两磁场的边界,左侧磁场垂直纸面向里,右侧磁场垂直纸面向外,磁感应强度大小均为B。

一边长为L、电阻为R的单匝正方形导体线圈abcd,水平向右运动到图示位置时,速度大小为v,则()A.ab边受到的安培力向左,cd边受到的安培力向右B.ab边受到的安培力向右,cd边受到的安培力向左C.线圈受到的安培力的大小为22 2B L vRD.线圈受到的安培力的大小为22 4B L vR6.下列关于教材中四幅插图的说法正确的是()A.图甲是通电导线周围存在磁场的实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 例 高三物理第一轮专题复习——电磁场(高考题)在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以 速度 v 沿-x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿+y 方向飞出。

(1) 请判断该粒子带何种电荷,并求出其比荷 q/m ;(2) 若磁场的方向和所在空间范围不变,而磁感应强度的大小变为 B ’,该粒子仍从 A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度 B’多大?此次粒子在磁场中运动所用时间 t 是多少?调研)电子自静止开始经 M 、N 板间(两板间的电压为 U )的电场加速后从 A 点垂直于磁场边界射入宽度为 d 的匀强磁场中, 电子离开磁场时的位置 P 偏离入射方向的距离为 L ,如图所示.求匀强磁 场的磁感应强度.(已知电子的质量为 m ,电量为 e )高考)如图所示,abcd 为一正方形区域,正离子束从 a 点沿 ad 方向以 av 00 =80m/s 的初速度射入,若在该区域中加上一个沿 ab 方向的匀强电场,电场E ,则离子束刚好从 c 点射出;若撒去电场,在该区域中加上一个垂直于 abcd 平 强磁砀,磁感应强度为 B ,则离子束刚好从 bc 的中点 e 射出,忽略离子束中离子 b·e互作用,不计离子的重力,试判断和计算:d强度为面的匀c间的相(1)所加磁场的方向如何?(2)E 与 B 的比值 E / B 为多少?北京市西城区)在高能物理研究中,粒子回旋加速器起着重要作用,如图甲为它的示意图。

它由两个铝制 D 型金属扁盒组成,两个 D 形盒正中间开有一条窄缝。

两个 D 型盒处在匀强磁场中并接有高频交变电压。

图乙为俯视图,在 D 型盒上半面中心 S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入 D 型盒中。

在磁场力的作用下运动半周,再经狭缝电压加速。

如此周而复始,最后到达 D 型盒的边缘,获得最大速度,由导出装置导出。

已 知正离子的电荷量为 q ,质量为 m ,加速时电极间电压大小为 U ,磁场的磁感应强度为 B ,D 型盒的半径为 R 。

每次加速的时间很短,可以忽略不计。

正离子从离子源出发时的初速度为零。

(1) 为了使正离子每经过窄缝都被加速,求交变电压的频率;3.例 ( 例 2. ( 例 4. (7. 例 (2) 求离子能获得的最大动能;(3) 求离子第 1 次与第 n 次在下半盒中运动的轨道半径之比。

高考题)如图甲所示,图的右侧 MN 为一竖直放置的荧光屏, O 为它的中点,OO ’与荧光屏垂直,且长度为 l 。

在 MN 的左侧空间M内存在着方向水平向里的匀强电场,场强大小为 E 。

乙图是从甲图的左 边去看荧光屏得到的平面图,在荧光屏上以 O 为原点建立如图的直角 坐标系。

一细束质量为 m 、电荷为 q 的带电粒子以相同的初速度 v 0 从O ′OO ’点沿O ’O 方向射入电场区域。

粒子的重力和粒子间的相互作用ElN都可忽略不计。

甲乙(1) 若再在 MN 左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点 O 处,求这个磁场的磁感强度的大小和方向。

(2) 如果磁感强度的大小保持不变,但把方向变为与电场方向相同,则荧光屏上的亮点位于图中 A 点处,已知A 点的纵坐标 y3 l ,求它的横坐标的数值。

3如图所示,空间分布着有理想边界的匀强电场和匀强磁场。

左侧匀强场强大小为 E 、方向水平向右,电场宽度为 L ;中间区域匀强磁场的磁感应强 O为 B ,方向垂直纸面向里。

一个质量为 m 、电量为 q 、不计重力的带正电的电场的左边缘的 O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域 dB B电场的度大小粒子从后,又回到 O 点,然后重复上述运动过程。

求:(1) 中间磁场区域的宽度 d ;(2) 带电粒子从 O 点开始运动到第一次回到 O 点所用时间 t 。

(高考模拟)如下图所示,PR 是一块长为 L= 4m 的绝缘平板,固定在水平地面上,整个空间有一个平行于 PR 的匀强电场 E ,在板的右半部分有一个垂直于纸面向里的匀强磁场 B ,一个质量为 0.1Kg ,带电量为 0.5C 的物体, 从板的 P 端由静止开始在电场力和摩擦力的作用下向右作匀加速直线运动,进入磁场后恰能作匀速运动,当物体碰6. 例 LE y AxO例 5. (到板 R 端竖直绝缘挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减L 2速运动停在 C 点,PC= 4,物体与平板间的动摩擦因数 μ=0.4,(g=10m/s )求:(1) 判断物体带正电还是带负电以及电场强度 E 的方向(说明理由); (2) 物体与挡板碰撞后的速度 V 2 和磁感应强度 B 的大小; (3) 物体与挡板碰撞前的速度 V 1 和电场强度 E 的大小。

L ,足够长,在其上放置两根长也为 L 且与导轨垂直的金属棒 ab 和 cd,它们的质量分别为 2m 、m ,电阻阻值均 为 R (金属导轨及导线的电阻均可忽略不计),整个装置 处在磁感应强度大小为 B 、方向竖直向下的匀 中。

甲强磁场乙(1) 现把金属棒 ab 锁定在导轨的左端,如图甲,对 cd 施加与导轨平行的水平向右的恒力 F ,使金属棒 cd 向右沿导轨运动,当金属棒 cd 的运动状态稳定时,金属棒 cd 的运动速度是多大? 此时拉力 F 瞬时功率多大?(2) 若当金属棒 cd 的速度为最大速度的一半时,金属棒 cd 的加速度多大?(3) 若对金属棒 ab 解除锁定,如图乙,使金属棒 cd 获得瞬时水平向右的初速度 v 0,当它们的运动状态达到稳定的过程中,流过金属棒 ab 的电量 q 是多少?整个过程中 ab 和 cd 相对运动的位移 s 是多大?整个过程中回路中产生的焦耳热 Q 是多少?MN 、PQ 相距 l ,在 M 点和 P 点间接一个阻值为 R 的电阻,在两导轨间OO 1O 1′O ′矩形区域内有垂直导轨平面竖直向下、宽为 d 的匀强磁场,磁感强度为 B 。

一质量为 m ,电阻为 r 的导体棒 ab ,垂直搁在导轨上,与磁场左边界相距 d 0。

现用一大小为 F 、水平向右的恒力拉 ab 棒,使它由静止开始运动,棒 ab 在离开磁直线运动(棒 ab 与导轨始终保持良好的接触,导轨电阻不计)。

(1) 棒 ab 在离开磁场右边界时的速度;(2) 棒 ab 通过磁场区的过程中整个回路所消耗的电能; (3) 试分析讨论 ab 棒在磁场中可能的运动情况。

d 0d求 :10.例 12. 例 (江苏高考)如图 12 所示,两互相平行的水平金属导轨 MN 、PQ 放在竖直平面内,相距为 L =0.4m ,左端接平行板电容器,板间距离为 d =0.2m ,右端接滑动变阻器 R (R 的最大 阻值为 2Ω),整个空间有水平匀强磁场,磁感应强度为 B =10T ,方向垂直于导轨所在平面。

导体棒 CD 与导轨接触良好,棒的电阻为 r =1Ω,其它电阻及摩擦均不计,现用与导轨平行的大小为 F =2N 的恒力作用,使棒从静止开始运动,取g =10m/s 2。

求:(1) 导体棒处于稳定状态时,拉力的最大功率是多大?图 12(2) 导体棒处于稳定状态时,当滑动触头在滑动变阻器中点时,一带电小球从平行板电容器左侧沿两极板的正中间入射,在两极板间恰好做匀速直线运动;当滑动触头在滑动变阻器最下端时,该带电小球以同样的方式和速度入射, 在两极间恰好能做匀速圆周运动,求圆周的半径是多大?北京朝阳区)如图 1 所示,abcd 是位于竖直平面内的正方形闭合金属线框,金属线框的质量为 m ,电阻为R 。

在金属线框的下方有一匀强磁场区域, MN 和 M ′N ′是匀强磁场区域的水平边界,并与线框的 bc 边平行,磁场方向与线框平面垂直。

现金属线框由距 MN 的某一高度从静止开始下落,图 2 是金属线框由开始下落到完全穿过匀强磁场区域瞬间的速度-时间图象,图像中坐标轴上所标出的字母均为已知量。

求:(1)金属框的边长; (2)磁场的磁感应强度; (3)金属线框在整个下落过程中所产生的热量。

a dv如图所示,光滑平行的金属导轨 M b N 、P Q c 相距 l v v 与水平面成 θ 角,在 M 点和 P 点间接一个阻 值为 R 的电阻,在两导轨间 OO M O ′O N 宽为 d 的匀强磁应强度为 。

一质 1 1 ′矩形区域内有垂直导轨平面向下v、量为 m 、电阻为 r 的导体棒 ab , 垂直搁置于导轨上,与磁场上M NP 0 R Ml ta tt B t边界相距 d 0,现使它由静止开始运动,在棒图a b1 离开磁场前已 经做匀速直线运动(棒 ab 与导轨始终保持良好的接触,导轨电阻不计)。

求:⑴棒 ab 在离开磁场下边界时的速度;⑵棒 ab 通过磁场区的过程中整个电路所消耗的电能。

b图 2 OdO O ′dO ′θNθQ例 13.如图 15 甲所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为 B 。

边长为 l 的,磁 t例 11. (00g ,用绝 . 16例 h2 3 v 0 vd 4 v 0正方形金属框 abcd (下简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的 U 型金属框架MNPQ (下简称 U 型框),U 型框与方框架之间接触良好且无摩擦。

两个金属框每条边的质量均为 m ,每条边的电阻均为 r 。

(1) 将方框固定不动,用力拉动 U 型框使它以速度 v 0 垂直 NP 边向右匀速运动,当 U 型框的 MQ 端滑至方框的最右侧(如图所示)时,方框上的 bc 两端的电势差为多大?此时方框的热功率为多大?(2) 若方框不固定,给 U 型框垂直 NP 边向右的初速度 v 0,如果 U 型框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少?(3) 若方框不固定,给 U 型框垂直 NP 边向右的初速度 v (v >v 0),U 型框最终将与方框分离。

如果从 U 型框和方框不再接触开始,经过时间 t 方框最右侧和 U 型框最左侧距离为 s 。

求两金属框分离时的速度各为多大?如图所示,导体棒 ab 质量为 1 缘细线悬挂后,恰好与宽度为 50cm 的光滑水平导轨 MN 、PQ 良好接触,导轨上放有质量为 200g 的另一导棒 cd ,整个装置处于竖直向上的磁感强度 B = 0.2T 的匀强磁场中,现将ab 棒拉起 0.8m 高后无初速释放。

相关文档
最新文档