半导体激光器讲解
半导体激光工作原理

半导体激光工作原理
半导体激光器是利用电子从低能级跃迁到高能级时所产生的光,由于高能级的电子数比低能级的多得多,因此光在自由电子激光中辐射的能量是很大的。
半导体激光器主要由激光器、增益介质和泵浦光源组成。
半导体激光器的增益介质主要有三种:有源区、波导、吸收腔。
其中以有源区为主要部分,其形状和材料各不相同。
激光器有源区是由金属原子构成的半导体,它是激光系统中唯一能把光能转变成机械能和化学能的部分,也是影响激光特性的重要因素之一。
有源区还起着将泵浦光源发射出来的光(指激光器内部发射出来的光)与增益介质中传输过来的光(指增益介质发射出来的光)相互耦合、吸收和转换,再由有源区发射出来的光辐射出激光器内部。
由于有源区在整个半导体激光器中起着非常重要作用,因此在选择激光器有源区时必须考虑有源区和有源区内材料的成分、尺寸和形状,使它们相互匹配,这样才能达到最佳性能。
增益介质又叫受激辐射层或吸收层。
—— 1 —1 —。
半导体激光器ppt课件

应用:
半导体激光器应用十分广泛,主要分布在军事、生产和医疗方面:
军事:Ⅰ)激光引信。半导体激光器是唯一能够用于弹上引信的激光器。 Ⅱ)激光制导。它使导弹在激光射束中飞行直至摧毁目标。 Ⅲ)激光测距。主要用于反坦克武器以及航空、航天等领域。 Ⅳ)激光雷达。高功率半导体激光器已用于激光雷达系统
目录
CONTENTS
1 基本介绍及发展 2 基本原理及构成
3 主要特性
4 分类、应用及发展前景
基本介绍及发展
高能态电子束>低能态电子束
高能态
低能
态
同频同相
的光发射
同频同相光 谐振腔内多次往返
放大
激光
激光:通过一定的激励方 式,实现非平衡载流子的 粒子数反转,使得高能态 电子束大于低能态电子束, 当处于粒子数反转状态的 大量电子与空穴复合时, 便产生激光。
激光具有很好的方向性和 单色性。用途十分广泛
高功率半导体激光器
① 、1962年9月16日,通用电气公司的罗伯特·霍尔 (Robert Hall) 带领的研究小组展示了砷化镓(GaAs)半导体的红外发射, 首个半 导体激光器的诞生。 ②、70年代,美国贝尔实验室研制出异质结半导体激光器,通过对光 场和载流限制,从而研制出可在室温下连续运转且寿命较长的激光器。 ③、80年代,随着技术提升,出现了量子陷和超晶格等新型半导体激 光器结构; 1983年,波长800nm的单个输出功率已超过100mW,到 了1989年,0.1mm条宽的则达到3.7W的连续输出,转换效率达39%。 ④、90年代在泵浦固体激光器技术推动下,高功率半导体激光器出现 突破进展。。1992年,美国人又把指标提高到一个新水平:1cm线阵 连续波输出功率达121W,转换效率为45%。
半导体激光器 原理

半导体激光器原理
半导体激光器是一种基于半导体材料的激光发射装置。
它通过电流注入半导体材料中的活性层,使其产生载流子(电子和空穴)重组的过程中释放出光子。
以下是半导体激光器的基本原理:
1. P-N结构:半导体激光器通常采用P-N结构,其中P区域富含正电荷,N区域富含负电荷。
2. 电流注入:当电流从P区域注入到N区域时,电子和空穴
会在活性层中重组,形成激子(激发态)。
3. 激子衰减:激子会因为与晶格的相互作用而损失能量,进而衰减为基态激子。
4. 辐射复合:基态激子最终与活性层中的空穴重新结合,释放出光子。
这个过程称为辐射复合。
5. 光放大:光子通过多次反射在激光腔中来回传播,与活性层中的激子相互作用,不断放大。
6. 反射镜:激光腔两端分别放置高反射镜和透明窗口,高反射镜可以增加内部光子的反射使其在腔内传播,透明窗口允许激光通过。
7. 激光输出:当达到一定放大程度时,激光在透明窗口处逃逸,形成激光输出。
通过控制电流注入和激光腔的结构设计,可以调节半导体激光器的发射波长、功率等参数,以满足不同应用领域的要求。
《半导体激光器》课件

激光器的原理和结构
三层异质结构
由P型层、N型层和增益区组 成,形成电荷分布不均衡。
激发电子跃迁
通过半导体材料注入载流子, 使电子跃迁并辐射出激光。
反射和增强
利用反射镜将光不断反射, 形成受激辐射和光放大。
半导体激光器的分类
基于材料
可见光范围:GaN、InGaN、 AlGaInP
基于结构
激光二极管、垂直腔面发射激 光器(VCSEL)、边缘发射激光 器
半导体激光器将继续追求更高功率输出
新材料和结构
2
和更短波长的发展。
新型半导体材料和结构设计将推动半导
体激光器的进一步发展。
3
光电子集成
半导体激光器将与其他光电子器件集成, 进一步拓展应用领域。
总结和展望
半导体激光器的发展已经取得了显著的成就,但仍有许多待解决的挑战。我们期待看到半导体激光器在更多领 域发挥重要作用,并推动科技进步和社会发展。
1 小尺寸、易集成
半导体激光器的微小尺寸 使其在集成电路和微型设 备中具有广泛应用。
2 低功耗、高效率
相较于其他激光器,半导 体激光器具有更低的功耗 和更高的能量转换效率。
3 快速开关、调制
半导体激光器具有快速调 制和切换特性,适用于光 通信和传感器等领域。
半导体激光器的发展趋势
1
更高功率和更短波长
基于应用
光通信、激光打印、医疗、工 业加工、激光雷达等
半导体激光器的应用
光通信
作为信息传输的关键技术,广泛 应用于光纤通信和无线光通信领 域。
医疗
各种激光治疗设备,如激光手术 刀和激光美容仪,受到医疗界的 青睐。
工业加工
激光切割、激光焊接和激光打标 等应用,提高了工业加工的效率 和精度。
半导体激光器发光原理及工作原理

半导体激光器发光原理及工作原理半导体激光器是一种利用半导体材料产生激光的器件,广泛应用于通信、医疗、材料加工等领域。
本文将介绍半导体激光器的发光原理和工作原理。
一、半导体激光器的发光原理1.1 激发态电子跃迁:半导体激光器的发光原理是利用半导体材料中的电子和空穴的复合辐射产生激光。
当电子和空穴在PN结区域复合时,会发生能级跃迁,释放出光子。
1.2 光放大过程:在半导体材料中,光子会被吸收并激发更多的电子跃迁,形成光放大过程。
这种过程会导致光子数目的指数增长,最终形成激光。
1.3 反射反馈:半导体激光器内部通常设置有反射镜,用于反射激光,使其在器件内部多次反射,增强激光的光程和功率,最终形成高亮度的激光输出。
二、半导体激光器的工作原理2.1 电流注入:半导体激光器的工作需要通过电流注入来激发电子和空穴的复合。
电流通过PN结区域,形成电子和空穴的复合辐射。
2.2 光放大:在电流注入的情况下,光子会被吸收并激发更多的电子跃迁,形成光放大过程。
这会导致激光的产生和输出。
2.3 温度控制:半导体激光器的工作过程中会产生热量,需要进行有效的温度控制,以确保器件的稳定性和寿命。
通常会采用温控器等设备进行温度管理。
三、半导体激光器的特点3.1 尺寸小:半导体激光器采用微型化设计,尺寸小巧,适合集成在各种设备中。
3.2 高效率:半导体激光器具有高效的能量转换率,能够将电能转换为光能,功耗低。
3.3 快速调制:半导体激光器响应速度快,能够实现快速调制和调节,适用于高速通信和数据传输领域。
四、半导体激光器的应用领域4.1 通信:半导体激光器广泛应用于光通信系统中,用于光纤通信和无线通信的光源。
4.2 医疗:半导体激光器在医疗领域中用于激光手术、激光治疗等,具有精准、无创的特点。
4.3 材料加工:半导体激光器可用于材料切割、打标、焊接等加工领域,具有高精度和高效率的优势。
五、半导体激光器的发展趋势5.1 高功率:未来半导体激光器将朝着高功率、高亮度的方向发展,以满足更多领域的需求。
半导体激光器讲解ppt课件

正反馈(驻波);
fq 谐振频率, q 谐振波长, q 纵模
f q
c
q
q
c 2nL
12
§2.半导体中光的发射和激射原理(续)
频带加宽:增益介质的增益-频率特性;
13
§2.半导体中光的发射和激射原理(续)
横模TEMmn :激光振荡垂直于腔轴方向,平面波 偏离轴向传播时产生的横向电磁场模式。
受激辐射:E2能态的电子处于不稳定状态,向下 进入亚稳态,外来光子会激励电子向下跃迁到基 态E1,受激辐射一个光子(位相相同)。
9
§2.半导体中光的发射和激射原理(续)
粒子数反转(光放大的必要条件):仅当激发态 的电子数大于基态中的电子数时,受激辐射超过 吸收,要利用“泵浦(激励)”方法。
有源区:实现粒子数反转,对光具有放大作用的 区域。
Eg=h
4
§2.半导体中光的发射和激射原理(续)
本征半导体(I型):杂质、缺陷极少的纯净、 完整的半导体。
电子半导体(N型):通过掺杂使电子数目大 大地多于空穴数目的半导体。(GaAs-Te)
空穴半导体(P型):通过掺杂使空穴数目大 大地多于电子数目的半导体。(GaAs-Zn)
在纯净的Ⅲ-Ⅴ族化合物中掺杂Ⅵ族元素(N 型),或掺杂Ⅱ族元素(P型)
掺杂:eVDEg为轻掺杂, eVDEg为重掺杂。
在平衡状态下,P区和N区有统一的Ef。
正电压向V→漂移运动→抵消一部分势垒(V-VD) →破坏平衡→ P区和N区的Ef分离(准费米能级)。
7
§2.半导体中光的发射和激射原理(续)
(Ef)N以下的能级,电子占据的可能性大于1/2, (Ef)P以上的能级,空穴占据的可能性大于1/2。
第6章 半导体激光器讲解

N2 exp( E2 E1 )
N1
kT
式中, k=1.381×10-23J/K,为波尔兹曼常数,T为热力学温 度。由于(E2-E1)>0,T>0,所以在这种状态下,总是N1>N2。 这是因为电子总是首先占据低能量的轨道。
受激吸收和受激辐射的速率分别比例于N1和N2,且比例系 数(吸收和辐射的概率)相等。
中心波长:在激光器发出的光谱中,连接50% 最大幅度值线段的中点所对应的波长。
830 828
I=100mA Po=10mW
832 830 828
I=85mA Po=6mW
6.3.1 半导体激光器工作原理和基本结构
半导体激光器是向半导体PN结注入电流,实现粒子 数反转分布,产生受激辐射,再利用谐振腔的正反馈, 实现光放大而产生激光振荡的。
光受激辐射、发出激光必须具备三个要素:
1、激活介质经受激后能实现能级之间的跃迁;
2、能使激活介质产生粒子数反转的泵浦装置;
3、放置激活介质的谐振腔,提供光反馈并进行放大, 发出激光。
图 3.6 DH (a) 双异质结构; (b) 能带; (c) 折射率分布; (d) 光功率分布
3.1.2 半导体激光器的主要特性
1. 发射波长和光谱特性
半导体激光器的发射波长等于禁带宽度Eg(eV) h f =Eg
式中,f=c/λ,f (Hz)和λ(μm)分别为发射光的频率和波长,
c=3×108 m/s为光速,h=6.628×10-34J·S为普朗克常数, 1eV=1.6×10-19 J,代入上式得到
生的自发辐射光作为入射光。
产生稳定振荡的条件(相位条件)
2L m / n
m 纵模模数,n 激光媒质的折射率
半导体激光器特点

半导体激光器特点半导体激光器是一种利用半导体材料的电子能级结构产生激光的装置。
它具有以下几个特点:1. 高效率:半导体激光器的光电转换效率相对较高,通常可达到30%以上。
这是因为半导体材料具有较高的折射率,能够实现较长的光程,并且电流注入激活的载流子浓度较高,使得激光产生的概率增大。
2. 小型化:半导体激光器具有体积小、重量轻的特点,可以制成非常小巧的器件。
这使得它可以广泛应用于光通信、激光打印、激光雷达等领域,同时也方便集成到其他电子器件中。
3. 快速调制:半导体激光器的调制速度非常快,可以达到几十Gbps甚至上百Gbps的水平。
这使得它成为光纤通信和光存储等领域中的重要组件,能够实现高速数据传输和处理。
4. 低功率消耗:由于半导体激光器是利用电流注入产生激光,相对于其他类型的激光器,它的功耗较低。
这使得半导体激光器在便携式设备和低功耗应用中具有优势,例如激光指示器和激光笔等。
5. 单色性好:半导体激光器的输出光束通常是单色的,具有较窄的谱线宽度。
这使得它在光谱分析、光纤传感和光谱测量等领域中有着广泛的应用。
6. 长寿命:半导体激光器的寿命相对较长,可以达到几万小时以上。
这使得它在长时间稳定工作和持续使用的应用中具有优势,例如激光切割和激光医疗等领域。
7. 可调谐性:某些类型的半导体激光器具有可调谐的特性,可以通过改变电流或温度等参数来调节输出的激光波长。
这使得它在光谱分析、光通信和光存储等领域中具有灵活的应用。
半导体激光器具有高效率、小型化、快速调制、低功率消耗、单色性好、长寿命和可调谐性等特点。
在现代科学技术的发展中,半导体激光器在光电子学、光通信、光存储、医疗等领域发挥着重要的作用,并且具有广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激发时电子吸收能量,跃迁时电子辐射能量;
Eg=h
00-10-10 4
光纤通信基础
武汉大学 电子信息学院
§2.半导体中光的发射和激射原理(续)
本征半导体(I型):杂质、缺陷极少的纯净、 完整的半导体。 电子半导体(N型):通过掺杂使电子数目大 大地多于空穴数目的半导体。(GaAs-Te)
空穴半导体(P型):通过掺杂使空穴数目大 大地多于电子数目的半导体。(GaAs-Zn)
武汉大学 电子信息学院
§4.半导体激光二极管LD(续)
00-10-10
21
光纤通信基础
武汉大学 电子信息学院
§4.半导体激光二极管LD(续)
管芯制作工艺:InGaAsP双异质结
00-10-10
22
光纤通信基础
武汉大学 电子信息学院
§4.半导体激光二极管LD(续)
半导体激光器的特性:双异质结InGaAsP
普朗克定律:基态到激发态的跃迁—吸收一个光 子,激发态到基态的跃迁—发射一个光子,光子 的能量为h=E2-E1。 吸收激发:E1基态的电子吸收光子能量,激发到 高能态E2; 自发辐射:E2能态的电子处于不稳定状态,自发 返回基态E1,自发辐射一个光子(位相随机)。
受激辐射:E2能态的电子处于不稳定状态,向下 进入亚稳态,外来光子会激励电子向下跃迁到基 态E1,受激辐射一个光子(位相相同)。
光纤通信基础
武汉大学 电子信息学院
§2.半导体中光的发射和激射原理(续)
横模TEMmn :激光振荡垂直于腔轴方向,平面波 偏离轴向传播时产生的横向电磁场模式。
00-10-10
14
光纤通信基础
武汉大学 电子信息学院
§3.半导体发光二极管LED
利用半导体p-n结自发发光的器件。 特点:温度特性好,输出线性较好,没有模式 色散,驱动电路简单,寿命长。
00-10-10 37
光纤通信基础
武汉大学 电子信息学院
§5.分布反馈激光二极管(DFB--LD)
00-10-10
38
光纤通信基础
武汉大学 电子信息学院
§5.分布反馈激光二极管(DFB--LD)
分布Bragg反射器(DBR)激光二极管
00-10-10
39
光纤通信基础
武汉大学 电子信息学院
§5.分布反馈激光二极管(DFB--LD)
超结构光栅DBR可调谐激光二极管
00-10-10
40
光纤通信基础
武汉大学 电子信息学院
§6.量子阱半导体激光器
有源层尺寸极小→有源层与两边相邻层的能带不 连续→导代和价带的突变→势能阱→量子阱效应
00-10-10
41
光纤通信基础
武汉大学 电子信息学院
§6.量子阱半导体激光器
00-10-10
42
00-10-10 9
光纤通信基础
武汉大学 电子信息学院
§2.半导体中光的发射和激射原理(续)
粒子数反转(光放大的必要条件):仅当激发态 的电子数大于基态中的电子数时,受激辐射超过 吸收,要利用“泵浦(激励)”方法。 有源区:实现粒子数反转,对光具有放大作用的 区域。
光学谐振腔: 自发辐射光子 夹角大的逸出 受激辐射光子 全同光子
00-10-10 7
光纤通信基础
武汉大学 电子信息学院
§2.半导体中光的发射和激射原理(续)
(Ef)N以下的能级,电子占据的可能性大于1/2, (Ef)P以上的能级,空穴占据的可能性大于1/2。
当正向电压足够大时,产生复合发光。
00-10-10
8
光纤通信基础
武汉大学 电子信息学院
§2.半导体中光的发射和激射原理(续)
00-10-10 3
光纤通信基础
武汉大学 电子信息学院
§2.半导体中光的发射和激射原理(续)
导体的Eg半导体Eg导体Eg=0;
价带中电子激发至导带,留下空穴;临近电子 填补这个空穴,又留下另一个空穴;空穴产生 位移;(统称载流子) 导带中电子跃迁至价带,填补空穴,既复合;
电子(-)、空穴(+)称为载流子;
00-10-10 10
光纤通信基础
武汉大学 电子信息学院
§2.半导体中光的发射和激射原理(续)
00-10-10
11
光纤通信基础
武汉大学 电子信息学院
§2.半导体中光的发射和激射原理(续)
谐振腔的三功能:光放大、频率选择、正反馈。 阈值条件:增益必须大于损耗;
1 1 g t i ( ) ln( ) 2L R 1R 2
00-10-10
15
光纤通信基础
武汉大学 电子信息学院
§3.半导体发光二极管LED(续)
面发光二极管
00-10-10
16
光纤通信基础
武汉大学 电子信息学院
§3.半导体发光二极管LED(续)
边发光二极管
00-10-10
17
光纤通信基础
武汉大学 电子信息学院
§3.半导体发光二极管LED(续)
技术参数: 1.3m LED 指标 边发光 参数 最小值 典型值 最大值 1.30 1.32 发射波长(m) 1.22 40 50/6 出纤功率(W) 60 80 半高谱宽(nm) 150 工作电流(mA) 2.5 响应时间(ns)
§4.半导体激光二极管LD(续)
光耦合透镜系统:
00-10-10
30
光纤通信基础
武汉大学 电子信息学院
§4.半导体激光二极管LD(续)
激光器封装的目的: ⑴隔绝环境,避免损害,保证清洁; ⑵为器件提供合适的外引线; ⑶提高机械强度,抵抗恶劣环境; ⑷提高光学性能; 封装器件的主要要求: ⑴气密性好,保证管芯与外界隔绝; ⑵结构牢固可靠,部件位置稳定,经受住各种环境; ⑶热性能好,化学性能稳定,抗温度循环冲击; ⑷可焊性好,工艺性好,有拉力强度; ⑸符合标准,系列化,成本低,适合批量生产。
在纯净的Ⅲ-Ⅴ族化合物中掺杂Ⅵ族元素(N 型),或掺杂Ⅱ族元素(P型)
00-10-10
5
光纤通信基础
武汉大学 电子信息学院
§2.半导体中光的发射和激射原理(续)
p-n结:P型半导体和N型半导体结合的界面。
00-10-10
6
光纤通信基础
武汉大学 电子信息学院
§2.半导体中光的发射和激射原理(续)
可调速率(MHz)
00-10-10
面发光 典型值 1.3 40 <85
200
70
18
光纤通信基础
武汉大学 电子信息学院
§4.半导体激光二极管LD
同质结与异质结:
00-10-10
19
光纤通信基础
武汉大学 电子信息学院
§4.半导体激光二极管LD(续)
窄条双质结激光二极管:
00-10-10
20
光纤通信基础
00-10-10
46
光纤通信基础
武汉大学 电子信息学院
§8.半导体激光器特性与检测
00-10-10
47
光纤通信基础
武汉大学 电子信息学院
§8.半导体激光器特性与检测
00-10-10
48
光纤通信基础
武汉大学 电子信息学院
§8.半导体激光器特性与检测
00-10-10
49
光纤通信基础
武汉大学 电子信息学院
尾纤式同轴封装:
00-10-10
34
光纤通信基础
武汉大学 电子信息学院
§4.半导体激光二极管LD(续)
14针双列直插式封装:
00-10-10
35
光纤通信基础
武汉大学 电子信息学院
§4.半导体激光二极管LD(续)
蝶式封装:
00-10-10
36
光纤通信基础
武汉大学 电子信息学院
§5.分布反馈激光二极管(DFB--LD)
光纤通信基础
武汉大学 电子信息学院
§6.量子阱半导体激光器
00-10-10
43
光纤通信基础
武汉大学 电子信息学院
§7.半导体激光器组件
00-10-10
44
光纤通信基础
武汉大学 电子信息学院
§8.半导体激光器特性与检测
00-10-10
45
光纤通信基础
武汉大学 电子信息学院
§8.半导体激光器特性与检测
扩散运动→空间电荷势垒→自建电场VD→平衡状态。
费米能级Ef:描述电子能量状态分布的假象能级, Ef以下的能级,电子占据的可能性大于1/2,空穴占 据的可能性小于1/2; Ef以上的能级,空穴占据的 可能性大于1/2,电子占据的可能性小于1/2。 掺杂:eVDEg为轻掺杂, eVDEg为重掺杂。 在平衡状态下,P区和N区有统一的Ef。 正电压向V→漂移运动→抵消一部分势垒(V-VD) →破坏平衡→ P区和N区的Ef分离(准费米能级)。
光纤通信光源 讲 义
武汉大学 电子信息学院 何对燕
光纤通信基础
武汉大学 电子信息学院
§1.光纤通信中的光源
将电信号转换为光信号; 有两种:半导体激光二极管(LD); 半导体发光二极管(LED); 要求:发射波长与光纤低损耗和低色散波长一致; 在室稳下连续工作,低功耗,谱线窄; 体积小,重量轻,使用寿命长; 制造工艺简单,成本低,可靠性高;
00-10-10 31
光纤通信基础
武汉大学 电子信息学院
§4.半导体激光二极管LD(续)
同轴激光器的封装:
00-10-10
32
光纤通信基础
武汉大学 电子信息学院
§4.半导体激光二极管LD(续)
插拔式同轴封装:
00-10-10
33
光纤通信基础
武汉大学 电子信息学院