数据挖掘技术在金融领域的应用
数据挖掘技术在金融中的应用研究

数据挖掘技术在金融中的应用研究近年来,随着互联网技术的飞速发展,越来越多的金融企业开始关注数据挖掘技术,将其应用于业务中,以从庞大的数据中挖掘出有价值的信息。
数据挖掘技术可以帮助金融企业快速有效地识别风险和机会,从而更加准确地进行决策,实现企业利润的最大化。
本文旨在分析数据挖掘技术在金融领域的应用现状和未来发展方向。
一、金融领域的数据挖掘应用现状数据挖掘技术在金融领域的应用已经得到广泛认可,尤其是在银行、证券、保险等领域。
现阶段,数据挖掘技术在金融领域主要应用于以下几个方面:1.风险识别风险识别是金融领域最主要的应用场景之一。
通过对客户的信用评估、犯罪判定、欺诈检测等方式,将有风险的客户和交易筛选出来,从而提高金融企业的风险控制能力。
2.信用评估信用评估是银行、信贷公司等金融机构的核心业务之一。
通过对客户的个人信息、信用记录等多方面数据进行分析和评估,确定客户的信用等级和额度,从而更好地管理风险。
3.营销策略数据挖掘还可应用于营销策略,对客户的消费记录、购买喜好等信息进行分析,为金融企业提供更有效的营销方案,提高客户满意度和企业收益。
二、金融领域数据挖掘技术的未来发展方向随着数字化转型的加速和数据无限增长,金融领域的数据挖掘技术将会迎来更加广泛的应用场景和更高的技术要求。
未来,金融领域数据挖掘技术的发展将呈现以下几个趋势:1. 人工智能技术的融入在数据挖掘技术的发展过程中,人工智能技术将成为不可或缺的一部分。
未来金融企业需要借助人工智能对海量数据进行处理和分析,以更好地发掘数据价值,实现精细化管理。
2. 数据可视化技术的发展数据挖掘技术所产生的数据量庞大,而如何更好地呈现数据,使其更加清晰、直观、易于理解,则成为未来发展的重要方向。
数据可视化技术将助力金融企业更好地理解和利用数据,为业务决策提供更为准确的参考。
3. 联邦学习技术的应用联邦学习是一种新兴的机器学习技术,旨在解决数据隐私保护和数据共享的难题。
数据挖掘在金融业的应用分析

数据挖掘在金融业的应用分析随着信息技术的不断发展,数据成为了各行各业的基石。
在金融业中,数据分析更是成为重要的一环。
而其中,数据挖掘技术则是金融业中不可或缺的一种技术。
本文将就数据挖掘技术在金融业中的应用进行分析和讨论。
一、数据挖掘能为金融业提供哪些价值?1、精细化营销金融机构有海量的客户,各个客户都有其不同的需求和偏好。
利用数据挖掘技术,金融机构可以将客户数据整合起来进行分析,精细地分析出不同的客户群体,对不同的客户群体制定不同的营销策略,进而提高营销效果。
2、风险评估金融机构需要将资金投放到不同的投资项目中,而每个项目都存在着一定的风险。
利用数据挖掘技术进行风险评估可以大大提高投资的成功率,减少投资失败的情况。
同时,风险评估也可以帮助金融机构制定更加合理的风险管理策略。
3、客户行为分析客户行为是金融机构重要的研究对象之一,利用数据挖掘技术可以对客户的信用记录、交易记录、行为喜好进行分析,从而了解客户的需求和更好地服务客户,吸引更多客户。
二、数据挖掘在金融业中的应用案例1、信用卡评分模型信用卡运作过程中最重要的是信用风险管理。
银行通过对已存在信用历史记录的客户进行数据挖掘和分析,构建起客户信用分数模型,对于新的客户,评价其信用的可靠性和人品品质,对于已有客户,不断调整分数,提供更加适合的服务和产品。
2、金融产品推荐不同客户有不同的金融需求,金融机构可以利用数据挖掘技术分析客户的信息,对客户进行个性化的推荐,例如个性贷款或投资组合,从而让金融产品更加符合客户的需求。
3、交易欺诈检测金融机构常常会遭受欺诈交易的攻击,导致巨额的财务损失,甚至影响企业的声誉。
利用数据挖掘技术,金融机构可以对交易进行实时监控和分析,判断交易是否安全,从而有效地检测和防止欺诈交易。
三、金融机构挖掘数据时应注意的问题1、数据保密问题金融机构需要处理很多敏感的数据,许多这些数据都是可以被滥用的,因此,数据保密就是非常重要的一点。
大数据挖掘技术在金融领域中的应用

大数据挖掘技术在金融领域中的应用随着技术的不断进步和发展,大数据挖掘技术在近年来已经得到了广泛应用,并且在金融领域中也获取了极大的重视和应用。
大数据是一种海量的、高速的、多样化的数据集合,由此产生的大数据挖掘技术可以以最高效的方式来收集、处理、分析这些数据,以更好的服务整个金融行业。
一、大数据挖掘技术在金融风控领域中的应用风险控制一直是金融行业最核心和最重要的问题之一。
在传统风控模式中,往往只是以少量数据、静态时点的数据来评估风险,重要的动态信息是无法以快速准确的方式加以处理的。
而大数据技术的出现就可以很好的解决这个问题,因为大数据技术能够实现实时、动态的监测与分析,把真实的风险信息直接传递给金融机构,以便它们在最短的时间内有效地优化自己的风险管理策略。
大数据在风控中的应用,主要体现在以下几个方面:第一,优化信用风险评估。
通过收集、分析借贷历史记录、债务记录、还款记录和信用记录等多方面信息,以实现更准确、更细致地评估借款人的信用状况和还款能力。
第二,提升欺诈识别。
采用大数据技术可以更全面地识别可能存在的欺诈行为,因为大数据可以从海量的数据中提取出可能存在的欺诈模式,并且在实时处理中,可以更加灵活的更新以免遭受欺诈行为的侵犯。
第三,实时监测风险。
传统风险监测通常也只能采集少量的狭隘数据,而大数据技术可以获取更多、更广泛的数据,从中提取和分析出风险警示的信号,以及更快地发现交易异常情况。
二、大数据挖掘技术在金融市场领域中的应用金融市场的波动和变化是一种动态的过程,传统的交易策略和分析手段无法及时地捕捉到这些动态信息。
而在大数据挖掘技术的帮助下,经纪商和投资机构可以更好地捕捉到市场中其它参与者的交易行为,以及实时地聚合相关信息。
例如,在大数据市场交易分析领域,投资者可以使用大数据技术来挖掘出市场的一些重要信息:第一,行为金融学分析。
这一项分析包含了真实交易、舆论热度、搜索量、新闻、事件等各种因素,从而帮助投资者和经纪商更全面地分析市场波动的因素,包括热点事件和重要新闻报道等影响市场的因素。
实时数据挖掘与分析技术在金融市场中的应用

实时数据挖掘与分析技术在金融市场中的应用随着现代科技的快速发展和金融行业的日益复杂化,实时数据挖掘和分析技术成为金融市场中不可或缺的工具。
这种技术利用大数据和机器学习算法,可以帮助投资者和金融机构更好地理解市场趋势,进行风险管理,并制定更准确的投资决策。
实时数据挖掘和分析技术在金融市场中的应用有以下几个方面:1. 资产组合管理:通过实时数据挖掘和分析技术,投资者和资产管理公司可以快速而准确地评估各种资产的价值和风险,并根据市场变动调整资产组合。
这样可以实现资产配置的最优化,降低风险,提高收益。
2. 高频交易:高频交易已经成为金融市场的主要交易方式之一。
通过实时数据挖掘和分析技术,交易员可以实时监测市场数据和交易情况,快速作出交易决策。
利用机器学习算法,可以迅速识别出潜在的交易机会,并根据预测模型进行交易,从而实现高效盈利。
3. 市场预测:实时数据挖掘和分析技术可以帮助金融机构更好地预测市场的走势。
通过对大量的历史市场数据进行分析,可以建立出复杂的数学模型,预测未来市场的涨跌趋势和波动情况。
这样可以帮助投资者做出更明智的投资决策,降低风险。
4. 信用风险评估:金融机构需要对借款人的信用状况进行评估,以决定是否向其提供贷款。
实时数据挖掘和分析技术可以帮助机构从大量的个人和企业数据中提取出有价值的信息,快速评估借款人的信用风险。
这样可以降低不良贷款的风险,保护金融机构的利益。
5. 欺诈检测:在金融交易中,欺诈行为是一个常见的问题。
实时数据挖掘和分析技术可以帮助金融机构检测和预防欺诈行为。
通过分析交易行为和个人信息等数据,可以发现潜在的欺诈行为,并及时采取措施,减少金融损失。
总之,实时数据挖掘和分析技术在金融市场中的应用广泛而重要。
它可以帮助投资者和金融机构更好地理解市场情况,做出更明智的投资决策,并有效管理风险。
随着技术的不断发展和创新,相信实时数据挖掘和分析技术将在金融行业中发挥越来越重要的作用。
数据挖掘的应用领域

数据挖掘的应用领域数据挖掘作为一种信息技术的应用工具,在今天的社会中扮演着日益重要的角色。
它可以帮助人们从大数据中发掘有价值的信息,并在各个领域中提供决策支持和业务优化。
本文将介绍数据挖掘的应用领域,并探讨其在不同领域中的具体应用。
一、金融领域1. 风险评估与控制:数据挖掘可以通过分析大量的市场数据和客户信息,准确预测金融市场的波动性,并帮助金融机构识别和控制风险。
例如,银行可以利用数据挖掘技术来评估客户的信用风险,以决定是否批准贷款申请。
2. 欺诈检测:数据挖掘可以帮助金融机构发现潜在的欺诈行为。
通过对客户的交易模式和行为进行分析,可以识别出异常的模式和不寻常的交易,从而防范欺诈风险。
3. 投资决策:数据挖掘技术可以分析股票市场的历史数据,挖掘出隐藏在数据中的规律和趋势,辅助投资者做出更明智的投资决策。
二、市场营销领域1. 客户细分与定位:数据挖掘可以通过分析客户的消费行为和偏好,将客户划分为不同的市场细分,并准确定位目标客户群体。
这有助于企业优化市场方案,提高市场营销效果。
2. 产品推荐与个性化营销:通过分析客户的购买历史和行为模式,数据挖掘可以预测客户的购买偏好,并根据个体的需求进行个性化产品推荐,提高客户满意度和忠诚度。
3. 市场趋势分析:通过挖掘市场数据和消费者行为数据,数据挖掘可以发现市场的趋势和潜在机会,帮助企业制定更具竞争力的市场策略。
三、医疗领域1. 疾病预测与诊断:数据挖掘可以分析患者的医疗记录和生化指标,发现潜在的疾病风险因素,并提供准确的诊断结果。
这有助于提前干预和治疗,提高疾病的预防和治疗效果。
2. 药物研发与创新:数据挖掘可以分析大量的医疗研究数据,寻找新的药物治疗方案和疗效预测模型。
3. 医疗资源调配:通过分析病例记录和病人流行病学资料,数据挖掘可以帮助医疗机构合理分配医疗资源,提高医疗服务的效率和质量。
四、交通领域1. 路况预测与优化:数据挖掘可以通过分析交通数据和历史记录,预测出未来的交通拥堵情况,并为交通管理部门提供优化交通规划和路况调控的决策依据。
数据挖掘技术在金融领域的应用及其创新点

数据挖掘技术在金融领域的应用及其创新点随着互联网的普及和数字化的发展,数据成为了现代社会的一种重要资源。
在金融领域,数据的价值更是不言而喻。
通过数据挖掘技术的应用,不仅可以更好地利用金融数据,还可以挖掘出更多的商业价值。
本文将探讨数据挖掘技术在金融领域的应用及其创新点。
一、金融领域的数据挖掘应用金融领域是数据挖掘技术的一个重要应用领域。
通过对金融数据进行挖掘和分析,可以提升金融运营效率,发现新的商业机会和市场趋势,改善客户体验,降低风险等。
1. 风险管理在金融领域,风险管理一直是一个重要的问题。
通过数据挖掘技术,可以从大量的数据中挑选出重要的信息,如违约概率、催收数据、信用卡欺诈等,从而更好地排除风险和降低损失。
2. 营销推荐通过数据挖掘技术,可以将客户分为不同的等级,并且根据这个等级提供针对性的服务和产品。
同时,也可以根据客户的需求和喜好提供个性化的营销推荐,从而提升客户体验。
3. 投资和交易借助数据挖掘技术,可以更好地理解股市走势和交易模式。
从而可以更准确地预测未来的行情,优化交易策略,使投资者可以更好地获取收益。
二、数据挖掘在金融领域的创新点除了常见的风险管理、营销推荐和投资交易外,数据挖掘技术在金融领域还有很多的创新点。
1. 云计算和大数据金融领域处理大量数据非常耗费时间和精力。
于是,通过云计算和大数据技术的应用,可以更轻松地处理和分析大数据。
2. 人工智能人工智能是数据挖掘技术的另外一种应用。
以自然语言处理为例,可以更好地理解客户的需求和潜在问题。
通过应用人工智能技术,可以更精准地提供服务和建立更好的客户关系。
3. 区块链区块链技术可以有效的提高金融数据的安全性和准确性。
在金融领域,运用区块链技术,可以建立更加安全和可信的数据治理方式,从而保证企业的数据安全和可靠性。
三、数据挖掘技术在金融领域的发展趋势1. 信息处理的更高效未来,数据挖掘技术将更加贴近金融领域的需求,开发出更加高效和精确的数据处理技术。
数据挖掘在金融行业的应用

数据挖掘在金融行业的应用数据挖掘是一种通过分析大量数据,从中发现隐藏的模式和关联性的方法。
在金融行业中,数据挖掘已经被广泛应用,为金融机构提供了更加准确和高效的决策支持。
本文将介绍数据挖掘在金融行业的应用,包括风险管理、信用评估、市场预测等方面。
一、风险管理风险管理是金融行业中最重要的一项任务之一。
通过数据挖掘技术,金融机构能够对风险进行更全面、准确的评估和预测。
例如,通过分析历史数据和市场变动情况,可以建立信用违约风险模型,帮助银行评估贷款借款人的信用风险,从而避免坏账的发生。
二、信用评估在金融行业中,信用评估是一个关键的环节。
传统的信用评估方法主要依靠人工审查和统计分析,效率低下且容易出现误判。
而数据挖掘技术可以通过分析大量的借款人数据和其他相关信息,自动构建信用评估模型,并对借款人的信用进行准确的预测。
这种方法不仅提高了评估的准确性,还大大节约了时间和人力成本。
三、市场预测金融市场变化莫测,对市场趋势的准确预测对投资者和金融机构来说至关重要。
数据挖掘技术可以帮助分析师和投资者通过分析历史市场数据和相关因素,预测未来市场的走势。
例如,通过挖掘股票市场的历史数据和其他相关指标,可以建立股票价格预测模型,为投资者提供参考,辅助他们进行投资决策。
四、反欺诈在金融行业中,欺诈是一种常见的问题。
通过数据挖掘技术,金融机构可以对用户的行为进行分析,识别出潜在的欺诈行为。
例如,通过分析用户的交易行为和异常模式,可以发现涉嫌欺诈的交易,并及时采取相应的措施来避免损失。
五、客户关系管理数据挖掘技术还可以帮助金融机构更好地管理客户关系。
通过分析客户的行为数据和其他相关信息,可以建立客户购买行为模型,准确预测客户未来的需求和购买意愿。
这种方法可以帮助金融机构制定有针对性的营销策略,提高客户满意度和忠诚度。
六、其他应用领域除了以上几个方面,数据挖掘在金融行业还有很多其他的应用领域,比如股票交易策略优化、产品推荐、市场定位等。
基于大数据背景下数据挖掘在金融行业的应用

基于大数据背景下数据挖掘在金融行业的应用在当今大数据时代,金融行业利用数据挖掘技术进行数据分析、预测和决策已经成为一种趋势。
随着金融市场的日益复杂化和竞争加剧,准确的数据分析和预测成为金融机构保持竞争优势的重要手段。
因此,基于大数据背景下数据挖掘在金融行业的应用越来越受到关注。
数据挖掘在金融行业的应用非常广泛,从识别风险、评估贷款和投资决策、到预测市场趋势和客户行为,都可以通过数据挖掘实现。
以下是一些具体应用:1. 风险管理:金融机构可以通过分析历史交易数据和客户信用报告,建立起客户的信用风险模型,从而实现风险预测、评估和管理。
数据挖掘技术可以帮助金融机构发现那些异常或风险高的交易,及时采取措施进行缓解或拒绝。
2. 信贷决策:数据挖掘技术可以帮助金融机构进行合理和有效的风险评估和信贷批准决策。
机构可以利用客户历史数据进行建模,预测客户是否会按时还款以及客户的信用额度,并根据模型的输出结果执行相应的决策。
3. 投资决策:数据挖掘技术可以通过分析市场和经济数据,预测未来的投资价值和趋势。
金融机构可以使用这些预测信息,制定投资计划,并帮助客户作出最佳的投资决策。
4. 客户行为分析:金融机构可以利用数据挖掘技术,识别客户的需求,并提供相应的金融产品和服务。
机构可以通过客户历史数据构建模型,预测客户在未来可能需要的金融产品和服务,并向客户推荐符合其需求和利益的产品和服务。
总之,数据挖掘技术已经成为金融机构中不可或缺的工具,可以提高金融机构的决策水平和业务效率,减少风险和增加收益。
但是,在应用数据挖掘技术的同时,金融机构也需要考虑数据安全和隐私保护等问题。
同时,正确地应用数据挖掘技术需要专业的数据挖掘人才,这对于金融机构也是一项重要的挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘技术在金融领域的应用武扬金融部门每天的业务都会产生大量数据,利用目前的数据库系统可以有效地实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。
缺乏挖掘数据背后隐藏的知识的手段,导致了数据爆炸但知识贫乏的现象。
与此同时,金融机构的运作必然存在金融风险,风险管理是每一个金融机构的重要工作。
利用数据挖掘技术不但可以从这海量的数据中发现隐藏在其后的规律,而且可以很好地降低金融机构存在的风险。
学习和应用数据挖掘技术对我国的金融机构有重要意义。
1.数据挖掘概述1.1 数据挖掘的定义对于数据挖掘,一种比较公认的定义是W.J.Frawley,G.Piatetsk Shapiro 等人提出的。
数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识、这些知识是隐含的、事先未知的、潜在有用的信息,提取的知识表示为概念(Concepts ) ,规则(Rules )、规律(Regularities )、模式(Patterns)等形式。
这个定义把数据挖掘的对象定义为数据库。
随着数据挖掘技术的不断发展,其应用领域也不断拓广。
数据挖掘的对象已不再仅是数据库,也可以是文件系统,或组织在一起的数据集合,还可以是数据仓库。
与此同时,数据挖掘也有了越来越多不同的定义,但这些定义尽管表达方式不同,其本质都是近似的,概括起来主要是从技术角度和商业角度给出数据挖掘的定义。
从技术角度看,数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在的和有用的信息和知识的过程。
它是一门广义的交叉学科,涉及数据库技术、人工智能、机器学习、神经网络、统计学、模式识别、知识库系统、知识获取、信息检索、高性能计算和数据可视化等多学科领域且本身还在不断发展。
目前有许多富有挑战的领域如文本数据挖掘、Web信息挖掘、空间数据挖掘等。
从商业角度看,数据挖掘是一种深层次的商业信息分析技术。
它按照企业既定业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性并进一步将其模型化,从而自动地提取出用以辅助商业决策的相关商业模式。
1.2 数据挖掘方法数据挖掘技术是数据库技术、统计技术和人工智能技术发展的产物。
从使用的技术角度,主要的数据挖掘方法包括:1.2.1 决策树方法:利用树形结构来表示决策集合,这些决策集合通过对数据集的分类产生规则。
国际上最有影响和最早的决策树方法是ID3方法,后来又发展了其它的决策树方法。
1.2.2 规则归纳方法:通过统计方法归纳,提取有价值的if- then规则。
规则归纳技术在数据挖掘中被广泛使用,其中以关联规则挖掘的研究开展得较为积极和深入。
1.2.3 神经网络方法:从结构上模拟生物神经网络,以模型和学习规则为基础,建立3种神经网络模型:前馈式网络、反馈式网络和自组织网络。
这种方法通过训练来学习的非线性预测模型,可以完成分类、聚类和特征挖掘等多种数据挖掘任务。
1.2.4 遗传算法:模拟生物进化过程的算法,由繁殖(选择)、交叉(重组)、变异(突变)三个基本算子组成。
为了应用遗传算法,需要将数据挖掘任务表达为一种搜索问题,从而发挥遗传算法的优化搜索能力。
1.2.5 粗糙集(Rough Set)方法:Rough集理论是由波兰数学家Pawlak在八十年代初提出的一种处理模糊和不精确性问题的新型数学工具。
它特别适合于数据简化,数据相关性的发现,发现数据意义,发现数据的相似或差别,发现数据模式和数据的近似分类等,近年来已被成功地应用在数据挖掘和知识发现研究领域中。
1.2.6 K2 最邻近技术:这种技术通过K个最相近的历史记录的组合来辨别新的记录。
这种技术可以作为聚类和偏差分析等挖掘任务。
1.2.7 可视化技术:将信息模式、数据的关联或趋势等以直观的图形方式表示,决策者可以通过可视化技术交互地分析数据关系。
可视化数据分析技术拓宽了传统的图表功能,使用户对数据的剖析更清楚。
1.3.数据挖掘在金融行业中的应用数据挖掘已经被广泛应用于银行和商业中,有以下的典型应用:1.3.1 对目标市场(targeted marketing)客户的分类与聚类。
例如,可以将具有相同储蓄和货款偿还行为的客户分为一组。
有效的聚类和协同过滤( collaborative filtering)方法有助于识别客户组,以及推动目标市场。
1.3.2 客户价值分析。
在客户价值分析之前一般先使用客户分类,在实施分类之后根据“二八原则”,找出重点客户,即对给银行创造了80%价值的20%客户实施最优质的服务。
重点客户的发现通常采用一系列数据处理、转换过程、AI人工智能等数据挖掘技术来实现。
通过分析客户对金融产品的应用频率、持续性等指标来判别客户的忠诚度;通过对交易数据的详细分分析鉴别哪些是银行希望保持的客户;通过挖掘找到流失的客户的共同特征,就可以在那些具有相似特征的客户还未流失之前进行针对性的弥补。
1.3.3 客户行为分析。
找到重点客户之后,可对其进行客户行为分析,发现客户的行为偏好,为客户贴身定制特色服务。
客户行为分析又分为整体行为分析和群体行为分析。
整体行为分析用来发现企业现有客户的行为规律。
同时,通过对不同客户群组之间的交叉挖掘分析,可以发现客户群体间的变化规律,并可通过数据仓库的数据清洁与集中过程,将客户对市场的反馈自动输人到数据仓库中。
通过对客户的理解和客户行为规律的发现,企业可以制定相应的市场策略。
1.3.4 为多维数据分析和数据挖掘设计和构造数据仓库。
例如,人们可能希望按月、按地区、按部门、以及按其他因素查看负债和收入的变化情况,同时希望能提供诸如最大、最小、总和、平均和其他等统计信息。
数据仓库、数据立方体、多特征和发现驱动数据立方体,特征和比较分析,以及孤立点分析等,都会在金融数据分析和挖掘中发挥重要作用。
1.3.5 货款偿还预测和客户信用政策分析。
有很多因素会对货款偿还效能和客户信用等级计算产生不同程度的影响。
数据挖掘的方法,如特征选择和属性相关性计算,有助于识别重要的因素,别除非相关因素。
例如,与货款偿还风险相关的因素包括货款率、资款期限、负债率、偿还与收入(payment-to -income)比率、客户收入水平、受教育程度、居住地区、信用历史,等等。
而其中偿还与收入比率是主导因素,受教育水平和负债率则不是。
银行可以据此调整货款发放政策,以便将货款发放给那些以前曾被拒绝,但根据关键因素分析,其基本信息显示是相对低风险的申请。
1.3.6 业务关联分析。
通过关联分析可找出数据库中隐藏的关联网,银行存储了大量的客户交易信息,可对客户的收人水平、消费习惯、购买物种等指标进行挖掘分析,找出客户的潜在需求;通过挖掘对公客户信息,银行可以作为厂商和消费者之间的中介,与厂商联手,在掌握消费者需求的基础上,发展中间业务,更好地为客户服务。
1.3.7 洗黑钱和其他金融犯罪的侦破。
要侦破洗黑钱和其他金融犯罪,重要的一点是要把多个数据库的信息集成起来,然后采用多种数据分析工具找出异常模式,如在某段时间内,通过某一组人发生大量现金流量等,再运用数据可视化工具、分类工具、联接工具、孤立点分析工具、序列模式分析工具等,发现可疑线索,做出进一步的处理。
数据挖掘技术可以用来发现数据库中对象演变特征或对象变化趋势,这些信息对于决策或规划是有用的,金融行业数据的挖掘有助于根据顾客的流量安排工作人员。
可以挖掘股票交易数据,发现可能帮助你制定投资策略的趋势数据。
挖掘给企业带来的潜在的投资回报几乎是无止境的。
当然,数据挖掘中得到的模式必须要在现实生活中进行验证。
2 基于小波分析和支持向量机的指数预测模型小波分析理论是目前科学界和工程界讨论和研究最多的课题之一,它包含了丰富的数学内容,又具有巨大的应用潜力。
小波分析是在Fourier分析的基础上发展起来的,是调和分析近半个世纪以来的结晶。
其基本思想是将一般函数(信号)表示为规范正交小波基的线性叠加,核心内容是小波变换。
由于小波变换在时域和频域具有良好的局部化性质,能自动调整时、频窗口,以适应实际分析需要,因而已成为许多工程学科应用的有力工具。
在进一步介绍小波分析理论之前,我们先了解一下金融时间序列的概念。
支持向量机(support vector machine, SVM)是数据挖掘中的一项新技术,是借助于最优化方法解决机器学习问题的新工具。
它成为克服“维数灾难”和“过学习”等传统困难的有效办法,虽然他还处在飞速发展的阶段,但它的理论基础和实现途径的基本框架已经形成。
支持向量机目前主要用来解决分类问题(模式识别,判别分析)和回归问题。
而股市行为预测通常为预测股市数据的走势和预测股市数据的未来数值。
而当我们将走势看作两种状态(涨、跌),问题便转化为分类问题,而预测股市未来的价格是指为典型的回归问题。
我们有理由相信支持向量机可以对股市进行预测。
2.1 金融时间序列概况金融市场是国家经济生活的核心,寻找其中的变化规律,进行有有效合理的管理是各国政府及相关研究机构孜孜以求的目标之一。
同时,人们对金融预测也作了大量的探索,取得了丰硕的成果。
典型的金融预测是时间序列预测。
金融市场的数据绝大多数都是时间序列数据,即指这些数据是按照时间的排序取得的一系列观测值,如股票或期货价格、货币利率、外汇利率等。
这些数据具有非常复杂的变化规律,而利用一定的数学方法对其进行分析和研究将有助于制定更为精确的定价和预测决策,当然对于金融投资与风险管理活动具有十分重要的意义。
金融时间序列分析主要是以统计理论和方法为基础,通过模型假设、参数估计、回归分析等技术来描述其内在的规律。
适当的数学工具和真实的数据使金融时间序列分析成为金融经济研究中独具魅力的一块领域,例如美国经济学家Engle和英国经济学家Granger 就因其提出的ARCH模型和协整理论而荣获2003年度诺贝尔经济学奖。
一般来说,时间序列的分析可以通过时域和频域两个途径进行。
但是很多金融时间序列表现出较强的非平稳性和长记忆性,这使得许多传统的单独集中于时域或频域的研究分析方法已经不再适用。
而小波分析作为一种新型的信号分析方法,因其在时域和频域都具有表征信号局部特征的能力,被誉为“数学显微镜“,因而它非常适用于分析分平稳信号。
小波分析是近20年发展起来的新兴数学分支,也是目前数学界和工程界讨论最多的话题之一。
并且已经在信号和图像处理、模式识别、语音识别、地震勘测等众多学科中得到了广泛应用。
相对来说,其在金融时间序列分析和建模中的应用却相对较少。
但近年来,小波分析方法在金融时间序列分析中的重要地位已经越来越受到人们的关注。
2.2小波消噪在金融时间序列中的应用金融市场中数据由于各种偶然因素的影响,即使不存在暗箱操作,或没有什么重要新闻、重要政策出台,也会表现一种小幅的随机波动。