立体几何教师

立体几何教师
立体几何教师

立体几何

一、知识结构

1.空间多边形不在同一平面内的若干线段首尾相接所成的图形叫做空间折线.

若空间折线的最后一条线段的尾端与最初一条线段的首端重合,则叫做封闭的空间折线.

若封闭的空间折线各线段彼此不相交,则叫做这空间多边形平面,平面是一个不定义的概念,几何里的平面是无限伸展的.

平面通常用一个平行四边形来表示.

平面常用希腊字母α、β、γ…或拉丁字母M 、N 、P 来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.

在立体几何中,大写字母A ,B ,C ,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:

A∈l—点A 在直线l 上; A ?α—点A 不在平面α内; l ?α—直线l 在平面α内; a ?α—直线a 不在平面α内;

l∩m=A—直线l 与直线m 相交于A 点; α∩l=A—平面α与直线l 交于A 点;

α∩β=l —平面α与平面β相交于直线l. 2.平面的基本性质

公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.

公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论.

推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 3.证题方法

4.空间线面的位置关系

平行—没有公共点 共面

(1)直线与直线 相交—有且只有一个公共点

异面(既不平行,又不相交) 直线在平面内—有无数个公共点

(2)直线和平面 直线不在平面内 平行—没有公共点

(直线在平面外) 相交—有且只有一个公共点

相交—有一条公共直线(无数个公共点)

(3)平面与平面

平行—没有公共点

5.异面直线的判定

证明两条直线是异面直线通常采用反证法.

有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.

6.线面平行与垂直的判定

(1)两直线平行的判定

①定义:在同一个平面内,且没有公共点的两条直线平行.

②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,a β,α∩β=b,则a∥b.

③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.

④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b

⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b

⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b.

(2)两直线垂直的判定

①定义:若两直线成90°角,则这两直线互相垂直.

②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c

③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,b?α,a⊥b.

④三垂线定理和它的逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.

⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.

⑥三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c,则a⊥b,b⊥c,c⊥a.

(3)直线与平面平行的判定

①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.

②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a?α,b?α,a∥b,则a∥α.

③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l?α,则l∥β.

④如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.即若α⊥β,l⊥β,l?α,则l∥α.

⑤在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若A?α,B?α,A、B在α同侧,且A、B到α等距,则AB∥α.

⑥两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若α∥β,a?α,a?β,a∥α,则α∥β.

⑦如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a⊥α,b?α,b⊥a,则b∥α.

⑧如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即若a∥b,a∥α,b∥α(或b?α)

(4)直线与平面垂直的判定

①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.

②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m?α,n?α,m∩n=B,l⊥m,l⊥n,则l⊥α.

③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.

④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.

⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l?β,l⊥a,则l⊥α.

⑥如果两个相交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若α⊥γ,β⊥γ,且a∩β=α,则a⊥γ.

(5)两平面平行的判定

①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点?α∥β.

②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b?α,a∩b=P,a∥β,b∥β,则α∥β.

③垂直于同一直线的两平面平行.即若α⊥a,β⊥a,则α∥β.

④平行于同一平面的两平面平行.即若α∥β,β∥γ,则α∥γ.

⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b?α,c,d?β,a∩b=P,a∥c,b∥d,则α∥β.

(6)两平面垂直的判定

①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°?α⊥β.

②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l?α,则α⊥β.

③一个平面垂直于两个平行平面中的一个,也垂直于另一个.即若α∥β,α⊥γ,则β⊥γ.

7.直线在平面内的判定

(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.

(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则AB?α.

(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则a?α.

(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P?α,P∈β,β∥α,P∈a,a∥α,则a?β.

(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A∈α,A∈b,b∥a,则b?α.

8.存在性和唯一性定理

(1)过直线外一点与这条直线平行的直线有且只有一条;

(2)过一点与已知平面垂直的直线有且只有一条;

(3)过平面外一点与这个平面平行的平面有且只有一个;

(4)与两条异面直线都垂直相交的直线有且只有一条;

(5)过一点与已知直线垂直的平面有且只有一个;

(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;

(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;

(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.

9.射影及有关性质

(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.

(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.

和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.

(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.

当图形所在平面与射影面垂直时,射影是一条线段;

当图形所在平面不与射影面垂直时,射影仍是一个图形.

(4)射影的有关性质

从平面外一点向这个平面所引的垂线段和斜线段中:

(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;

(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;

(iii)垂线段比任何一条斜线段都短.

10.空间中的各种角

等角定理及其推论

定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.

推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.

异面直线所成的角

(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.

(2)取值范围:0°<θ≤90°.

(3)求解方法

①根据定义,通过平移,找到异面直线所成的角θ;

②解含有θ的三角形,求出角θ的大小.

11.直线和平面所成的角

(1)定义和平面所成的角有三种:

(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.

(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.

(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.

(2)取值范围0°≤θ≤90°

(3)求解方法

①作出斜线在平面上的射影,找到斜线与平面所成的角θ.

②解含θ的三角形,求出其大小.

③最小角定理

斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角.

12.二面角及二面角的平面角

(1)半平面 直线把平面分成两个部分,每一部分都叫做半平面.

(2)二面角 条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.

若两个平面相交,则以两个平面的交线为棱形成四个二面角.

二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是

0°<θ≤180°

(3)二面角的平面角

①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.

如图,∠PCD 是二面角α-AB-β的平面角.平面角∠PCD 的大小与顶点C 在棱AB 上的位置无关.

②二面角的平面角具有下列性质:

(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.

(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.

(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面P CD⊥β.

③找(或作)二面角的平面角的主要方法. (i)定义法 (ii)垂面法 (iii)三垂线法

(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法

①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值. ②利用面积射影定理

S′=S·cos α

其中S 为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.

③利用异面直线上两点间的距离公式求二面角的大小. 13.空间的各种距离 点到平面的距离

(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.

(2)求点面距离常用的方法: 1)直接利用定义求

①找到(或作出)表示距离的线段;

②抓住线段(所求距离)所在三角形解之.

2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.

3)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=

3

1

S·h,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.

4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.

14.直线和平面的距离

(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.

(2)求线面距离常用的方法

①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.

②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.

③作辅助垂直平面,把求线面距离转化为求点线距离.

15.平行平面的距离

(1)定义和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.

(2)求平行平面距离常用的方法

①直接利用定义求

证(或连或作)某线段为距离,然后通过解三角形计算之.

②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.

16.异面直线的距离

(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.

任何两条确定的异面直线都存在唯一的公垂线段.

(2)求两条异面直线的距离常用的方法

①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.

此法一般多用于两异面直线互相垂直的情形.

②转化法为以下两种形式:线面距离面面距离

③等体积法

④最值法

⑤射影法

⑥公式法

直线与平面

【例题】

【例1】 正三棱锥P-AB C 的高和底面边长都等于a ,EF 是P A 与B C 的公垂线,E 、F 分别是垂足。(1)求证:侧棱P A ⊥截面B EC (2)求截面B EC 的面积; (3)求截面B EC 与底面AB C 所成二面角的大小 解:1)略

2)易知F 为B C 的中点,在Rt ΔP A O 中,A O=a 3

3

,PO=a , 所以P A =

a 3

2,又易知P A ⊥B E ,

在等腰三角形P AB 中,可求得B E=

a 413

, 所以在直角三角形EF B 中,求得EF=a 43,所以a S BEC 8

3

=?

3)∠EF A =300

【例2】 已知斜三棱柱ABC —A 1B 1C 1中,A 1C 1=B 1C 1=2,D 、D 1分别是AB 、A 1B 1的中点,平面A 1ABB 1⊥平面A 1B 1C 1,异面直线AB 1和C 1B 互相垂直. (1)求证:AB 1⊥C 1D 1; (2)求证:AB 1⊥面A 1CD ;

(3)若AB 1=3,求直线AC 与平面A 1CD 所成的角

.

解:(1)证明:∵A 1C 1=B 1C 1,D 1是A 1B 1的中点,∴C 1D 1⊥A 1B 1于D 1, 又∵平面A 1ABB 1⊥平面A 1B 1C 1,∴C 1D 1⊥平面A 1B 1BA , 而AB 1?平面A 1ABB 1,∴AB 1⊥C 1D 1. (2)证明:连结D 1D ,∵D 是AB 中点,∴DD 1

CC 1,∴C 1D 1∥CD ,由(1)得CD ⊥AB 1,

又∵C 1D 1⊥平面A 1ABB 1,C 1B ⊥AB 1,由三垂线定理得BD 1⊥AB 1,

又∵A 1D ∥D 1B ,∴AB 1⊥A 1D 而CD ∩A 1D =D ,∴AB 1⊥平面A 1CD .

(3)解:由(2)AB 1⊥平面A 1CD 于O ,连结CO 1得∠ACO 为直线AC 与平面A 1CD 所成的

P

A

B

C

E

F

O

角,∵AB 1=3,AC =A 1C 1=2,∴AO =1,∴sin OCA =

2

1

=AC AO , ∴∠OCA =

6

π. 【例3】 两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM =FN ,求证:MN ∥平面BCE .

证法一:作MP ⊥BC ,NQ ⊥BE ,P 、Q 为垂足,则MP ∥AB ,NQ ∥AB . ∴MP ∥NQ ,又AM =NF ,AC =BF , ∴MC =NB ,∠MCP =∠NBQ =45° ∴Rt △MCP ≌Rt △NBQ

∴MP =NQ ,故四边形MPQN 为平行四边形 ∴MN ∥PQ

∵PQ ?平面BCE ,MN 在平面BCE 外, ∴MN ∥平面BCE .

证法二:如图过M 作MH ⊥AB 于H ,则MH ∥BC , ∴

AB

AH

AC AM =

连结NH ,由BF =AC ,FN =AM ,得

AB

AH

BF FN =

////NH AF BE ∴,

//////MH BC MNH BCE NH BE ?

???

平面平面

∴MN ∥平面BCE .

【例4】 在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC .

(1)若D 是BC 的中点,求证:AD ⊥CC 1;

(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1,求证:截面MBC 1⊥

侧面BB 1C 1C ;

(3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由. 解: (1)证明:∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ∵底面ABC ⊥平面BB 1C 1C ,∴AD ⊥侧面BB 1C 1C ∴AD ⊥CC 1.

(2)证明:延长B 1A 1与BM 交于N ,连结C 1N ∵AM =MA 1,∴NA 1=A 1B 1 ∵A 1B 1=A 1C 1,∴A 1C 1=A 1N =A 1B 1 ∴C 1N ⊥C 1B 1

∵底面NB 1C 1⊥侧面BB 1C 1C ,∴C 1N ⊥侧面BB 1C 1C ∴截面C 1NB ⊥侧面BB 1C 1C ∴截面MBC 1⊥侧面BB 1C 1C.

(3)解:结论是肯定的,充分性已由(2)证明,下面证必要性. 过M 作ME ⊥BC 1于E ,∵截面MBC 1⊥侧面BB 1C 1C ∴ME ⊥侧面BB 1C 1C ,又∵AD ⊥侧面BB 1C 1C. ∴ME ∥AD ,∴M 、E 、D 、A 共面 ∵AM ∥侧面BB 1C 1C ,∴AM ∥DE ∵CC 1⊥AM ,∴DE ∥CC 1

∵D 是BC 的中点,∴E 是BC 1的中点 ∴AM =DE =2

1

21

1=

CC AA 1,∴AM =MA 1. 【例5】 已知斜三棱柱AB C-A ’B ’C ’的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),B ’在底面上的射影D 落在B C 上。 (1)求证:A C ⊥面BB ’C ’C 。

(2)当α为何值时,AB ’⊥B C ’,且使得D 恰为B C

的中点。

解:(1)∵ B ’D ⊥面AB C ,A C ?面AB C , ∴ B ’D ⊥A C ,

C'

又A C ⊥B C ,B C ∩B ’D=D , ∴ A C ⊥面BB ’C ’C 。

(2)由三垂线定理知道:要使AB ’⊥B C ’,需且只需AB ’在面BB ’C ’C 内的射影B ’C ⊥B C ’。

即四边形BB ’C ’C 为菱形。此时,B C=BB ’。 因为B ’D ⊥面AB C ,所以,BD B '∠就是侧棱B ’B 与底面AB C 所成的角。 由D 恰好落在B C 上,且为B C 的中点,所以,此时BD B '∠=?60。 即当α=?60时,AB ’⊥B C ’,且使得D 恰为B C 的中点。

【例6】 如图:已知四棱锥ABCD P -中,底面四边形为正方形,侧面PDC 为正三角形,且平面PDC ⊥底面AB CD ,E 为PC 中点。 (1)求证:平面ED B ⊥平面P B C ;

(2)求二面角C DE B --的平面角的正切值。

解:(1)要证两个平面互相垂直,常规的想法是:证明其中一个平面过另一个平面的一

条垂线。

首先观察图中已有的直线,不难发现,由于侧面PDC 为正三角形,所以,PC DE ⊥,

那么我们自然想到:是否有PBC DE 面⊥?这样的想法一经产生,证明它并不是一件困难的事情。

∵ 面PDC ⊥底面AB CD ,交线为DC , ∴ DE 在平面AB CD 内的射影就是DC 。 在正方形AB CD 中,DC ⊥C B , ∴ DE ⊥C B 。

又C BC PC =?,PBC BC PC 面?,,

∴ DE ⊥

PBC 面。 又?DE 面ED B , ∴ 平面ED B ⊥平面P B C 。

A

C

(2)由(1)的证明可知:DE ⊥

PBC 面。所以,BEC ∠就是二面角C DE B --的平面角。

∵ 面PDC ⊥底面AB CD ,交线为DC , 又平面AB CD 内的直线C B ⊥ DC 。 ∴ C B ⊥面PDC 。 又?PC 面PDC , ∴ C B ⊥PC 。

在Rt ECB ?中,2tan ==

∠CE

BC

BEC 。

【例7】 如图:在四棱锥ABCD S -中,SA ⊥平面A B C D ,∠2

π

=∠=A D C

B A D ,a AD AB 2==,a CD =,E 为SB 的中点。

(1)求证://CE 平面SAD ;

(2)当点E 到平面SCD 的距离为多少时,平面SBC 与平面SAD 所成的二面角为?45?

解:题目中涉及到平面SBC 与平面SAD 所成的二面角,所以,应作出这两个平面的交线(即二面角的棱)。另一方面,要证

//CE 平面SAD ,应该设法证明CE 平

行于面SAD 内的一条直线,充分利用中点(中位线)的性质,不难发现,刚刚做出的二面角的棱正好符合要求。

(1)延长B C 、A D 交于点F 。 在FAB ?中,∠2

π=

∠=ADC BAD ,

所以,AB 、CD 都与A F 垂直,所以,CD//AB ,所以,CDF ?∽BAF ?。又a AB 2=,a CD =,所以,点D 、C 分别为线段A F 、B F 的中点。

又因为E 为SB 的中点,所以,EC 为SBC ?的中位线,所以,EC//SF 。

又SAD EC 面?,SAD SF 面?,所以,//CE 平面SAD 。

(2)因为:SA ⊥平面ABCD ,AB ?平面ABCD ,所以,AB ⊥SA 。又AB ⊥A F ,

A SA AF =?,所以,A

B ⊥面SAF 。

过A 作A H ⊥SF 于H ,连B H ,则B H ⊥SF ,所以,BHA ∠就是平面SBC 与平面SAD 所

成的二面角的平面角。 在Rt BHA ?中,要使BHA ∠=?45,需且只需A H=AB =a 2。

此时,在?S A F 中,()a a a SA AF

AH

SF SA 42422?+=?=

,所以,a SA 3

3

4=。

在三棱锥S-A CD 中,设点A 到面SCD 的距离为h ,则

h=a AD SA SA AD SD SA AD CD SD SA

DC

AD S SA S SCD ACD 4

142

22

2=

+?=

?=???=??? 因为AB //DC ,所以,AB //面SCD 。所以,点A 、B 到面SCD 的距离相等。又因为E 为S B 中点,所以,点E 到平面SCD 的距离就等于点B 到面SCD 距离的一半,即

8

14

2=

h 。 【例8】 如图,在三棱柱C B A ABC '''—中,四边形B AB A ''是菱形,四边形B C BC ''是矩形,AB B C ⊥''。(1)求证:平面AB A B A C '⊥'; (2)若?='∠==''6043B AB AB B C ,,,

求AC '与平面BCC '所成角的大小(用反三角函数表示)

解:(1)证明:

∵在三棱柱C B A ABC '''—中,CB B C ∥'' ∴CB ⊥AB ;又∵CB ⊥BB ';AB BB B '= ∴AB A CB '⊥平面 AB

A B A C B

A C C

B '⊥''?平面平面∴平面∵

(2)解:由C BC AB A AB A B C '⊥''⊥''平面,得平面平面 过点A 作AH ⊥平面C BC ',H 为垂足, 则H 在BB '上,

连结所成的角与平面为,则C BC C A H C A H C '''∠' 连接AB A ABB ABB '''∠'=?,由四边形是菱形,60 可知4='''?B A B B

H B AB 中点,又为为等边三角形,而

5

32arcsin

5

32sin 5343222='∠∴=

'∠'?=+='''?=H C A H C A C AH Rt C A A B C Rt AH 中,,而在中,,于是在

因此,直线AC '与平面BCC '所成的角是5

3

2arcsin

。 【例9】 在长方体D C B A ABCD ''''—中,AB=a ,b AD =,c A A =';()c b a >>,由顶点A 沿着长方体的表面到顶点'C 的最短距离是多少? 解:如图所示 ()()()ac

c b a b c a C A bc c b a a c b C A ab c b a b a c C A 2222222

23

2

2

2

2

22

222221

+++=++='+++=++='+++=++='

是所求最短距离故bc c b a C A bc

ac ab b a c bc ac c b a ac ab c

b a 22220)(2220)(2222222

+++='>>∴>-=->-=-∴>>

【直线与平面练习】

一、选择题

1.在长方体ABCD —A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )

A .

3

8 B .

8

3 C.

3

4 D.

4

3 2.在直二面角α—l —β中,直线a ?α,直线b ?β,a 、b 与l 斜交,则( ) A .a 不和b 垂直,但可能a ∥b

B .a 可能和b 垂直,也可能a ∥b C.a 不和b 垂直,a 也不和b 平行

D.a 不和b 平行,但可能a ⊥b

二、填空题

3.设X 、Y 、Z 是空间不同的直线或平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ?X ∥Y ”

为真命题的是_________(填序号).

①X、Y、Z是直线②X、Y是直线,Z是平面③Z是直线,X、Y是平面④X、Y、Z 是平面

4.设a,b是异面直线,下列命题正确的是_________.

①过不在a、b上的一点P一定可以作一条直线和a、b都相交

②过不在a、b上的一点P一定可以作一个平面和a、b都垂直

③过a一定可以作一个平面与b垂直

④过a一定可以作一个平面与b平行

三、解答题

5.如图,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点.

(1)求证:CD⊥PD;

(2)求证:EF∥平面P AD;

(3)当平面PCD与平面ABCD成多大角时,直线EF⊥平面PCD?

6.如图,在正三棱锥A—BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH 分别交AB、BD、DC、CA于点E、F、G、H.

(1)判定四边形EFGH的形状,并说明理由.

(2)设P是棱AD上的点,当AP为何值时,平面PBC⊥平面EFGH,请给出证明.

7.如图,正三棱柱ABC—A1B1C1的各棱长都相等,D、E分别是CC1和AB1的中点,点F在BC上且满足BF∶FC=1∶3.

(1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC ;

(3)求二面角A 1—B 1D —C 1的大小.

8.如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面是菱形且∠C 1CB = ∠C 1CD =∠BCD =60°,

(1)证明:C 1C ⊥BD ; (2)假定CD =2,CC 1=2

3

,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;

(3)当

1

CC CD

的值为多少时,可使A 1C ⊥面C 1BD ?

参考答案

一、1.解析:如图,设A 1C 1∩B 1D 1=O 1,∵B 1D 1⊥A 1O 1,B 1D 1⊥AA 1,∴B 1D 1⊥平面AA 1O 1,故平面AA 1O 1⊥AB 1D 1,交线为AO 1,在面AA 1O 1内过A 1作A 1H ⊥AO 1于H ,则易知A 1H 长即是点A 1到平面AB 1D 1的距离,在Rt △A 1O 1A 中,A 1O 1=2,AO 1=32,由A 1O 1·A 1A =h ·AO 1,可得A 1H =

3

4

.

答案:C

2.解析:如图,在l上任取一点P,过P分别在α、β内作a′∥a,b′∥b,在a′上任取一点A,过A作AC⊥l,垂足为C,则AC⊥β,过C作CB⊥b′交b′于B,连AB,由三垂线定理知AB⊥b′,

∴△APB为直角三角形,故∠APB为锐角.

答案:C

二、3.解析:①是假命题,直线X、Y、Z位于正方体的三条共点棱时为反例,②③是真命题,④是假命题,平面X、Y、Z位于正方体的三个共点侧面时为反例.

答案:②③

4.④

三、5.证明:(1)∵P A⊥底面ABCD,∴AD是PD在平面ABCD内的射影,

∵CD 平面ABCD且CD⊥AD,∴CD⊥PD.

(2)取CD中点G,连EG、FG,

∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD

∴平面EFG∥平面P AD,故EF∥平面P AD

(3)解:当平面PCD与平面ABCD成45°角时,直线EF⊥面PCD

证明:G为CD中点,则EG⊥CD,由(1)知FG⊥CD,故∠EGF为平面PCD与平面ABCD 所成二面角的平面角.即∠EGF=45°,从而得∠ADP=45°,AD=AP

由Rt△P AE≌Rt△CBE,得PE=CE

又F是PC的中点,∴EF⊥PC,由CD⊥EG,CD⊥FG,得CD⊥平面EFG,CD⊥EF即EF⊥CD,故EF⊥平面PCD.

6.(1)证明:

同理EF∥FG,∴EFGH是平行四边形

∵A—BCD是正三棱锥,∴A在底面上的射影O是△BCD的中心,

∴DO ⊥BC ,∴AD ⊥BC ,

∴HG ⊥EH ,四边形EFGH 是矩形.

(2)作CP ⊥AD 于P 点,连结BP ,∵AD ⊥BC ,∴AD ⊥面BCP ∵HG ∥AD ,∴HG ⊥面BCP ,HG ?面EFGH .面BCP ⊥面EFGH , 在Rt △APC 中,∠CAP =30°,AC =a ,∴AP =

2

3

a . 7.(1)证明:连结EM 、MF ,∵M 、E 分别是正三棱柱的棱AB 和AB 1的中点, ∴BB 1∥ME ,又BB 1?平面EFM ,∴BB 1∥平面EFM .

(2)证明:取BC 的中点N ,连结AN 由正三棱柱得:AN ⊥BC , 又BF ∶FC =1∶3,∴F 是BN 的中点,故MF ∥AN , ∴MF ⊥BC ,而BC ⊥BB 1,BB 1∥ME .

∴ME ⊥BC ,由于MF ∩ME =M ,∴BC ⊥平面EFM , 又EF 平面EFM ,∴BC ⊥EF .

(3)解:取B 1C 1的中点O ,连结A 1O 知,A 1O ⊥面BCC 1B 1,由点O 作B 1D 的垂线OQ ,垂足为Q ,连结A 1Q ,由三垂线定理,A 1Q ⊥B 1D ,故∠A 1QD 为二面角A 1—B 1D —C 的平面角,易得∠A 1QO =a rct a n 15.

8.(1)证明:连结A 1C 1、AC ,AC 和BD 交于点O ,连结C 1O , ∵四边形ABCD 是菱形,∴AC ⊥BD ,BC =CD

又∵∠BCC 1=∠DCC 1,C 1C 是公共边,∴△C 1BC ≌△C 1DC ,∴C 1B =C 1D ∵DO =OB ,∴C 1O ⊥BD ,但AC ⊥BD ,AC ∩C 1O =O ∴BD ⊥平面AC 1,又C 1C ?平面AC 1,∴C 1C ⊥BD .

(2)解:由(1)知AC ⊥BD ,C 1O ⊥BD ,∴∠C 1OC 是二面角α—BD —β的平面角.

在△C 1BC 中,BC =2,C 1C =

23,∠BCC 1=60°,∴C 1B 2=22+(23)2-2×2×23×cos60°=4

13

. ∵∠OCB =30°,∴OB =21,BC =1,C 1O =2

3

,即C 1O =C 1C .

作C 1H ⊥OC ,垂足为H ,则H 是OC 中点且OH =23,∴cos C 1OC =3

3

(3)解:由(1)知BD ⊥平面AC 1,∵A 1O ?平面AC 1,∴BD ⊥A 1C ,当

1

CC CD

=1时,平行六面体的六个面是全等的菱形,同理可证BC 1⊥A 1C ,又∵BD ∩BC 1=B ,∴A 1C ⊥平面C 1BD .

空间的角

【复习要点】

空间角的计算步骤:一作、二证、三算

1.异面直线所成的角范围:0°<θ≤90°

方法:①平移法;②补形法.

2.直线与平面所成的角范围:0°≤θ≤90°

方法:关键是作垂线,找射影.

3.二面角

方法:①定义法;②三垂线定理及其逆定理;③垂面法.

注:二面角的计算也可利用射影面积公式S′=S cosθ来计算

【例题】

【例1】如图,α—l—β为60°的二面角,等腰直角三角形MPN的直角顶点P在l 上,M∈α,N∈β,且MP与β所成的角等于NP与α所成的角.

(1)求证:MN分别与α、β所成角相等;

(2)求MN与β所成角.

解:(1)证明:作NA⊥α于A,MB⊥β于B,连接AP、PB、BN、AM,再作AC⊥l于C,BD⊥l于D,连接NC、MD.

∵NA⊥α,MB⊥β,∴∠MPB、∠NP A分别是MP与β所成角及NP与α所成角,∠MNB,∠NMA 分别是MN与β,α所成角,∴∠MPB=∠NP A.

在Rt△MPB与Rt△NP A中,PM=PN,∠MPB=∠NP A,∴△MPB≌△NP A,∴MB=NA.

在Rt△MNB与Rt△NMA中,MB=NA,MN是公共边,∴△MNB≌△NMA,∴∠MNB=∠NMA,即(1)结论成立.

(2)解:设∠MNB=θ,MN=2a,则PB=PN=a,MB=NA=2a sinθ,NB=2a cosθ ,∵MB⊥β,BD⊥l,∴MD⊥l,∴∠MDB是二面角α—l—β的平面角,∴∠MDB=60°,同理∠NCA=60°,

∴BD =AC =

3633=MB a sin θ,CN =DM =63

2

60sin 6=?MB a sin θ, ∵MB ⊥β,MP ⊥PN ,∴BP ⊥PN

∵∠BPN =90°,∠DPB =∠CNP ,∴△BPD ∽△PNC ,∴

PB

BD

PN PC =

222

22

2

22)cos 2(3sin 6)sin 3

62(,a

a a a

a a

BN DB a

CN a -=

-∴

-=

-θθθ即 整理得,16sin 4θ-16sin 2θ+3=0

解得sin 2θ=4341或,sin θ=2

3

21或,当sin θ=23时,CN =632a sin θ=

2a >PN 不合理,

舍去.

∴sin θ=2

1,∴MN 与β所成角为30°.

【例2】 在棱长为a 的正方体ABCD —A ′B ′C ′D ′中,E 、F 分别是BC 、A ′D ′的中点

.

(1)求证:四边形B ′EDF 是菱形; (2)求直线A ′C 与DE 所成的角; (3)求直线AD 与平面B ′EDF 所成的角; (4)求面B ′EDF 与面ABCD 所成的角.

解: (1)证明:如上图所示,由勾股定理,得B ′E =ED =DF =FB ′=2

5

a ,下证B ′、E 、D 、F 四点共面,取AD 中点G ,连结A ′G 、EG ,由EG

AB

A ′

B ′知,B ′EGA ′是平行四边形.

∴B ′E ∥A ′G ,又A ′

F

DG ,∴A ′GDF 为平行四边形.

∴A ′G ∥FD ,∴B ′、E 、D 、F 四点共面 故四边形B ′EDF 是菱形.

(2)解:如图所示,在平面ABCD 内,过C 作CP ∥DE ,交直线AD 于P ,

则∠A ′CP (或补角)为异面直线A ′C 与DE 所成的角. 在△A ′CP 中,易得A ′C =3a ,CP =DE =25a ,A ′P =2

13

a 由余弦定理得cos A ′CP =

15

15

故A ′C 与DE 所成角为arccos

15

15. (3)解:∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上.如下图所示.

又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线, 故直线AD 与平面B ′EDF 所成的角为∠ADB ′ 在Rt △B ′AD 中,AD =2a ,AB ′=2a ,B ′D =2a 则cos ADB ′=

3

3

故AD 与平面B ′EDF 所成的角是arccos

3

3. (4)解:如图,连结EF 、B ′D ,交于O 点,显然O 为B ′D 的中点,从而O 为正方形ABCD —A ′B ′C ′D 的中心.

作OH ⊥平面ABCD ,则H 为正方形ABCD 的中心,

立体几何中的最值(教师版)2014.10.06

立体几何中的最值问题 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A. 5 5 B. 5 5 2 C. 2 D. 1 解析:如图1,由于点P 、Q 分别在线段BD 、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当OQ 最小时,PQ 最小。过O 作OQ ⊥SC ,在Rt △SOC 中,5 5 2=OQ 中。又P 在BD 上运动,且当P 运动到点O 时,PQ 最小,等于OQ 的长为5 5 2,也就是异面直线BD 和SC 的公垂线段的长。故选B 。 图1 图2 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。 解析:如图2,过点B 作平面α的垂线,垂足为O ,连结AO ,则∠BAO=30°。过B 作BE//CD 交平面α于E ,则BE=CD 。连结AE ,因为AB ⊥CD ,故AB ⊥BE 。则在Rt △ABE 中,BE=AB ·tan ∠BAE ≥AB ·tan ∠BAO=3·tan30°=3。故3≥CD 。 三、展成平面求最值 例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图3-1 图3-2 解析:如图3-2,将四面体的侧面展开成平面图形。由于四面体各侧面均为锐角三角形,且AB=CD ,AC=BD ,AD=BC ,所以,A 与A ’、D 与D ’在四面体中是同一点,且''////D A BC AD , '//CD AB ,A 、C 、A ’共线,D 、B 、D ’共线,BD DD AA 2''==。又四边形PQRS 在展开图中变 为折线S ’PQRS ,S ’与S 在四面体中是同一点。因而当P 、Q 、R 在S ’S 上时, RS QR PQ P S +++'最小,也就是四边形PQRS 周长最小。又''SA A S =,所以最小值''DD SS L ==b BD 22==。 故选B 。

专题06 立体几何(解答题)(教师版)

专题06 立体几何(解答题) 1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°, E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2) 17 . 【解析】(1)连结1,B C ME . 因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且11 2 ME B C =. 又因为N 为1A D 的中点,所以11 2 ND A D = . 由题设知11=A B DC ∥,可得11=BC A D ∥,故= ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ?平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H . 由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以1C E 17 CH =.

从而点C 到平面1C DE 的距离为 17 . 【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解. 2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上, BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1; (2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18. 【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ?平面ABB 1A 1, 故11B C BE ⊥.

立体几何专题 第2节 与球相关的切、接问题 【教师版】

第二节 与球相关的切、接问题 考法(一) 球与柱体的切、接问题 [典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1 V 2 的值是________. [解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43 πR 3=3 2 . [答案] 3 2 考法(二) 球与锥体的切、接问题 [典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( ) A .123 B .18 3 C .24 3 D .54 3 [解析] 由等边△ABC 的面积为93,可得34 AB 2 =93,所以AB =6,所以等边△ABC 的外接圆的半径为r = 3 3 AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为1 3 ×93×6=18 3. [答案] B [题组训练] 1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( ) A .4π B.16 3π C.323 π D .16π 解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D. 2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________. 解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外

立体几何三视图教师版

考点24 三视图 考点一:棱长类 1.★(2014西城二模4)某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ,且4A (B A ,且4 A (C ) 2A ,且A (D A A 【答案】D 2.★(2015年北京丰台区高三一模理科)上图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是 (A) 4 (B) 5 (C) (D) 正(主)视图 侧(左)视图 俯视图

【答案】D 考点二:面积类 3.★(2013海淀二模4) 某空间几何体的三视图如右图所示,则该几何体的表面积为( ) A.180 B.240 C.276 D.300 【答案】B 4.★(2012西城一模4) 已知正六棱柱的底面边长和侧棱长相等,体积为33.其三视图中的俯视图如图所示,则其左视图的面积是( ) (A )23(B )2 23(C )28cm (D )2 4cm 【答案】A 6 6 6 5 俯视图

正视图 俯视图 5.★★★(2012朝阳二模8) 有一个棱长为1的正方体,按任意方向正投影, 其投影面积的最大值是( ) A. 1 B. 2 C. D. 【答案】D 6.★★(2010海淀期末理)11.一个几何体的三视图如下图所示,则该几何 体的表面积为__________________. 【答案】2412π+ 考点三:体积类 7.★★(2011丰台期末文)3.若一个螺栓的底面是正六边形,它的正视图和俯视图如图所示,则它的体积是 A . 32225+π B .32 25 π C .3225π D .128 25 π 【答案】C 正视图侧视图 俯视图

立体几何之及球有关的高考试题老师

立体几何与球专题讲义 一、球的相关知识 考试核心:方法主要是“补体”和“找球心” 1.长方体、正方体的外接球其体对角线长为该球的直径. 2.正方体的切球其棱长为球的直径. 3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线.4.正四面体的外接球与切球的半径之比为3∶1. 5.性质的应用 2 2 2 1 2r R OO d- = = ,构造直角三角形建立三者之间的关系。 真题回放: 1.(2015高考新课标2,理9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( ) A.36π B.64π C.144π D.256π

参考答案1、 2. 3. 4.

题型总结 类型一:有公共底边的等腰三角形,借助余弦定理求球心角。(两题互换条件形成不同的题) 1.如图球O 的半径为2,圆1O 是一小圆,1 OO =A 、B 是圆1O 上两点,若A ,B 两点间的球面距离为23 π ,则1AO B ∠= . 2.如图球O 的半径为2,圆1O 是一小圆,1 OO ,A 、B 是圆1O 上两点,若1AO B ∠=2 π ,则A,B 两点间的球面距离为 (2009年文科) 类型二:球接多面体,利用圆接多边形的性质求出小圆半径,通常用到余弦定理求余弦值,通过余弦值再利用正弦定理得到小圆半径 r C c 2sin =,从而解决问题。 3. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===, 120BAC ∠=?, 则此球的表面积等于 。 4.正三棱柱111ABC A B C -接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为 . 5.12.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,ο30=∠=∠BSC ASC ,则棱锥S —ABC 的体积为 A .33 B .32 C .3 D .1

高考数学专题复习立体几何专题空间角

立体几何专题:空间角 第一节:异面直线所成的角 一、基础知识 1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ?//a ,b ?//b ,相交直线a ?b ?所成的锐角(或直 角)叫做 。 2.范围: ?? ? ??∈2,0πθ 3.方法: 平移法、问量法、三线角公式 (1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。 (2)向量法: 可适当选取异面直线上的方向向量,利用公式b a = ><=,cos cos θ 求出来 方法1:利用向量计算。选取一组基向量,分别算出 b a ? 代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量 ),,(111z y x a = ),,(222z y x b =2 2 22222 1 2 12 12 12121cos z y x z y x z z y y x x ++++++= ∴θ (3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 2 1= 二、例题讲练 例1、(2007年全国高考)如图,正四棱柱 1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1= c ,求异面直线D 1B 和AC 所成 的角的余弦值。 方法一:过B 点作 AC 的平行线(补形平移法) A B 1 B 1 A 1D 1 C C D

立体几何证明题专题(教师版)分析

立体几何证明题 考点1:点线面的位置关系及平面的性质 例1.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是__________ . 【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现 两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示. ABC —A B C D'中,直线BB丄AB, BB丄CB但AB与CB不平行,???⑥错. AB // CD BB n AB= B,但BB与CD不相交,.??⑦错?如图(2)所示,AB= CD BC= AD四边形ABCD不是平行四边形,故⑧也错. I、m外的任意一点,贝U ( A.过点P有且仅有条直线与I、m都平行 B.过点P有且仅有条直线与I、m都垂直 C.过点P有且仅有条直线与I、m都相交 D.过点P有且仅有条直线与I、m都异面 答案 B 解析对于选项A,若过点P有直线n与I , m都平行,则I // m这与I , m异面矛盾. 对于选项B,过点P与I、m都垂直的直线,即过P且与I、m的公垂线段平行的那一条直线. 对于选项C,过点P与I、m都相交的直线有一条或零条. 对于选项D,过点P与I、m都异面的直线可能有无数条.

三角函数与立体几何(二)教师版

1.如图,在ABC ?中,点D 在边BC 上, 4 CAD π ∠= , 72AC = , cos 10 ADB ∠=-. (1)求sin C ∠的值; (2)若ABD ?的面积为7,求AB 的长. 【答案】(1) sin C ∠= 4 5 ;(2) AB = 【解析】试题分析:(1)由同角三角函数基本关系式可求sin ADB ∠,由4 C ADB π ∠=∠- ,利用两角差 的正弦函数公式及特殊角的三角函数值即可求值得解;(2)先由正弦定理求AD 的值,再利用三角形面积公式求得BD ,与余弦定理即可得解AB 的长度. 试题解析:(1 )因为cos 10ADB ∠=- ,所以sin 10 ADB ∠=, 又因为4 CAD π ∠= ,所以4 C ADB π ∠=∠- , 所以sin sin 4C ADB π? ? ∠=∠- ?? ? sin cos cos sin 4 4 ADB ADB π π =∠-∠ 4 1021025 = +?=. (2)在ADC ?中,由正弦定理 sin sin AD AC C ADC =∠∠, 故( )74sin sin sin sin sin sin AC C AC C AC C AD ADC ADB ADB π? ?∠?∠?∠==== ∠-∠∠ = 又11sin 72210 ABD S AD AB ADB BD ?= ???∠=??=,解得5BD =. 在ADB ?中,由余弦定理得 2 2 2 2cos AB AD BD AD BD ADB =+-??∠ 8252537AB ?=+-??=?= ?? 2.在ABC ?中,内角A,B,C,所对应的边为,,a b c 且b c ≠,且 22sin sin cos cos C B B B C C -=

高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版

第7章立体几何 全国卷五年考情图解高考命题规律把握 1.考查形式 高考在本章一般命制2道小题、1 道解答题,分值约占22分. 2.考查内容 (1)小题主要考查三视图、几何体 体积与表面积计算,此类问题属于 中档题目;对于球与棱柱、棱锥的 切接问题,知识点较整合,难度稍 大. (2)解答题一般位于第18题或第19 题的位置,常设计两问:第(1)问 重点考查线面位置关系的证明;第 (2)问重点考查空间角,尤其是二 面角、线面角的计算.属于中档题 目. 空间几何体的结构及其表面积、体积 [考试要求] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图. 3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. 4.了解球、棱柱、棱锥、台体的表面积和体积的计算公式.

1.多面体的结构特征 名称棱柱棱锥棱台 图形 底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点 侧面形状平行四边形三角形梯形 (1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形. (2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体. 3.旋转体的结构特征 名称圆柱圆锥圆台球 图形 母线互相平行且相 等,垂直 于底面 长度相等且相交 于一点 延长线交于一点 轴截面全等的矩形全等的等腰三角 形 全等的等腰梯形圆 侧面展开图矩形扇形扇环 旋转图形矩形直角三角形直角梯形半圆三视图画法规则:长对正、高平齐、宽相等 直观图斜二测画法: (1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为45°(或

专题07 立体几何初步(重难点突破)教师版

专题07 立体几何初步 【重难点知识点网络】: 一、空间几何体的有关概念 1.空间几何体 对于空间中的物体,如果我们只考虑其形状和大小,而不考虑其他因素,那么由这些物体抽象出来的就叫做空间几何体.例如,一个正方体形包装箱,占有的空间部分就是一个几何体,这个几何体就是我们熟悉的正方体. 2.多面体 (1)多面体:一般地,我们把由若干个围成的几何体叫做多面体. (2)多面体的面:围成多面体的各个多边形叫做多面体的面,如图中面ABB′A′,面BCC ′B′等. (3)多面体的棱:相邻两个面的公共边叫做多面体的棱, 如图中棱AA′,棱BB′等. (4)多面体的顶点:棱与棱的公共点叫做多面体的顶点, 如图中顶点A,B,C等. 3.旋转体 (1)旋转体:由一个平面图形绕它所在平面内的一条定直线所形成的封闭几何体.如图所示为一个旋转体,它可以看作由矩形OBB′O′绕其边OO′所在的直线旋转而形成. (2)旋转体的轴:平面图形旋转时所围绕的定直线.如图中直线OO′是该旋转体的轴.

二、几种最基本的空间几何体 1.棱柱的结构特征 ①用表示底面的各顶点字母来表示棱柱.如图所示的六棱柱可以表示为棱柱 ABCDEF?A′B′C′D′E′F′. ②用棱柱的对角线表示棱柱.如图,(1)可表示为四棱柱AC1或四棱柱BD1等;(2)可表示 为六棱柱AD1或六棱柱AE1等;(3)可表示为五棱柱AC1或五棱柱AD1等.这种记法要说明棱柱是几棱柱. ①棱柱的底面:棱柱中,两个互相的面叫做棱柱的底面,简称底. ③棱柱的侧棱:相邻侧面的公共边叫做棱柱的侧棱.

①底面互相 . ②侧面都是 . 2.棱锥的结构特征

三角函数、立体几何(教师)

源于名校,成就所托 高中数学备课组教师班级学生日期上课时间 学生情况: 主课题:三角函数、立体几何 教学目标: 教学重点: 教学难点: 考点及考试要求:

教学内容 三角函数 1、已知:函数()2(sin cos )f x x x =-. (1)求函数()f x 的最小正周期和值域; (2)若函数()f x 的图象过点6(,)5 α, 34 4π πα<< .求()4 f π α+的值. 解:(1)()2(sin cos )f x x x =-222(sin cos )22 x x =? -?2sin()4x π=----3分 ∴函数的最小正周期为2π,值域为{|22}y y -≤≤。--------------------------------------5分 (2)解:依题意得:62sin(),45π α-= 3 sin(),45 πα-=---------------------------6分 ∵ 3.4 4π πα<< ∴0,42 ππ α<-< ∴cos()4π α- =2234 1sin ()1()455 πα--=-=-----------------------------------------8分 ()4f π α+=2sin[()]44 π π α-+ ∵sin[()]sin()cos cos()sin 444444π πππππααα- +=-+-=23472 ()25510 += ∴()4 f π α+= 72 5 ------------------------------------------------------------------------------12分 2、在ABC ?中,2AB =,1BC =,3 cos 4 C =. (Ⅰ)求sin A 的值; (Ⅱ)求BC CA ?的值. 解:(1)在ABC ?中,由3cos 4C = ,得7sin 4 C =…………………………2分 又由正弦定理 sin sin AB BC C A = ………………………………………3分 得:14 sin 8 A = …………………………………………………………………………………4分 (2)由余弦定理:222 2cos AB AC BC AC BC C =+-??得:23 2124 b b =+-? ……6分

立体几何解题技巧及高考类型题—老师专用

立体几何解题技巧及高考类型题—老师专用 【命题分析】高考中立体几何命题特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点分析】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. 【高考考查的重难点】空间距离和角 “六个距离”: 1、两点间距离 221221221)()()(d z z y y x x -+-+-=; 2、点P 到线l 的距离d = (Q 是直线l 上任意一点,u 为过点P 的直线l 法向量); 3 、两异面直线的距离d = (P 、Q 分别是两直线上任意两点,u 为两直线公共法向量); 4、点P 到平面的距离 d =Q 是平面上任意一点,u 为平面法向量); 5 、直线与平面的距离d =(P 为直线上的任意一点、Q 为平面上任意一点,u 为平面法向量); 6 、平行平面间的距离d = (P 、Q 分别是两平面上任意两点,u 为两平面公共法向量 );

“三个角度”: 1、异面直线角[0,2π],cos θ=2 121v v v v ;【辨】直线倾斜角范围[0,π); 2、线面角 [0,2π] ,sin θ=n v vn n v =,cos 或者解三角形; 3、二面角 [0,π],cos 212 1n n n n ±=θ 或者找垂直线,解三角形。 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,证是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。其中,利用空间向量求空间距离和角的套路与格式固定,是解决立体几何问题这套强有力的工具时,使得高考题具有很强的套路性。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题1、(福建卷)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的大小, 点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解:解法一:(Ⅰ)取BC 中点O ,连结AO .

[高中数学]立体几何.球专题讲义,附练习题、

E B C D A 立体几何-球-专题学案 ? 双基练习 1.下列四个命题中错误.. 的个数是 ( ) ①经过球面上任意两点,可以作且只可以作一个球的大圆 ②球面积是它大圆面积的四倍 ③球面上两点的球面距离,是这两点所在截面圆上以这两点为端点的劣弧的长 A.0 B.1 C.2 D.3 2.一平面截一球得到直径为6 cm 的圆面,球心到这个平面的距离是4 cm ,则该球的体积是 A.3π100 cm 3 B.3π208 cm 3 C.3π500 cm 3 D.3 π34161 cm 3 3.某地球仪上北纬30°纬线的长度为12π cm ,该地球仪的半径是_____________cm ,表面积是_____________cm 2. ? 知识预备 1. 球心到截面的距离d 与球半径R 及截面的半径r 有以下关系: . 2. 球面被经过球心的平面截得的圆叫 .被不经过球心的平面截得的圆叫 . 3. 在球面上两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧长,这个弧长 叫 . 4. 球的表面积表面积S = ;球的体积V = . 5. 球面距离计算公式:__________ ? 典例剖析 (1)球面距离,截面圆问题 例1.球面上有3个点,其中任意两点的球面距离都等于大圆周长的 61,经过这3个点的小圆的周长为4π,那么这个球的半径为 A.43 B.23 C.2 D. 3 练习: 球面上有三点A 、B 、C ,A 和B 及A 和C 之间的球面距离是大圆周长的41,B 和C 之间的球面距离是大圆周长的61,且球心到截面ABC 的距离是7 21,求球的体积. 例2. 如图,四棱锥A -BCDE 中,BCDE AD 底面⊥,且AC ⊥BC ,AE ⊥BE . (1) 求证:A 、B 、C 、D 、E 五点都在以AB 为直径的同一球面上; (2) 若,1,3,90===∠AD CE CBE 求B 、D 两点间的球面距离.

9.6立体几何大题1(教师版)

A B C D 1 A 1 C 1B E 科 目 数学 年级 高三 备课人 高三数学组 第 课时 9.2立体几何大题1 1、(2013新课标)如图,直棱柱111ABC A B C -中,,D E 分别是1,AB BB 的 中点,12 2 AA AC CB AB === . (Ⅰ)证明:1//BC 平面1A CD ; (Ⅱ)求二面角1D A C E --的正弦值. 【答案】 2、(2013湖南)如图5,在直棱柱 1111//ABCD A BC D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=, 13AD AA ==. (I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值. 【答案】 解(Ⅰ) AC BB ABCD BD ABCD BB D C B A ABCD ⊥??⊥∴-111111,面且面是直棱柱 D B AC BDB D B BDB AC B BB BD BD AC 11 111,,⊥∴?⊥∴=?⊥,面。面且又 . (证毕)

(Ⅱ) 。 的夹角与平面的夹角即直线与平面直线θ111111,////ACD AD ACD C B AD BC C B ∴ 轴正半轴。 为轴正半轴,为点,量解题。设原点在建立直角坐标系,用向X AD Y AB A ()BD AC y BD y AC y C y B D D A ⊥-== ),0,,3(),0,,1()0,,1(),0,,0(),3,0,3(),0,0,3(,00,01,则,设 ). 3,0,3(),0,3,1(.30,003012==∴=?>=+-?=?AD AC y y y BD AC ) ,,(),,(的一个法向量平面则的法向量为设平面303,313-.0 ,111==??????=?=?AD n ACD AD n AC n n ACD 721 3 733|,cos |sin 003,313-1=?= ><=?==∴AD n AD n ACD θ),,(),,(的一个法向量平面 7 21 11夹角的正弦值为 与平面所以ACD BD . 3、(2013 北京)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5. (Ⅰ)求证:AA 1⊥平面ABC ; (Ⅱ)求二面角A 1-BC 1-B 1的余弦值; (Ⅲ)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求 1 BD BC 的值. 【答案】解: (I)因为AA 1C 1C 为正方形,所以AA 1 ⊥AC. 因为平面ABC⊥平面AA 1C 1C,且AA 1垂直于这两个平面的交线AC,所以AA 1⊥平面ABC. (II)由(I)知AA 1 ⊥AC,AA 1 ⊥AB. 由题知AB=3,BC=5,AC=4,所以AB⊥AC. 如图,以A 为原点建立空间直角坐标系A-xyz ,则B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),

立体几何专题(教师版)

立体几何专题 1.如图,AE ⊥平面ABC ,AE BD ∥,22AB BC CA BD AE =====,F 为CD 中点. (1)求证:EF ⊥平面BCD ; (2)求二面角C DE A --的正弦值; (3)求点A 到平面CDE 的距离. 【答案】(1)详见解析;(2) 6 arccos ;(3)22 【解析】 试题分析:(Ⅰ)取BC 中点G 点,连接AG ,FG ,由F ,G 分别为DC ,BC 中点,知//FG BD 且1 2 FG BD = ,又AE ∥BD 且1 2 AE BD = ,故AE ∥FG 且AE=FG ,由此能够证明EF ⊥平面BCD .(Ⅱ)取AB 的中点O 和DE 的中点H ,分别以OC 、OB 、OH 所在直线为x 、y 、z 轴建立如图空间直角坐标系,则( ) 300C ,,, ()012D ,,,()011E -,,,()010A -,,, ()312CD =-,,,()021ED =,, .求出面CDE 的法向量( ) 1312n =-,,,面ABDE 的 法向量()2100n =,,,由此能求出二面角C DE A --的大小.(Ⅲ)由面CDE 的法向量( ) 1312n =-,,, ()001AE =,,,利用向量法能求出点A 到平面CDE 的距离. 试题解析:解:⑴取BC 中点G 点,连接AG 、FG , ∵F 、G 分别为DC 、BC 中点,∴FG BD ∥且12FG BD =,又AE BD ∥且1 2 AE BD =. ∴AE FG ∥且AE FG =,∴四边形EFGA 为平行四边形,则EF AG ∥, ∵AE ⊥平面ABC ,AE BD ∥,∴BD ⊥平面ABC . 又∵DB ?平面BCD ,∴平面ABC ⊥平面BCD , ∵G 为BC 中点,且AC AB =,∴AG BC ⊥,∴AG ⊥平面BCD ,∴EF ⊥平面BCD . ⑵取AB 的中点O 和DE 的中点H , 分别以OC 、OB 、OH 所在直线为x 、y 、z 轴建立如图空间直角坐标系, 则() 300C ,,,()012D , ,,()011E -,,,()010A -,,, ( ) 312CD =-,,,()021ED =,, , 设面CDE 的法向量()1n x y z =,,,

立体几何证明题专题(教师版)

立体几何证明题 考点1:点线面的位置关系及平面的性质 例1.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; , ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________. 【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示. 在正方体ABCD—A′B′C′D′中,直线BB′⊥AB,BB′⊥CB,但AB与CB不平行,∴⑥错.AB∥CD,BB′∩AB=B,但BB′与CD不相交,∴⑦错.如图(2)所示,AB=CD,BC=AD,四边形ABCD不是平行四边形,故⑧也错. 【答案】④ , 2.若P是两条异面直线l、m外的任意一点,则() A.过点P有且仅有一条直线与l、m都平行 B.过点P有且仅有一条直线与l、m都垂直 C.过点P有且仅有一条直线与l、m都相交 D.过点P有且仅有一条直线与l、m都异面 答案B 解析对于选项A,若过点P有直线n与l,m都平行,则l∥m,这与l,m异面矛盾. 对于选项B,过点P与l、m都垂直的直线,即过P且与l、m的公垂线段平行的那一条直线.! 对于选项C,过点P与l、m都相交的直线有一条或零条.

立体几何证明方法总结(教师)

、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 线面平行的性质定理) 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 6、平行于同一条直线的两条直线平行。 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 3、平行于同一平面的两个平面平行。 面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线 平行。(线面垂直的性质定理) 7、夹在两个平行平面之间的平行线段相等。 需证明) 线面平行的判定定理) 面面平行的判定定理)

4、经过平面外一点,有且只有一个平面和已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。 3、菱形对角线。 4、圆所对的圆周角是直角。 5、点在线上的射影。 6、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。证明) 8、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。三垂线定理,需三垂线逆定理,

2011年立体几何(文科)教师版

立体几何 1.课标文数8.G2[2011·安徽卷] 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( ) A .48 B .32+817 C .48+817 D .80 1.由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(如图所示),所以该直四棱柱的表面积为 S =2×12 ×(2+4)×4+4×4+2×4+2×1+16×4=48+817. 故选C 2.课标文数5.G2[2011·北京卷] 某四棱锥的三视图,该四棱锥的表面积是( ) A .32 B .16+16 2 C .48 D .16+32 2 2.解析由题意可知,该四棱锥是一个底面边长为4,高为2的正四棱锥,所以其表面积为4×4 +4×12 ×4×22=16+162,故选B. 3.课标文数 4.G2[2011·湖南卷] 设图1-1是某几何体的三视图,则该几何体的体积为( ) A .9π+42 B .36π+18 C.92π+12 D.92 π+18 3.解由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3高为2 的长方体所构成的几何体,则其体积为: V =V 1+V 2=43×π×????323+3×3×2=92 π+18,故D. 4.课标文数8.G2[2011·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三 视图中的俯视图如图1-3所示,左视图是一个矩形,则这个矩形的面积是( ) A .4 B .23 C .2 D. 3 4.由俯视图知该正三棱柱的直观图为下图,其中M ,N 是中点,矩形MNC 1C 为左视图. 由于体积为23,所以设棱长为a ,则12 ×a 2×sin60°×a =23,解得a =2.所以CM =3,故矩形MNC 1C 面积为23,故选B. 5.课标文数8.G2[2011·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图1-2所示, 则相应的侧视图可以为( ) 5.【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如图,故侧视图选D. 6.课标文数11.G2[2011·山东卷] 如图1-3是长和宽分别相等的两个矩形.给 定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-3;②存在四棱柱,其正(主)视图、俯视图如图1-3;③存在圆柱,其正(主)视图、俯视图如图1-3.其中真命题的个数是( ) A .3 B .2 C .1 D .0 6.A 【解析】①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.

高考真题专题---空间向量与立体几何-教师版

高考真题专题---空间向量与立体几何 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.已知△ABC 是面积为 O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A B . 32 C .1 D 【答案】C 【解析】 【分析】 根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由 球的性质可知所求距离d =【详解】 设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a , ABC 212a ∴=,解得:3a =,2233r ∴===, ∴ 球心O 到平面ABC 的距离1d =. 故选:C. 【点睛】 本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.

2.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 【答案】A 【解析】 【分析】 由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论. 【详解】 设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r ππ=∴=, ABC 为等边三角形, 由正弦定理可得2sin 60AB r =?=, 1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC , 11,4OO O A R OA ∴⊥====, ∴球O 的表面积2464S R ππ==. 故选:A 【点睛】 本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )

高中数学立体几何之内切球与外接球习题讲义教师版

立体几何中的“内切”与“外接”问题的探究 1 球与柱体 规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体 如图1所示,正方体1111D C B A ABCD -,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心。 常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2 a r OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22 ==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则2 3'1a R O A = =. 通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题 。 例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱 1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )

A . 22 B .1 C .212 + D .2 1.2 球与长方体 长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角 面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222 .22l a b c R ++== 例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( ) A.10π3 B.4π C.8π3 D.7π 3 1.3 球与正棱柱 球与一般的正棱柱的组合体,常以外接形态居多。下面以正三棱柱为例,介绍本类题目的解法——构造直角三角形法。设正三棱柱111C B A ABC -的高为h ,底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心。根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 3 3 ,,2 = ==,借助直角三角形AOD 的勾股定理,可求

相关文档
最新文档