钛合金锻件的超声波探伤要点

合集下载

锻件超声波探伤标准

锻件超声波探伤标准

锻件超声波探伤标准锻件超声波探伤是一种非破坏性检测方法,广泛应用于工业生产中,用于检测锻件内部的缺陷和异物。

其标准化是确保产品质量和安全的重要步骤。

本文将介绍锻件超声波探伤的标准要求,以及其在工业生产中的重要性。

首先,锻件超声波探伤的标准主要包括国家标准、行业标准和企业标准。

国家标准是由国家标准化管理委员会制定和发布的,具有法律效力,适用于全国范围内的锻件超声波探伤工作。

行业标准是由相关行业协会或组织制定的,适用于特定行业内的锻件超声波探伤工作。

企业标准是由企业根据自身生产实际情况制定的,适用于企业内部的锻件超声波探伤工作。

这些标准的制定和执行,可以有效规范锻件超声波探伤工作,提高产品质量和安全水平。

其次,锻件超声波探伤的标准要求包括设备要求、人员要求、操作要求和报告要求等方面。

设备要求包括超声波探伤仪器的性能和精度要求,以及探头的选择和使用要求。

人员要求包括操作人员的培训和资质要求,以及操作人员的责任和义务。

操作要求包括探伤工艺的规范和流程要求,以及检测参数的设置和调整要求。

报告要求包括检测结果的记录和报告要求,以及异常情况的处理和报告要求。

这些要求的严格执行,可以保证锻件超声波探伤工作的准确性和可靠性。

最后,锻件超声波探伤标准的重要性不言而喻。

首先,它可以帮助企业提高产品质量,降低生产成本,提高市场竞争力。

其次,它可以帮助企业保障产品安全,避免因产品质量问题而导致的事故和损失。

最后,它可以帮助企业提升员工技能,提高生产管理水平,实现可持续发展和创新发展。

因此,制定和执行锻件超声波探伤标准,对于企业和社会都具有重要意义。

综上所述,锻件超声波探伤标准的制定和执行,对于保障产品质量和安全,提高生产效率和管理水平,具有重要意义。

我们应该加强对锻件超声波探伤标准的学习和理解,提高对其重要性的认识,不断完善和落实相关标准要求,推动锻件超声波探伤工作的规范化和标准化,为工业生产的可持续发展做出贡献。

合金锻造超声波检测标准(一)

合金锻造超声波检测标准(一)

合金锻造超声波检测标准(一)合金锻造超声波检测标准摘要本文介绍了合金锻造超声波检测标准的相关内容,包括其重要性、原理、方法和要求。

通过超声波检测,可以有效地评估合金锻件的质量和完整性,确保其安全可靠使用。

引言合金锻造是一种常见的金属加工方法,其制作出的合金锻件广泛应用于航空航天、汽车和能源等领域。

由于锻造过程中的高温和高压力,合金锻件往往会产生各种内部缺陷,如气孔、夹杂物和裂纹等。

因此,为了保证合金锻件的质量和使用寿命,必须进行超声波检测。

检测原理超声波检测是利用超声波在材料中传播的特性来评估材料的内部结构和缺陷。

当超声波遇到材料的界面或缺陷时,会发生反射、折射和散射。

通过监测超声波的传播特性,可以检测出材料内部的缺陷以及其尺寸、位置和形状等信息。

检测方法根据合金锻造超声波检测标准,常用的检测方法包括脉冲回波超声(Pulse-Echo)、脉冲共振超声(Pitch-Catch)和脉冲超声干涉(Pulsed Ultrasonic Interferometry)等。

其中,脉冲回波超声是最常用的方法,通过一个超声波探头发射超声波脉冲,然后接收探头反射回来的超声波信号,通过测量时间间隔和振幅等参数,可以确定材料的缺陷情况。

检测要求合金锻造超声波检测标准要求检测设备和操作人员必须满足一定的要求,以保证检测的准确性和可靠性。

对于设备来说,要求其具备合适的频率范围、脉宽和灵敏度,并经过合适的校准和定期维护。

对于操作人员来说,要求其熟悉超声波检测原理,具备相应的培训和证书,并能正确使用检测设备和解读检测结果。

总结合金锻造超声波检测标准对于评估合金锻件的质量至关重要。

通过超声波检测,可以及早发现和评估合金锻件的内部缺陷,避免因缺陷导致的事故和损失。

因此,合金锻造企业应严格按照超声波检测标准进行检测,并确保设备和操作人员的合格性,以提高合金锻件的质量和安全性。

钛合金探伤标准

钛合金探伤标准

钛合金探伤标准
钛合金探伤的标准是指对钛合金材料进行探伤时需要遵守的规范。

目前,国内外都有一些常见的钛合金探伤标准,如ASTM F-519、MIL-STD-2132等。

这些标准主要包括探伤方法、探伤设备、缺陷判定标准等内容。

具体的钛合金探伤标准包括以下几种:
ASTM E493:这是一项美国材料与试验协会发布的标准,适用于对纯钛或含有轻微污染的钛合金进行液体渗透检测。

ASTM E114:这是一项旨在检测钛合金中的表面裂纹的标准,是一种X射线检测方法。

该标准要求检测人员必须通过ASTM E164指南进行认证,还规定了X射线检测仪器要求和使用方法。

ASTM E2375:这是一项针对钛合金焊缝的无损检测方法的标准,包括X射线和超声波检测两种方法。

其中,X射线检测主要用于检测缺陷大小和形状,超声波检测则主要检测焊缝中的缺陷类型和位置。

总的来说,这些标准包括对探伤方法、设备以及缺陷判定等内容的详细规定,是确保钛合金探伤准确性和可靠性的重要依据。

钛合金锻件的超声波探伤

钛合金锻件的超声波探伤

钛合金锻件的超声波探伤钛合金比重小(约4.5)、熔点高(1600℃左右)、塑性好,具有比强度高、耐蚀性强,能在高温下长期工作(目前热强钛合金已用于500℃)等优点,因而已经越来越多地用作飞机和飞机发动机的重要承载部件,除了钛合金材料的锻件外,还有铸件、板材(如飞机蒙皮)、紧固件等等。

现代国外飞机上采用钛合金的重量比已经达到30%左右,可见钛合金在航空工业上的应用有着广阔的前途。

当然,钛合金也存在如下缺点:例如变形抗力大、导热性差、缺口敏感性较大(1.5左右)、显微组织的变化对机械性能影响较显著等,从而导致在冶炼、锻造加工和热处理时的复杂性。

因此,采用无损检测技术以保证钛合金制品的冶金和加工质量,就是一个很重要的课题。

钛合金锻件中容易出现的缺陷一.偏析型缺陷除了β偏析、β斑、富钛偏析及条状α偏析外,最危险的是间隙型α稳定偏析(I 型α偏析),其周围常伴有细小的孔洞、裂纹,含有氧、氮等气体,脆性较大。

还有富铝型α稳定偏析(II型α偏析),也因伴有裂纹并有脆性而构成危险性缺陷。

二.夹杂物多是高熔点、高密度的金属夹杂物。

由钛合金成分中高熔点、高密度元素未充分熔化留在基体中形成(例如钼夹杂),也有混在冶炼原材料(特别是回收材料)中的硬质合金刀具崩屑或不适当的电极焊接工艺(钛合金的冶炼一般采用真空自耗电极重熔法),例如钨极电弧焊,留下的高密度夹杂物,如钨夹杂,此外还有钛化物夹杂等。

夹杂物的存在容易导致裂纹的发生与扩展,因此是不允许存在的缺陷(例如苏联1977年的资料中规定,钛合金X射线照相检查时发现直径0.3~0.5mm的高密度夹杂物就必须予以记录)。

三.残余缩孔见实例。

四.孔洞孔洞不一定单个存在,也可能呈多个密集存在,会使低周疲劳裂纹扩展速度加快,造成提前疲劳破坏。

五.裂纹主要指锻造裂纹。

钛合金的粘性大,流动性差,加上导热性不好,因而在锻造变形过程中,由于表面摩擦力大,内部变形不均匀性明显以及内外温差大等,容易在锻件内部产生剪切带(应变线),严重时即导致开裂,其取向一般沿最大变形应力方向。

钛合金工件超声检测PPT

钛合金工件超声检测PPT
靠性。
超声检测技术在钛合金工件检 测中具有非破坏性、高精度和 高效率等优点,能够为工件的 质量控制和安全性评估提供有 力支持。
未来,随着超声检测技术的不 断发展和完善,其将在钛合金 工件检测中发挥更加重要的作 用。
展望
加强超声检测技术在钛合金工件检测中的标准 化和规范化研究,制定更加完善的技术标准和
异常,避免潜在的安全隐患。
医疗器械领域
钛合金在医疗器械领域中具有广泛的 应用,如人工关节、牙科植入物等。
超声检测技术可以对钛合金工件进行无 损检测,发现表面粗糙度、内部缺陷等 问题,提高产品的质量和可靠性。
钛合金工件超声检测在医疗器械领域中, 主要用于检测人工关节等植入物的表面和 内部质量,以确保其安全性和可靠性。
对硬件要求高
衍射时差法需要高精度的设备和传感器,因此成本较高。
04
钛合金工件超声检测应用
航空航天领域
钛合金因其高强度、轻量化和耐 腐蚀等特性,广泛应用于航空航
天领域。
钛合金工件超声检测在航空航天 领域中,主要用于检测飞机和航 天器的关键部件,以确保其安全
性和可靠性。
超声检测技术可以对钛合金工件 进行无损检测,发现内部缺陷和
05
钛合金工件超声检测案例分析
案例一:航空发动机叶片检测
检测目的
确保航空发动机叶片无裂纹、气孔等缺陷,保证 发动机安全运行。
检测方法
采用脉冲反射法,通过超声波在叶片表面和内部 传播,观察回波信号判断是否存在缺陷。
检测结果
成功检测出叶片内部存在的微小裂纹,避免了潜 在的安全隐患。
案例二:医疗器械钛合金零件检测
02
超声检测原理
超声波基础
01
02
03

锻钢件的超声波探伤检查方法缺陷等级分类及判定标准

锻钢件的超声波探伤检查方法缺陷等级分类及判定标准

锻钢件的超声波探伤检查方法缺陷等级分类及判定标准1•目的规范公司锻钢件的超声波探伤检查方法,规范缺陷等级分类及判定标准2•内容2.1探伤装置使用脉冲反射式超声波探伤仪。

2.2探伤方法原则上采用单晶头垂直探伤法。

但是精密探伤及有特殊要求的部位,将同时采用其他探伤方法。

2.3探伤方向及探伤范围按下表实施探伤。

但是,认定有缺陷等异状时,必须从所有方向开始探伤。

探伤方向及扫查范围向:对半圆周进行全面探伤。

但小齿轮、螺纹轴、蜗轮、辊子等表层附近特别重要的锻钢件,要从整周开始进行全面探伤。

轴类锻钢件径向:外周全面探伤轴向:从两个方向进行全面探伤轴向:从两个方向开始进行全面探伤从长度方向,宽度方向,板厚方向三个方向开始进行全面探伤。

但齿条等表层附近特别重要的锻钢件,三个方向均需从两面开始全面探伤。

径向:对外周进行全面探伤轴向:从一个方向开始全面探伤。

但是,齿圈等表层附近特别重要的锻钢件要从两个方向起全面探伤。

径向:对外周进行全面探伤轴向:从一个方向开始全面探伤。

但是,齿轮、车轮等表层附近特别重要的锻钢件要从两个方向起全面探伤。

探伤表面的表面粗糙度要达至【Ra12.5以上较好精加工状态。

2.5测量范围的调整原则上,测定范围要调整至底面回波在显示屏时间轴上显现2次。

2.6探伤方式、使用频率和使用探头探伤方式,使用频率和使用探头见下表。

2.7探伤灵敏度的设定2.7.1底面回波方式的灵敏度设定⑴直径或壁厚在2mm以下的部位,将各不同直径或壁厚的致密部位上第1次底面回波高度(BG)调整至探伤仪显示器刻度板的80%。

然后,根据图4进行灵敏度的增幅,以此作为探伤起始灵敏度。

另外,对于超过检查部位的壁厚1/2以上的区域进行探伤时,需要进一步提高灵敏度12dB进行探伤。

关于小齿轮、螺纹轴、蜗轮、齿轮、齿条、车轮等表层附近特别重要的锻钢件,则用提高了12dB后的灵敏度进行全面或是从两面开始探伤。

⑵试验部位的壁厚超过2m时,使用探头专用的DGS曲线图。

锻件超声波探伤标准

锻件超声波探伤标准

锻件超声波探伤标准
锻件超声波探伤是一种常用的无损检测方法,通过超声波的传播和反射来检测
锻件内部的缺陷和异物,对于保证锻件质量和安全具有重要意义。

为了规范锻件超声波探伤工作,制定了一系列的标准,本文将对锻件超声波探伤标准进行详细介绍。

首先,锻件超声波探伤标准包括了探伤设备的选择和使用。

探伤设备应当符合
国家标准,并且经过定期的检测和维护,确保设备的准确性和可靠性。

操作人员需要经过专业培训,熟悉设备的使用方法和操作流程,严格按照操作规程进行工作。

其次,锻件超声波探伤标准还规定了探伤工艺和参数的选择。

在进行探伤前,
需要对锻件进行清洁和表面处理,确保探测的准确性。

探伤时需要选择合适的探头和探测模式,根据锻件的材质和形状确定合适的探伤参数,包括频率、增益、衰减等,以确保对各种缺陷的有效检测。

另外,锻件超声波探伤标准还规定了探伤结果的评定标准。

根据探伤图像和信号,对锻件内部的缺陷进行评定,包括尺寸、位置、数量等,判断缺陷对锻件性能和安全的影响程度,确定是否合格或需要修复。

最后,锻件超声波探伤标准还对探伤记录和报告进行了规定。

探伤结果应当及
时记录和报告,包括探伤图像、信号数据、评定结果等,确保可追溯性和可验证性。

对于不合格的锻件,需要进行修复并重新进行探伤,直至符合要求为止。

总的来说,锻件超声波探伤标准的制定和执行,对于提高锻件质量和安全性具
有重要意义。

只有严格按照标准要求进行操作,才能有效地发现和排除锻件内部的缺陷,保证锻件的可靠性和安全性。

希望本文对锻件超声波探伤标准有所帮助,谢谢阅读。

关于锻件超声波探伤的标准及规程

关于锻件超声波探伤的标准及规程

关于锻件超声波探伤的标准及规程1.1.1筒形锻件----轴向长度L大于其外径尺寸D的轴对称空心锻件如图1(a)所示.t为公称厚度.环形锻件----轴向长度L小于等于其外径尺寸D的轴对称空心件如图1(a)所示.t为公称厚度.饼形锻件----轴向长度L小于等于其外径D的轴对称形锻件如图1(b)所示.t为公称厚度.碗形锻件----用作容器封头,中心部份凹进去的轴对称形锻件如图1(c)所示.t为公称厚度.方形锻件----相交面互相垂直的六面体锻件如图1(d)所示.三维尺寸a、b、c中最上称厚度.底波降低量GB/BF(dB)无缺陷区的第一次底波高度(GB)和有缺陷区的第一次底波高度(BF)之比.由缺陷引起的底面反射的降低量用dB值表示.密集区缺陷当荧光屏扫描线上相当于50mm的声程范围内同时有5个或者5个以上的缺陷反射信号;或者在50mm×50mm的探测面上发现同一深度范围内有5个或5个以上的缺陷反射信号.缺陷当量直径用AVG方法求出的假定与超声波束相垂直的平底孔的直径,称为缺陷当量直径,或简称为当量直径.AVG曲线以纵座标轴表示相对的反射回波高度,以横座标轴表示声程,对不同直径且假定与超声波束相垂直的圆平面缺陷所画出的曲线图叫AVG曲线,亦称为DGS曲线.2探伤人员锻件探伤应由具有一定基础知识和锻件探伤经验,并经考核取得国家认可的资格证书者担任.3探伤器材探伤仪应采用A型脉冲反射式超声波探伤仪,其频响范围至少应在1MHz~5Mhz内. 仪器应至少在满刻度的75%范围内呈线性显示(误差在5%以内),垂直线性误差应不大于5%.仪器和探头的组合灵敏度:在达到所探工件最大程处的探伤灵敏度时,有效灵敏度余量至少为10dB.衰减器的精度和范围,仪器的水平线性、动态范围等均应队伍ZBY230-84《A型脉冲反射式超声波探伤仪通用技术条件》中的有关规定.探头探头的公称频率主要为,频率误差为±10%.主要采用晶片尺寸为Φ20mm的硬保护膜直探头.必要时也可采用2MHzs或25MHz,以及晶片尺寸不大于Φ28mm探头.探头主声束应无双峰,无偏斜.耦合剂可采用机油、甘油等透声性能好,且不损害工件的液体.4探伤时机及准备工作探伤时机探伤原则上应安排在最终热处理后,在槽、孔、台级等加工前,比较简单的几何形状下进行.热处理后锻件形状若不适于超声波探伤也可在热处理前进行.但在热处理后,仍应对锻件尽可能完全进行探伤.准备工作探伤面的光洁度不应低一地5,且表面平整均匀,并与反射面平等,圆柱形锻件其端面应与轴线相垂直,以便于轴向探伤.方形锻件的面应加工平整,相邻的端面应垂直.探伤表面应无划伤以及油垢和油潜心物等附着物.锻件的几何形状及表面检查均合格后,方可进行探伤.重要区锻件的重要区应在设计图样中或按JB 755-85《压力容器锻件技术条件》予以注明.5探伤方法锻件一般应进行纵波探伤,对简形锻件还应进行横波探伤,但扫查部位和验收标准应由供需双方商定.横波探伤横波探伤应按附录B的要求进行.纵波探伤扫查方法锻件原则上应从两相互垂直的方向进行探伤,尽可能地探测到锻件的全体积,主要探测方向如图2所示,其他形状的锻件也可参照执行.扫查范围:应对锻件整个表面进行连续全面扫查.扫查速度:探头移动速度不超过150mm/s.扫查复盖应为探头直径的15%以上.当锻件探测厚度大于400mm时,应从相对两端面探伤.探伤灵敏度的校验原则上利用大平底采用计算法确定探伤灵敏度,对由于几何形状所限,以及缺陷在近场区内的工件,可采用试块法(见附录A).用底波法校正灵敏度,校正点的位置应选以工件上无缺陷的完好区域.曲面补偿:对于探测面是曲面而又无法采用底波法的工件,应采用曲率与工件相同或相近倍)的参考试块(见附录A);或者采用小直径晶片的探头,使其近场区的长度小于等于1/4工件半径,这样可不需进行曲面补偿.探伤灵敏度不得低于Φ2mm当量直径.缺陷当量的确定采用AVG曲线及计算法确定缺陷当量.计算缺陷当量时,当材质衰减系数超过4dB/m时,应考虑修正.材质衰减系数的测定a. 应在被测工件无缺陷区域,选取三处有代表性的闰,求B1/B2的值,即第一次底波高度(B1)与第二次底波高度(B2)之比的dB差值.b. 衰减系数a(dB/m)的计算为式中 T----声程,m.AVG曲线图见附录C.灵敏度的重新校验除每次探伤前应校准灵敏度外,遇有下述情况时,必须对探伤灵敏度进行重新校准.a. 校正后的探头、耦合剂和仪器调节旋钮等发生任何改变时;b. 开路电压波动或操作者怀疑灵敏度有变动时;c. 连续工作4以上;d. 工作结束时.当增益电平降低2dB以上时,应对上一次校准以来所有检查锻件进行复探;当增益电平升高2dB以上时,应对所有的记录信号进行重新评定.6记录记录当量直径超过Φ4mm的单个缺陷的波幅的位置.密集性缺陷:记录密集性缺陷中最大当量缺陷的位置和分布.饼形锻件应记录大于等于Φ4mm当量直径的缺陷密集区.其他锻件应记录大于等于Φ3mm当密集区.缺陷密集区面积以50mm×50mm的方块作为最小量度单位,其边界可由半波高并法决定.应按表2要求记底波降低量衰减系数,若供需双方有规定时,应记录衰减系数.7等级分类单个缺陷反射的等级见表1.表1 单个缺陷反射的等级等级ⅠⅡⅢⅣⅤ缺陷当量直径≤Φ4 >Φ4+(>5~8dB) Φ4+(>8~12dB) Φ4+(>12~16dB) >Φ4+16dB)底波降低量的等级见表2.表2 由缺陷引起底波防低量的等级等级ⅠⅡⅢⅣⅤ底波降低量BG/BF ≤8 >8~14 >14~20 >20~26 >26注: ①在计算缺陷引起的底面反射降低量时,应扣除4dB/m的材质衰减.②表2仅适用于声程大于一倍近场区的缺陷.密集区缺陷等级见表3.表3 密集区缺陷引起的等级等级ⅠⅡⅢⅣⅤ密集区缺陷占探伤总面积百分比H 0 >0~5% >5~10% >10~20% >20%注:表1至表3的等级应作为独立的等级分别使用.如果工件的材质衰减对探伤效果有较大的影响时,应重新进行热处理. 按、、节认定级别的缺陷,如果被探伤人员判定为危害性缺陷时,可以不受上述条文的限制.8探伤报告探伤报告不应少于以下内容.工件情况工件名称、材料牌号、编号、材质衰减、主要部位尺寸草图、探伤面的光洁度.探伤条件探伤仪型号、探头频率、晶片尺寸(k值)、探测方向、探伤灵敏度、参考反射体、耦合剂等.探伤结果8.3.1 缺陷位置、缺陷当量直径、底波降低区及缺陷分布示意图.缺陷等级及其他.探伤人员的资格证号、等级、姓名、报告签发人的资格证号、等级、姓名、日期.附录A试块要求(补充件)远场区使用,探测表面为平面时,应采用CS2型标准试块.近场区使用,探测表面为平面时,应采用CS1型标准试块.探伤面是曲面时,原则上应采用与工件具有大致相当曲率半径的对比试块,其具体形状如图A1.附录B横波探伤(补充件)横波探伤仅适用于内外径之比大于等于75%的环形和筒形锻件.探头探头公称频率主要为,也可用2MHz.探头晶片面积为140-400mm2.原则上应采用K1探头,但根据工件几何形状的不同,也可采用其他的K值探头.参考反射体为了调整探伤灵敏度,利用被探工件壁厚或长度上的加工余部份制作对比试块,在锻件的内外表面,分别沿轴向和周向加工平行的V形槽作为标准沟槽.V形槽长度为25mm,深度为锻件壁厚的1%,角度为60°.也可用其他等效的反射体(如边角反射等).探伤方法扫查方法扫查方向见图B1.探头移动速度不应超过150mm/s.扫查复盖应为探头宽度的15%以上.灵敏度检验从锻件外圆面将探头对准内圆面的标准沟槽,调整增益,使最大反射高度为满幅的80%,将该值在面板上作一点,以其为探伤灵敏度;再移动探头探外圆面的标准沟槽,并将最大反射高度亦在面板上作一点,将以上二点用直线连接并延长,使之包括全部探伤范围,绘出距离---振幅曲线.内圆面探伤时以同一顺序进行,但探头斜楔应与内圆面曲率一致.记录记录超---振幅曲线一半的缺陷反射和缺陷检出位置.附录CAVG 曲线图(参考件)AVG曲线参考图例如下:AVG曲线图必须在CS1和CS2型标准试块上测定后绘制.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钛合金锻件的超声波探伤钛合金比重小(约4.5)、熔点高(1600℃左右)、塑性好,具有比强度高、耐蚀性强,能在高温下长期工作(目前热强钛合金已用于500℃)等优点,因而已经越来越多地用作飞机和飞机发动机的重要承载部件,除了钛合金材料的锻件外,还有铸件、板材(如飞机蒙皮)、紧固件等等。

现代国外飞机上采用钛合金的重量比已经达到30%左右,可见钛合金在航空工业上的应用有着广阔的前途。

当然,钛合金也存在如下缺点:例如变形抗力大、导热性差、缺口敏感性较大(1.5左右)、显微组织的变化对机械性能影响较显著等,从而导致在冶炼、锻造加工和热处理时的复杂性。

因此,采用无损检测技术以保证钛合金制品的冶金和加工质量,就是一个很重要的课题。

钛合金锻件中容易出现的缺陷一.偏析型缺陷除了β偏析、β斑、富钛偏析及条状α偏析外,最危险的是间隙型α稳定偏析(I 型α偏析),其周围常伴有细小的孔洞、裂纹,含有氧、氮等气体,脆性较大。

还有富铝型α稳定偏析(II型α偏析),也因伴有裂纹并有脆性而构成危险性缺陷。

二.夹杂物多是高熔点、高密度的金属夹杂物。

由钛合金成分中高熔点、高密度元素未充分熔化留在基体中形成(例如钼夹杂),也有混在冶炼原材料(特别是回收材料)中的硬质合金刀具崩屑或不适当的电极焊接工艺(钛合金的冶炼一般采用真空自耗电极重熔法),例如钨极电弧焊,留下的高密度夹杂物,如钨夹杂,此外还有钛化物夹杂等。

夹杂物的存在容易导致裂纹的发生与扩展,因此是不允许存在的缺陷(例如苏联1977年的资料中规定,钛合金X射线照相检查时发现直径0.3~0.5mm的高密度夹杂物就必须予以记录)。

三.残余缩孔见实例。

四.孔洞孔洞不一定单个存在,也可能呈多个密集存在,会使低周疲劳裂纹扩展速度加快,造成提前疲劳破坏。

五.裂纹主要指锻造裂纹。

钛合金的粘性大,流动性差,加上导热性不好,因而在锻造变形过程中,由于表面摩擦力大,内部变形不均匀性明显以及内外温差大等,容易在锻件内部产生剪切带(应变线),严重时即导致开裂,其取向一般沿最大变形应力方向。

六.过热钛合金的导热性较差,在热加工过程中除了加热不当造成锻件或原材料过热外,在锻造过程中还容易因为变形时的热效应造成过热,引起显微组织变化,产生过热魏氏组织。

钛合金锻件超声探伤的几个问题除了一般锻件超声探伤方法中应当注意的问题外,钛合金锻件的超声探伤还有以下几个需要注意的问题。

一.原材料的冶金质量前面第二部分所述的缺陷大部分是在原材料上就存在的,结合考虑我国钛工业生产的实际情况(原材料、工艺等),加上钛合金价格昂贵,加工困难,并且锻件的形状一般都比较复杂,使得锻件的超声探伤存在一定的困难(例如死角、盲区、探测方向不利等),为了将质量隐患尽早阻绝在初始阶段,应该严格把好原材料的冶金质量关,其超声验收标准应该从严要求,其方法也应该更为详细。

例如,对钛合金圆棒,除了按一般周面360°的径向入射纵波探伤外,还应作周面360°的弦向横波探伤(折射角一般为45°),以保证发现直探头无法发现的表面和近表面缺陷(例如径向裂纹)。

对于钛合金方坯、饼坯、环坯等除了作垂直入射的纵波探伤外,考虑到可能存在沿锻造变形应变线产生的裂纹(在横截面上多为近似45°取向)及某些倾斜取向的缺陷,还应作折射角45°的径向横波探伤(国外有些标准还要求作水中5°入射纵波检查和折射角60°的径向、弦向横波检查,如英国的RPS705和美国的DPS4.713)。

由于钛合金探伤灵敏度要求较高,故纵波探伤宜用5MHz,横波探伤用2.5MHz(两者在同一材料中波长相当)的频率。

在评定、鉴别缺陷时,有时还要使用更高的频率(如苏联资料建议使用20MHz的频率)。

二.选择合适的检测方法为了确保钛合金锻件的质量,除了严格控制原材料质量外,还必须防止在后续热加工过程中出现缺陷,应该重视锻件的毛坯及半成品的超声探伤,以及成品阶段的X 射线探伤、荧光渗透探伤和阳极化腐蚀等检查手段,其方法的选用原则上与一般锻件基本相同。

三.需要评定的几个参数1.钛合金锻坯与锻件的超声波验收标准很严格,要求评定的参数也较多,目前国外航空钛合金锻件超声波探伤的验收标准如表1。

表1 国外航空钛合金锻件超声波探伤验收标准(最高等级)一览表由表1可见,要达到这样高的验收标准,不仅对探伤人员的技术水平有较高要求,而且还要有性能良好的超声探伤仪及探头,如灵敏度要高,信噪比和动态范围要大,线性要好,电噪声电平要低,分辨率要高等等。

2.钛合金锻件的显微组织变化对其机械性能有较显著的影响,对超声探伤中的杂波水平及底波损失的评定起到检查钛合金组织均匀性的作用,应予以充分的重视。

超声波在晶界及晶内相组织上的散射可能在荧光屏上以杂波显示,也可能表现为声能衰减引起底波高度的降低(底波损失),这两者与显微组织有一定的对应关系。

根据这两项参数的评定,已经发现过粗晶、并列α组织(能造成低周循环疲劳性能下降的魏氏组织)等。

就目前所作的工作来看,杂波水平高的钛合金显微组织,多表现为有完整明显的原始β晶界和平直细长的魏氏α组织(未变形的典型魏氏组织),或显现有多且大的条块状α相,这类组织在机械性能上表现为强度指标下降。

此外,某些铸造组织残留也可能造成杂波水平较高。

但就一般的过热魏氏组织,如果其原始β晶界及晶内相组织取向较紊乱无规则时,尽管这样的组织是不好的,甚至从显微组织评定是不合格的,其杂波水平却不一定偏高,说明杂波水平的评定目前还存在较大的局限性。

在底波损失的评定中,某些魏氏组织对超声脉冲的高频分量有较明显的衰减(如并列α组织),这在频谱仪上较易观察到(北京航空材料研究所钱鑫源等),但对工业生产上的大批量检查如何使用普通超声探伤仪,选用最佳响应频率的探头进行检测上存在一定的实际困难。

应当说明的是,目前对钛合金内部偏析也尚无可靠有效的超声检测方法。

总之,如何利用超声波对各种不同显微组织的响应达到控制钛合金的性能质量,是目前需要深入研究的课题(例如采用更高的、甚至上百兆赫的频率,以及使用电子计算机进行信息处理等)。

尽管如此,在目前钛合金锻件及材料的超声探伤中,杂波水平与底波损失的评定仍然是两项很有价值的指标。

3.钛合金材料的超声探伤中,有时由于单个大晶粒或者局部的组织不均匀造成的组织反射会以单个反射信号的形式出现,容易和真正的冶金缺陷(如高密度夹杂物、裂纹、孔洞等)的反射信号相混淆,通过试验分析认为,这种反射信号可能是由于超声反射波的相位叠加所致。

在这种情况下,采用小直径探头或聚焦探头(缩小波束直径),提高超声频率,以相同的探测灵敏度(平底孔直径相同的试块)重新评定时,会发现其反射信号幅度明显下降,有时甚至消失,而真正的冶金缺陷的反射信号在这种情况下不会有明显变化。

这种方法可以鉴别钛合金中真正的冶金缺陷与组织反射。

当然,在钛合金的超声探伤中,也和其他材料的超声探伤一样,企图仅以A型显示的反射脉冲信号判断缺陷的性质显然是不可能的,必须结合具体探伤对象的材料成分特点、冶炼及锻造加工工艺,以及辅以其他无损检测手段(如X射线照相、渗透、超声C扫描等等),加上探伤人员自身的经验水平等进行综合分析判断,必要时还要进行解剖验证(包括宏观、高倍,甚至电子显微镜、电子探针等手段)。

因此,目前在钛合金锻件及原材料超声探伤中,其质量验收标准基本上仍以回波信号的参数为依据。

钛合金锻件与材料的缺陷实例一.Φ70mm钛合金锻棒中的残余缩孔纵波(上为纵波波形照片)与横波(下为横波波形照片)均能发现,纵波探测时表现为强烈的缺陷回波并造成底波降低(面积型缺陷,可大致判断为径向走向),横波探测时表现为清晰强烈的缺陷回波(裂纹状缺陷)。

右图为横向低倍照片(1x)。

二.钛合金饼坯中的钼夹杂(高密度夹杂物)这是冶炼时作为铝钼中间合金中的钼未完全熔解而留在基体内形成,可用纵波探测到,无论改变超声频率及超声波束直径都能很好地发现,并且在两面探测时位置对应良好。

解剖后验证为钼夹杂。

在横向低倍上多呈“眼睛”状,在饼坯中的取向多与端面平行,但也有的会取向倾斜,在饼坯上不易发现,待模锻成盘形件后因变形力使其取向改变到与端面平行时才易于发现。

左图为横向低倍照片(2x),右图为按超声束投射方向拍摄的X射线照片(外圈为铅丝,中间的白点即为高密度夹杂物-钼夹杂)a)环坯上的45°裂纹横向低倍x1/2b)左边环坯裂纹高倍 100xc)饼坯上的45°裂纹 横向低倍x1/2d)饼坯上的端角45°裂纹带到模锻盘上加工至半成品时暴露1xe)锻制板状件上的十字裂纹 x1/2三.钛合金饼(环)坯中的45°裂纹及锻制板状件上的十字裂纹这类裂纹是由锻造引起的,特别是从钛锭开坯锻制饼(环)坯时,往往因终端温度过低、锤击力过大等而沿最大变形应力方向开裂。

这种裂纹大多在开口处弥合较紧,或者整条裂纹上的开隙度很不均匀,局部弥合很紧,经锻造后机械加工至半成品时,如果表面恰好在弥合较紧的部位处,则用腐蚀或渗透法有时未必能发现,但其内部开裂又较大,甚至出现孔洞(如照片b))。

采用45°折射横波是很容易探测到并可以判断的。

四.Φ70mm 钛合金轧棒上的径向表面裂纹这类裂纹也属于锻造或轧制加工中形成的裂纹,可以用腐蚀或渗透法发现,采用45°折射横波作周面弦向扫查是很容易探测到的,而用一般的纵波周面径向入射探测是发现不了的。

a)横向低倍 x1/2b)表面裂纹着色渗透显示 x1a)横向低倍x1/3b)纵向低倍x1/2c)中心粗晶处横向高倍 x500五.Φ125mm钛合金锻棒的中心粗晶:用5P14直探头周面径向探测,中心部位的杂波水平(同声程比较)达到Φ1.2mm-6dB。

a)横向低倍x1 b)纵向低倍x1c)中心粗晶处高倍 x250(有条块状α)六.Φ70mm 钛合金轧棒中的粗晶 用5P14直探头周面径向探测,中心部位的杂波水平(同声程比较)达到Φ0.8mm 平底孔当量,而正常试件上的杂波水平在Φ0.8mm -10~12dB 左右。

机械性能试验:室温拉伸,d=5mm 试样,均取自棒材中心,在同炉号、同规格棒材上取样。

ψ %d)正常组织的高倍(杂波水平Φ0.8mm -10dB) x250由上述机械性能试验数据可见,杂波水平高的(高倍组织中有较多的条块状α相)其强度、塑性数值均不同于杂波水平低的试样。

a)纵向低倍 x1b)粗晶处横向高倍 x500c)正常部位处横向高倍 x500 七.Φ75mm 钛合金锻棒中的粗晶用5P14直探头周面径向探测,中心部位的杂波水平(同声程比较)达到Φ0.8mm -6dB ,正常部位处杂波水平在Φ0.8mm -12dB 以下。

机械性能试验:室温拉伸,d=5mm 试样,在该粗晶试样的中心粗晶处(杂波水平Φ0.8mm -6dB )和1/4D 处(杂波水平Φ0.8mm -12dB 以下)各取一支试样。

相关文档
最新文档