加减运算电路

加减运算电路
加减运算电路

当前位置:首页〉基础内容学习〉集成运算放大器 〉加减运算电路 1.加法电路 2.减法电路

加减运算电路

在测量和控制系统中,常碰到输出电压与若干输入电压的和或差成比例关系的电路,这种电路称为加减运算电路。下面首先介绍加法电路。

1.加法电路

前已指出,在反相比例运算电路中,运放的反相输入端为虚地点,通过R f 上的电流I f 等于输入电流,而这个电流与输入电压成正比。因此,可利用虚地概念,实现电流相加,从而得出加法电路。假设有输入信号U 1、U 2、U 3,每个信号接入一个相应的电阻R 1、R 2和R 3,它们都连接到运放的反相输入端,如图6—20所示。

由于

I 1= U 1/ R 1

I 2= U 2/ R

2

2011/6/3New Page 1

2011/6/3New Page 1

I3= U3/ R3

又由“虚断”可得:

I f= I1+ I2+ I3

因而输出电压Array

上式说明,由反相放大器组成的加法电路(简称反相加法电路,或反相求和电路)改变某一路信号的输入电阻R n的阻值,不影响其它输入电压与输出电压的比例关系,因而调节方便。

此外,加法电路也可由同相放大器组成,下面以例题的形式介绍。

【例6 —1】试用叠加原理,计算图6—21所示由同相放大器组成的加法电路的输出电压U o表达

式Array

解:由式6—4可知,同相比例运算电路的输出电压与运放同相输入端的电压U P存在下列关系:

而U P可用叠加原理求出。

令U2=0,则由U1产生的U P’

同理,令U1=0,则由U2产生的U P”

因此

与反相加法电路相比较,同相加法电路共模输入较高,且调节不大方便,因此运用较少。

返回页首

2.减法电路

对于用来实现两个电压U1、U2相减的差动输入式放大电路如图6—22所示,利用叠加原理求输出电压U o的表达式可能是最容易的方法。

首先令U2=0,则图6—22就成为一个反相比例运算电路。由U1产生的输出电压为

然后令U2=0,则图6—22就成为一个同相比例运算电路,考虑到同相输入端的电压为

因此,由U2产生的输出电压为

根据叠加原理可知,总的输出电压U o等于U o'和U o"之和,即

(6—5)

式(6—5)就是图6—22所示差分放大电路的U o表达式。如果希望电路能抑制共模信号(即当U1= U2时,输出为零),而只与差模信号(U2- U1)成比例,可以证明,当R1~ R4的选择满足R2/ R1=

R4/ R3时,则由式(6—5)可得

(6—6)

差分式放大电路除了作为减法电路外,在检测仪器中也得到了广泛的应用。例如,假设传感器的两个输出端的差模信号比较小(如1mv),而传感器两输出端与“地”之间噪声干扰却比较大(如1V),这个噪声干扰实际上是一个共模信号,采用差分放大器就能抑制噪声干扰,只放大差模信号。

【例6—2】图6—23所示电路是一个具有高输入阻抗、低输出阻抗的测量放大器,其增益可通过改变R4值进行调节。假设运放是理想的,试证明:

解:直接应用虚短和虚断的概念求解。由虚短的概念可知:U2= U N2、U1= U N1,所以有

又由虚短的概念可知:I1= I4= I2

由此可导出

对于A3与R1、R1构成差动式减法电路,因此有

返回页首

上一页下一页

加减法运算电路设计

电子课程设 ——加减法运算电路设计¥ 学院:电信息工程学院; 专业:电气工程及其自动化 班级: 姓名: 学号: 指导老师:闫晓梅 2014年12月 19日

加减法运算电路设计 一、设计任务与要求 # 1.设计一个4位并行加减法运算电路,输入数为一位十进制数, 2.作减法运算时被减数要大于或等于减数。 灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算模式,运算完毕,所得结果亦用数码管显示。 4.系统所用5V电源自行设计。 二、总体框图 1.电路原理方框图: % 图2-1二进制加减运算原理框图 2.分析: 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,

所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 例如: 若选择加法运算方式,则(1001) 2+(0111) 2 =(10000) 2 十进制9+7=16, 并在七段译码显示器上显示16; 若选择减法运算方式,则(1001) 2-(0111) 2 =(00010) 2 十进制9-7=2, 并在七段译码显示器上显示02。 三、选择器件 ~ 1.器件种类: } ^ 表3-1 2.重要器件简介: (1)[ (2). 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。 1).74LS283 基本特性:供电电压:输出高电平电流:输出低电平电流: 8mA。 2).引脚图:

加减法的简便计算

第八课时:加减法的简便计算 教学内容: P40/例2(综合运用加碱计算的实践问题) 教学目标: 1、知识与技能:通过计算、观察和思考,使学生理解并掌握从一个数里连续减去几个数的简便运算方法,并能正确地进行计算。 2、数学思考:培养学生分析、综合和抽象的思维能力,合理、灵活地进行计算的能力。 3、解决问题:根据具体的算式中的数据特点,选择合适的简便计算方法。 4、情感与态度:通过教学,加强新旧知识之间的相互联系,在此基础上扩展学生的知识结构,从而培养学生乐于探索的良好品质。 教学重点:理解“连减两个数,等于减去这两个数的和”的减法运算性质。 教学难点:灵活运用几种算法进行简便运算。 教学关键:在观察、比较中了解减法的简便计算中数据的特点。 教学过程: 一、复习引入感知“凑整” 1、把上下两行中两数相加的和是整百、整千的用线连起来。 36 1597 263 317 37 283 164 403 2、出示三个算式。 72+39+28 72+(38+28)(72+28)+39 (1)观察、比较。你更喜欢计算哪个算式?为什么? (2)说明:“凑整”能使计算更简便。这节课我们就利用这个思想来研究减法中 的一些简便计算。 二、观察主题图,思考问题的解决方法。 出示主题图。 二、新授 1.观察图(一)中的条件问题。 引导学生观察图(一)

小组合作讨论问题(一)的解决方法,比一比哪个小组的方法多? 小组讨论。 (教材提示了两种算法。一种是把每三本书的价钱相加。采用这种方法,学生遇到的困难是,四本书取三本共有几种情况?这是一个组合问题,回答这个问题,如果直接从四本书中每次取三本,要做到不重不漏,思考难度较大。如果反过来思考,四本取三本,也就是从四本书中每次去掉一本,就很容易得出共有四种情况。这种反过来思考的间接思路,用于计算三本书总价,就是教材提示的第二种算法。) 全班交流。 教师根据学生的汇报整理板书。 2.观察图(二)的条件问题。 小组讨论。 汇报。 三、巩固应用优化算法 1、我会填。 513-76-24=513○(□+□) 1048-161-39=1048-(□○□) 2、我能更快计算。 1184-68-42 5347一347一972 3576-133-67 1054-13-54 思考:注意观察数据特征,怎样简便怎样算。 3、试一试,我能行。 (1)2864-37一42一21 (2)3862一319一182一481一218 4、我来当小医生。 (1)276-76+24=276-(76+24)() (2)25+5-25+5=0 () (3)384-(84+29)=384-84+29 () (4)78+19-22=78+22-19 ()

设计一个一位十进制加减法++数字电路课程设计报告

课程设计报告 课程:微机系统与接口课程设计学号: 姓名: 班级: 教师:

******大学 计算机科学与技术学院 设计名称:设计一个一位十进制加减法器 日期:2010年1月 23日 设计内容: 1、0-9十个字符和“+”“-”分别对应一个按键,用于数据输入。 2、用一个开关控制加减法器的开关状态。 3、要求在数码显示管上显示结果。 设计目的与要求: 1、学习数字逻辑等电路设计方法,熟知加减法器、编码器、译码显示的工作原理及特点; 2、培养勤奋认真、分析故障和解决问题的能力。 设计环境或器材、原理与说明: 环境:利用多功能虚拟软件Multism8进行电路的制作、调试,并生成文件。器材:74LS283或者4008, 4个异或门(一片74LS86)(减法);74LS08,3输入或门(加法) 设计原理: 图1二进制加减运算原理框图 分析:如图1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,

所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 设计过程(步骤)或程序代码: 实验电路: 1:减法电路的实现: (1):原理:如图1所示(如下),该电路功能为计算A-B。若n位二进制 原码为N 原,则与它相对应的补码为N 补 =2n-N 原 ,补码与反码的关系式为N 补 =N 反 +1, A-B=A+B 补-2n=A+B 反 +1-2n (2):因为B○+1= B非,B○+0=B,所以通过异或门74LS86对输入的数B求 其反码,并将进位输入端接逻辑1以实现加1,由此求得B的补码。加法器相加的结果为: A+B 反 +1, (3):由于2n=24=(10000) 2 ,相加结果与相2n减只能由加法器进位输出信号完成。当进位输出信号为1时,它与2n的差为0;当进位输出信号为0时,它与2n差值为1,同时还要发出借位信号。因为设计要求被减数大于或等于减数,所以所得的差值就是A-B差的原码,借位信号为0。

四年级数学加减法的简便算法

教学目标: 1.使学生理解并掌握加、减法的一些简便运算,并会在实际计算中应用. 2.通过学习加、减法的简便运算,逐步培养学生的简算能力及运用知识解决实际问题的能力. 教学重点:学会并掌握加、减法简便运算的方法. 教学难点:明确要加的数或要减的数是接近哪个整百、整十数;加上或减去整百、整十数,多加了或多减了多少. 教具和学具: 教具:口算卡片. 教学步骤: (一)铺垫孕伏 1.减法的意义是什么? 2.根据1745+980=2725,直接写出下面的得数. 2725-1745=( ) 2725-980=( ) 3.口算下面各题. 574+200476-300247+20 352-200615+300113+60 (二)探求新知 1.导入:利用复习中的口算最后一道题113+60.

教师叙述:同学们会很快地计算出113+60的得数,因为60是一个整十数.那么,怎样很快计算出象113+5 9这样算式的得数呢?首先我们要研究加、减法的一些简便算法.(演示课件“加、减法的简便算法”,出示课题)下载 2.教学例1.(演示课件“加、减法的简便算法”,出示例1)下载 育民小学图书室新买来130本图书.其中故事书46本,科技书34本,其余的是连环画.买来连环画多少本? (1)让学生用两种方法自己解答. 130-46-34130-(46+34) =84-34=130-80 =50(本)=50(本) (2)学生讨论:两种算法结果怎样?哪一种算法比较简便? (3)教师提示: 从130里依次减去46和34,等于从130里减去46与34的和. 3.学例2.(演示课件“加、减法的简便算法”,出示例2)下载 计算295-128-72. (1)让学生观察题里的数目有什么特点? (2)让学生联系例1同桌进行讨论怎样计算比较简便,为什么? (3)教师强调:从295中依次减去128和72,等于从295中减去128与72的和.而这两个数的和恰好是整百数,所以,先算(128+72),再算295-200,计算起来比较简便. 4.完成55页“做一做”

加减法运算电路设计

电子课程设 ——加减法运算电路设计 学院:电信息工程学院 专业:电气工程及其自动化 班级: 姓名: 学号: 指导老师:闫晓梅 2014年12月19日

加减法运算电路设计 一、设计任务与要求 1.设计一个4位并行加减法运算电路,输入数为一位十进制数, 2.作减法运算时被减数要大于或等于减数。 3.led灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算 模式,运算完毕,所得结果亦用数码管显示。 4.系统所用5V电源自行设计。 二、总体框图 1.电路原理方框图: 图2-1二进制加减运算原理框图 2.分析: 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。

例如: 若选择加法运算方式,则(1001)2+(0111)2=(10000)2 十进制9+7=16,并在七段译码显示器上显示16; 若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2,并在七段译码显示器上显示02。 三、选择器件 1.器件种类: 表3-1 2.重要器件简介: (1) . 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。 1).74LS283 基本特性:供电电压: 4.75V--5.25V 输出高电平电流: -0.4mA 输出低电平电流: 8mA 。 2).引脚图: 图3-1 引出端符号: A1–A4 运算输入端 B1–B4 运算输入端 C0 进位输入端 序号 元器件 个数 1 74LS283D 2个 2 74LS86N 5个 3 74LS27D 1个 4 74LS04N 9个 5 74LS08D 2个 6 七段数码显示器 4个 7 74LS147D 2个 8 开关 19个 9 LM7812 1个 10 电压源220V 1个 11 电容 2个 12 直流电压表 1个

运算电路设计

运算电路设计 预习资料: 一. 实验内容概述 本实验需要利用实验室提供的元器件在实验箱上搭建并调试一个运算电路,其电路功能为先将一正弦信号比例放大,再经过积分变为余弦信号,再通过减法运算消除信号中的直流分量。 二. 调试步骤 电路调试时通常做法是:先将整个电路图按功能划分为若干模块,本次电路应该会分为(比例运算电路、积分运算电路、减法运算电路)三个模块;然后分别将各模块内部电路连好,并按照信号流向逐级调试(即从最初信号开始,每次多加一个模块,直至最后整机电路调试成功),本次实验根据题目要求依次调试比例运算电路、积分运算电路、减法运算电路既可。 1. 按照设计好的电路图在实验箱上实现比例运算电路连线,详见下面各步: (1)选取电阻R1,并将其一端连接至运放反相输入端,如下图所示 (2)将电阻R1另一端连线至电源接地端,如下图所示 O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7

(3)选取电阻Rf ,并将其一端连接至运放反相输入端,如下边左图所示 (4)将电阻Rf 另一端连线至运放输出端,如上边右图所示 (5)选取电阻R2,并将其一端连接至运放同相输入端,如下图所示 O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7

(6)将信号发生器信号端连线至电阻R2另一端,并且将信号发生器接地端连线至电源接地端;如下图所示 (7)将电源+12V 连接至运放“7”脚,电源-12V 连接至运放“4”脚,如下图所示 O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7信号发生器

分数的加减法及简便运算.

分数的加减法 一、同分母的分数加减法 知识点:在计算同分母的分数加减法中,分母不变,直接用分子相加减。 注意:在计算同分母的分数加减法中,得数如果不是最简分数,我们必须将得数约分,使它成为最简分数。 例题一 5654+=5 10564=+=2 注意:因为5 10 不是最简分数,所以得约分,10和5的最大公因数是5, 所以分子和分母同时除以5,最后得数是2. 例题二 104 1059105109= -=-5 2= 注意:因为10 4 不是最简分数,必须约分,因为4和10的最大公因数 是2,所以分子和分母同时除以2,最后的数是5 2 知识点回顾:如何将一个不是最简的分数化为最简? (将一个非最简分数化为最简,我们就是将这个分数进行约分,一直约到分子和分母互质为止。所以要将一个分数进行约分,我们必须找到分子和分母的最大公因数,然后用分子和分母同时除以他们的最大公因数。) 专项练习一:同分母的分数加减法的专项练习 一、计算

715 - 215 712 - 112 1 - 916 911 - 711 38 + 38 16 + 16 314 +314 34 + 34 二、连线 19 + 4 9 2 7377+ 145 +1 5 1 8 987+ 47 + 67 137 115 11141+ 18 +78 29 11 9 3 92+ 2411 +511 5 9 2121+ 三、判断对错,并改正 (1)47 +37 = 714 (2)6 - 57 - 37 =577 -57 -3 7 =527 -3 7 =51 7 四、应用题 (1)一根铁丝长710 米,比另一根铁丝长3 10 米,了;另一根铁丝长多少米? (2)3天修一条路,第一天修了全长的112 ,第二天修了全长的5 12 ,第三天修了全长的几分之几?

加减运算电路设计

本科生实验报告 课程名称:模拟电子技术实验A 实验名称:加减运算电路设计 学院: 专业班级: 学生姓名: 学号: 实验时间: 实验地点: 指导教师:

根据反相与同相加法运算电路的运算关系,输出电压与各个输人电压的运算的关系为 单运放加减运算电路的外电路阻值不易计算和调整,双运放电路不仅克服了,上述缺点,而且对运放本身共模抑制比的要求也较低,如图6-2-2所示。 根据反相求和电路输出与输入关系,可得 若取RF1=R4,则

实验内容及步骤: 设计一个能完成的运算电路。要求选用单运放加减电路实现,其输出失调电压 1.电路形式及集成运算放大器的选择 电路形式如图6-2-1所示,集成运算放大器采用μA741,其输人失调电流=100~300nA 2.元器件参数的计算 (1)反馈电阻Rp的计算。Rp的最大值由运放允许的输出失调电压 和输人失调电流决定,即 其中,的大小按手册给定值或实测;为设计要求之一,包括输人失调电压,所引起的,而。与各电阻有关,故。为未知,所以只能按式(6-2-5) 取RF的值。 若未提此项要求,则Rr可在低于1MΩ内选取。RF值不宜过大,因为RF值越大,误差电压和噪声及漂移也越大; RF值也不宜过小,因为RF是负载的一部分,若过小,运放容易过载。 题意取,则 取RF=30kΩ (2)R1、R2、R3、R4的确定。设反向端、同向端各自输人信号为零时的直流等效电阻 RN、RP的值相等,可按反相求和原则计算R1、R2、R3、R4的值。

根据题目要求,则 (3)电阻R5的确定。R5是使RN=RP的平衡电阻,故首先计算在不包括R5时的反相端,同相端各自输入信号为零时的直流等效电阻RA和RB,即 4.电路的安装与调试 (1)静态的测试检查。 1)按电路图6-2-1搭接好实验电路,并细心检查运放组件各管脚位置的连接,切忌正负电源极性接反和输出端短路,否则会损坏集成块,确认无误后方可接通直电源。 2)将输入端接地,用万用表直流电压挡的相应量程测量输出端;此时,如果万用表显示不为零,则需要调整调零电位器旋钮,使输出端电压为零,在调零过程中,万用表的量程应从2V开始逐步变小,直至在毫伏级的量程下,测量输出为零时,结果最精确。此后的测量应保持电位器滑动端位置不变。 (2)动态测试。 1)当静态检查正常以后,将直流电源切断,输人端与“地”断开。 2)先对各输入信号电压进行初测,使其不超过规定的数值,然后

减法运算电路

减法运算电路 减法运算电路有四种: 1、单运放减法电路。 2、差分输入组态电路。 在满足 21R R = [] 121 i i f o U U R R U -= f R R =3 方法一:依据法则列出 f I I =1 分别求出 ?=-U 根据+-=U U 32I I = ?=+U 得 出 o U 与输入量的关系 方法二:由迭加原理求出-U 和+U ?? ??????+-=+++=-f o i o f i f f R U R U R U R R R U R R R U 1111 11 f R R R //1=- 22 2323R U R U R R R U i i ?=+= ++ 32//R R R =+ +-=U U 1122R U R R U R R R U i f i f o ?-??= ∴-+ (可推广的例子) 当两输入端外电路平衡时,+-=R R ,则2 1 22 i f i f o U R R U R R U - = 当 f R R R ==21时, 则 12i i o U U U -= 3、加减混合运算电路 特点: 加量从同相端加入 减量从反相端加入 依据: 0==+ -i I U U 方法一:依据法则列出方程 f I I I =+21 然后求解?? ==+-U U 543I I I =+ 寻找出o U 与输入量的关系 方法二:利用迭加原理分别得到+-U U .或直接由推广式得出: ? ?????+-?? ????+?= - + 22114433R U R U R R U R U R R R U i i f i i f o

( 5215 42////////R R R R R R R R ==-+) 当两输入端外电路平衡时,. +-=R R 2 2 11 41 33i f i if i f i f o U R R U R R U R R U R R U - - + = 当f R R R R R R =====54321时, [] 21431 i i i i f o U U U U R R U --+= 当 f R R =1时, 1234i I i i o U U U U U --+= (实现了加减混合运算) 4、双运放减法电路 特点: 由两级运放组成 第一级的输出为第二级的一个输入信号 4 2211111i i f i f o U U R R U R R U =??? ???+-= ? ?? ???++-=?? ????+-=22211142332442332i f i f f i f i f i f o U R R U R R R R U R R U R R U R R U 可见,加减混合运算亦可由两级反相求和电路来完成。

第一讲-加减法中的简便运算(二年级上)

第一讲加减法中的简便运算 一、加减法简便运算的注意点: 同级运算,括号外面是减号的,添上或去掉括号,括号里面的符号:加号要变成减号,减号要变成加号。 二、运算法则 加法(1)A+B=B+A; (2)(A+B)+C=A+(B+C). 减法(1)A-B-C=A-(B+C); (2)A-(B+C)=A-B-C. 三、例题 例1:运用加法中的凑整,计算:(1)98+37;(2)999+99+9. 解:(分析:(1)中的98接近于100,98+37可以看成100+37,多加了2,所以最后还要减去2; (2)中三个加数分别都接近整千,整百,整十数,我们可以把999+99+9看成1000+100+10,最后从它们的和中减去3,就可以得到答案.) (1)98+37 (2)999+99+9 =100+37-2 =1000+100+10-3 =137-2 =1110-3 =135 =1107 练一练:(1)68+103;(2)109+98+8. 例2:运用加法的交换律和结合律计算:345+27+655+373. 解:(分析:题目中的345与655、27与373分别能凑成整千、整百数,所以可以利用加法的交换律和结合律,先交换加数的位置,再凑整。) 345+27+655+373 =(345+655)+(27+373) = 1000+400 = 1400 练一练:计算329+67+233+271 例3:利用减法中的凑整计算:(1)375-98;(2)534-109. (分析:(1)中的98接近100,可以看成375-100,最后加上多减的2; (2)中109接近100,可以看成534-100,最后还好减去少减的9.) (1)375-98 (2)534-109 =375-100+2 =534-100-9 =275+2 =434-9 =277; =425. 练一练:(1)562-205;(2)624-96.

加减法运算电路设计

加减法运算电路设计 1.设计内容及要求 1.设计一个4位并行加减法运算电路,输入数为一位十进制数,且作减法运算时被减数要大于或等于减数。 2.led 灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算模式,运算完毕,所得结果亦用数码管显示。 3.提出至少两种设计实现方案,并优选方案进行设计 2.结构设计与方案选择 2.1电路原理方框图 电路原理方框图如下 → → 图1-1二进制加减运算原理框图 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010),如(1001)2和(0111)2,同时在两个七段译码显示器上显示出对应的十进制数9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 即: 若选择加法运算方式,则(1001)2+(0111)2=(10000)2 十进制9+7=16 并在七段译码显示器上显示16. 若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2 置数 开关选择运算方式 加法运算电路 减法运算 电路 译码显示计算结果 显示所置入的两个一位十进制数

并在七段译码显示器上显示02. 2.2加减运算电路方案设计 2.2.1加减运算方案一 如图2-2-1所示:通过开关S2——S9接不同的高低电平来控制输入端所置的两个一位十进制数,译码显示器U13和U15分别显示所置入的两个数。数A 直接置入四位超前进位加法器74LS283的A4——A1端,74LS283的B4——B1端接四个2输入异或门。四个2输入异或门的一输入端同时接到开关S1上,另一输入端分别接开关S6——S9,通过开关S6——S9控制数B的输入。当开关S1接低电平时,B与0异或的结果为B,通过加法器74LS283完成两个数A和B的相加。当开关S1接高电平时,B与1异或的结果为B非,置入的数B在74LS283的输入端为B的反码,且74LS283的进位信号C0为1,其完成S=A+B (反码)+1,实际上其计算的结果为S=A-B完成减法运算。由于译码显示器只能显示0——9,所以当A+B>9时不能显示,我们在此用另一片芯片74LS283完成二进制码与8421BCD码的转换,即S>9(1001)时加上6(0110),产生的进位信号送入译码器U10来显示结果的十位,U11显示结果的个位。由于减法运算时两个一位十进制数相减不会大于10,所以不会出现上述情况,用一片芯片U11即可显示结果。 2.2.2加减运算方案二 由两异或门两与门和一或门组成全加器,可实现一位二进制加逻辑运算,四位二进制数并行相加的逻辑运算可采用四个全加器串行进位的方式来实现,将低位的进位输出信号接到高位的进位输入端,四个全加器依次串行连接,并将最低位的进位输入端接逻辑“0”,就组成了一个可实现四位二进制数并行相加的逻辑电路。 通过在全加器电路中再接入两个反相器可组成一个全减器,实现一位二进制减逻辑运算,将来自低位的错位信号端接到向高位借位的信号端,依次连接四个全减器,构成可实现四位二进制数并行进行逻辑减运算的电路。 在两组电路置数端接开关控制置数输入加法还是减法运算电路,电路输出端接LED灯显示输出结果,输出为五位二进制数。

集成运放电路的设计

一设计目的 1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反 馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入 不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。二设计工具:计算机,Mulitisim,Protel软件 三设计任务及步骤要求 1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与 幅度的波形信号,测量输出波形信号对电路进行验证。输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较; 2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电 路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上; 输入输出信号需预留接口; 3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至 少为双层PCB板; 四设计内容 1集成运算放大器放大电路概述

集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2集成运放芯片的选取和介绍 由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图。 3运放电路基本原理及其Mulitisim仿真 3.1.同相比例运放电路

运放三种输入方式的基本运算电路及其设计方法

熟悉运放三种输入方式的基本运算电路及其设计方法 2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。 3、了解积分、微分电路的工作原理和输出与输入的函数关系。 学习重点:应用虚短和虚断的概念分析运算电路。 学习难点:实际运算放大器的误差分析 集成运放的线性工作区域 前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放。 当集成运放工作在线性区时,作为一个线性放大元件 v o=A vo v id=A vo(v+-v-) 通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证v o不超出线性范围。 对于工作在线性区的理想运放有如下特点: ∵理想运放A vo=∞,则 v+-v-=v o/ A vo=0 v+=v- ∵理想运放R i=∞ i+=i-=0 这恰好就是深度负反馈下的虚短概念。 已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i= 2MΩ。则v+-v-=?,i+=?,i-=?

可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。 这说明在工程应用上,把实际运放当成理想运放来分析是合理的。 返回 第二节基本运算电路 比例运算电路是一种最基本、最简单的运算电路,如图8.1所示。后面几种运算电路都可在比例电路的基础上发展起来演变得到。v o∝ v i:v o=k v i(比例系数k即反馈电路增益 A vF,v o=A vF v i) 输入信号的接法有三种: 反相输入(电压并联负反馈)见图8.2

同相输入(电压串联负反馈)见图8.3 差动输入(前两种方式的组合) 讨论: 1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。 2)分析时都可利用"虚短"和"虚断"的结论: i I=0、v N=v p。见图8.4

三年级下册加减法简便运算

三年级下册加减法简便运算 1、计算。 75+26+25 72+67+28 116+625+84 321+52+679 2、下面各题怎样简便就怎样算。 56+58+60+62+64 9+99+999+9999 2250一73一27 14+15+17+8 0+83+85 900一(99+98+97+96 )675一(11+13+15+17+19) 3、下面各题怎样算简便就怎样算。 683+48+152 438+86-138

1645-(645+290)873-(173-64) 674-(38+74)457-(230-143) 728-46-22-54-67-78-33 7000-85-84-83-82-81-15-16-17-18-19 〖例题精讲〗 例1、乘法中的巧算: 1交换律结合律 (1)25×55×4(2)25×32×125×7 〖我真行1〗 (1)5×25×2×4(2)125×48×8(3)25×64×125 例2、乘法的分配律: (1)25×(40+4)(2)39×47+39×53 〖我真行2〗 (1)125×(80+8)(2)66×36+33×36+36 例3、巧用乘法的分配律: (1)39×101(2)22×99

〖我真行3〗 (1)44×1002(2)556×99 例4、乘除法中的巧算: (1)17÷8+19÷8+28÷8(2)77×5÷11(3)7500÷(100÷3) =(17+19+28)÷8=77÷11×5=7500÷100×3 (4)76×25(5)700÷25 =76×25×4÷4= (700×4)÷(25×4) 〖我真行4〗 (1)12÷25×100(2)31÷9+33÷9+35÷9 (3)48×125(4)3000÷125 〖方法归纳〗 学习利用乘法的交换律、结合律、分配律;除法的分配性质,同级运算“带号搬家”,去括号等进行简便计算。 〖我真棒〗 4600÷ (23÷3)84×29-18×84-84 11×37+99×7 方法归类:这种好方法也适用于个位数是5的两个相同的多位数相乘的计算。例5、除法巧算 130÷54200÷2534000÷

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

加减法运算电路的课程设计

加减法运算电路的设计 一、设计任务 设计参数 设计一个一位十进制并行加(减)法运算电路;通过按键输入被减数和减数,并设置+、-号按键;允许减数大于被减数,负号可采用数码管或其他显示器件,并利用LED灯显示计算结果。 设计要求 根据技术参数设计电原理图;计算并选择电路元件及参数;仿真调试电路。 二、设计方案 设计电路原理: 1、置入两个四位二进制数。例如(1011)2,(0011)2和(0111)2,(0110)2,同时在两个七段译码显示器上显示出对应的十进制数10,3和7,6 2、通过开关选择加(减)运算方式 3、若选择加运算方式所置数送入加法运算电路进行运算;若选择减运算方式,则所置数送入减法运算电路运算 4、前面所得结果通过另外两个七段译码器显示 即显示结果: 若选择加法运算方式,则(0011)2+(0110)2=(1010)2 十进制3+6=9 并在七段译码显示器上显示 9 若选择减法运算方式,则(0101)2-(1000)2=(10011)2十进制5-8= -3 并在七段译码显示器上显示 -3 设计电路运算方案: 通过开关S1——S8接不同的高低电平来控制输入端所置的两个一位十进制数,译码显示器U15和U16分别显示所置入的两个数。数A直接置入四位超前进位加法器74LS283的A4——A1端,74LS283的B4——B1端接四个2输入异或门。四个2输入异或门的一输入端同时接到开关S1上,另一输入端分别接开关S5——S8,通过开关S5——S8控制数B的输入。当开关S1接低电平时,B与0异或的结果为B,通过加法器74LS283完成两个数A和B的相加。当开关S1接高电平时,B与1异或的结果为B非,置入的数B在74LS283的输入端为B 的反码,且74LS283的进位信号C0为1,其完成S=A+B(反码)+1,实际上其计算的结果为S=A-B完成减法运算。由于译码显示器只能显示0——9,所以当A+B>9时不能显示,我们在此用另一片芯片74LS283完成二进制码与8421BCD码的转换,即S>9(1001)2时加上3(0011)2,产生的进位信号送入译码器U13来显示结果的十位,U12显示结果的个位。由于减法运算时两个一位十进制数相减不会大于10,所以不会出现上述情况,用一片芯片U12即可显示结果。 三、电路设计 加法电路的实现 用两片4位全加器74LS283和门电路设计一位8421BCD码加法器。 由于一位8421BCD数A加一位数B有0到18这十九种结果。而且由于显示的关系,当大于9的时候要加六转换才能正常显示。

加减运算电路的设计及分析

实验2《电子技术》课程设计任务书 设计工作计划 本设计时间为2天,具体安排如下: 熟悉课设目标,查阅相关资料,对相关理论进行剖析:天 设计电路图,计算相关参数,根据电路图进行仿真与测量:1天 撰写报告:天

1. 实验原理 通常在分析运算电路时均设集成运方位理想运放,因而其输入端的净输入电压和净输入电流均为0,即具有“虚短路”和“虚断路”两个特点,这是分析运算电路输出电压和输入电压关系的基本出发点。 从对比例运算电路的分析可知,输出电压与同相输入信号电压极性相同,与反相输入端电压极性相反,因而如果多个信号同时作用于两个输入端,那么必然可以实现加减运算电路。 第一级电路实现加减运算,第二级电路通过运用反响比例运算电路来放大第一级的输出信号。 图(a ) 根据虚断iN=iP=0 (1) 虚短UN=UP (2) iN=(U1-UN )/R1+(U2-UN )/R2-(Uo1/Rf1-UN ) (3) iP=(U3-UP )/R3 (4) 根据式(1)(2)(3)(4)可知,当满足R1//R2//Rf=R3时 Uo1=Rf1(U3/R3-U2/R2-U1/R1) OPAMP_3T_VIRTUAL Rf1100kΩ 图(b )这是一个电压串联负反馈电路 根据电路分析可得U02=-Uo1*Rf2/R5 将两级电路连到一起,可得

U1 OPAMP_3T_VIRTUAL U2 OPAMP_3T_VIRTUAL R1 50kΩ R2 50kΩ R3 40kΩ Rf1 100kΩ R5 40kΩ R6 20kΩ Rf2 40kΩ R4 40kΩ 代入各具体数值可得Uo2=(2Uo1+) 2.用软件的仿真结果 U1 OPAMP_3T_VIRTUAL U2 OPAMP_3T_VIRTUAL R1 50kΩ R2 50kΩ R3 20kΩ Rf1 100kΩ R5 40kΩ R6 20kΩ Rf2 40kΩ XSC1 A B C D G T XFG1 XFG2 XFG3 实验结论 当U1=,U2=,U3=时,Uo2=,与仿真实验结果一样。

加减法中的简便计算 练习题

第一讲 加减法中的简便运算 加法:(1) A +B=B +A (2) ( A +B )+C=A +(B +C) 减法:(1) A -B -C=A -(B +C) (2) A -B +C=A -(B -C) 一、典型例题: 利用加减法中的凑整,计算: (1)98+37 (2)999+99+9 提示: (1)98+37 (2)999+99+9 =100+37-2 =1000+100+10-3 =137-2 =1000+100+10-3 =135 =1110-3 =1107 利用减法中的凑整,计算: (1)375-98 (2)534-109 提示: (1)375-98 (2)534-109 =375-100+2 =534-100-9 =275+2 =434-9 =1277 =425 运用加减法的性质,计算: 500-82-18-83-17-86-14-85-15 例1 常用的简便运算方法 例2 例3

提示: 500-82-18-83-17-86-14-85-15 =500-[(82+18)+(83+17)+(86+14)+(85+15)] =500-400 =100 二、精选习题: 1、计算: (1)68+103 (2)109+98+8 提示: (1)68+103 (2)109+98+8 =68+100+3 =100+100+10+9-2-2 =171 =215 2、计算: (1)562-205 (2)624-96 提示: (1)562-205 (2)624-96 =562-200-5 =624-100+4 =357 =528 3、计算: 1000-76-24-64-36-55-45 提示: 1000-76-24-64-36-55-45 =1000-[(76+24)+(64+36)+(55+45)] =700 三、拓展提高: 1、计算: (1)89+667+233+911

加减法运算电路的设计方法

加减法运算电路的设计方法 摘要:给出了任意比例系数的加减法运算电路,分析了比例系数与平衡电阻、反馈电阻的关系。目的是探索比例系数任意取值时加减法运算电路构成形式的变化。结论是在输入端电阻平衡时,各加运算输入信号比例系数之和与各减运算输入信号比例系数之和的差值在大于1、小于1或等于l情况下,加减法运算电路还可简化。所述方法的创新点是将运放输入端电阻的平衡条件转化为与输入信号比例系数的关系,从而可直观确定简化电路形式:扩大了加减法运算电路的应用范围。关键词:加减法运算电路;比例系数;平衡条件0 引言加减法运算电路以集成运算放大器为核心元件构成,多个输入信号分别作用于运放的同相输入端和反相输入端,实现对输入信号的加、减法运算,外部电阻决定输入信号的比例系数。加减法运算电路中运放的输入端有共模信号成分,为使共模输出为零,同时补偿运放输入平均偏置电流及其漂移影响,通常要求运放的输入端电阻平衡,即运放反相输入端、同相输入端所接的电阻相等。本文给出了任意比例系数的加减法运算电路,并指出在输入端电阻平衡时,根据输入信号比例系数的数值范围,加减法运算电路还可简化。1 任意比例系数的加减法运算电路所给出的任意比例系数的加减法运算电路。其中,u111、u112、…u11n 为n个减运算输入信号,u121、u122、…u12m为m个加运算输入信号,u0为输出信号,R11、R12、…R1n、R21、R22、…R2m为输入端电阻,RF为反馈电阻,Rp为平衡电阻,R’为附加电阻。运放输入端电阻的平衡条件为 式(5)反映了输入信号比例系数与附加电阻、平衡电阻、反馈电阻的关系,表明在满足电阻平衡的条件下,各加运算输入信号比例系数之和与各减运算输入信号比例系数之和的差值可以大于l、小于1或等于1,即输入信号的比例系数无限定。根据输入信号比例系数的数值范围,加减运算电路还可简化。2 比例系数加减结果特定取值时的电路简化方案2.1 各加运算输入信号比例系数之和与各减运算输入信号比例系数之和的差值大于1的加减运算电路当各输入信号的比例系数关系为 时,可令式(5)中电阻Rp→∞,即图1所示电路中去掉电阻Rp,由式(5)中实现大于1的平衡条件。2.2 各加运算输入信号比例系数之和与各减运算输入信号比例系数之和的差值小于1的加减运算电路当各输入信号的比例系数关系为时,可令式(5)中电阻R’→∞,即图1所示电路中去掉电阻R’,由式(5)中实现小于1的平衡条件。2.3 各加运算输入信号比例系数之和与各减运算输入信号比例系数之和的差值等于1的加减运算电路当各输入信号的比例系数关系为时,可令式(5)中电阻R’→∞,Rp→∞,即图1所示电路中去掉电阻R’及Rp。3 设计步骤及举例3.1 设计步骤 (1)由参与运算的各输入信号比例系数加、减的数值范围确定电路形式; (2)由运算关系及平衡条件确定外部各个电阻值。3.2 设计举例例1,试设计实现u0=2u121+3u122-u111运算关系的加减运算电路。将所要实现的运算关系式与式(4)对比,确定式(4)中各输入信号的比例系数为因,确定所设计电路的形式为图1中去掉电阻Rp,按三个输入信号重画。选取Rp=120kΩ,代入各输入信号的比例系数表达式中,解出 R21=60kΩ,R22=40kΩ,R11=120kΩ 由式(5)并考虑Rp→∞,有代入各输入信号的比例系数,有解出R’=40kΩ。例2,试设计实现u=2u121-3u111-u112运算关系的加减运算电路。将所要实现的运算关系式与式(4)对比,确定式(4)中各输入信号的比例系数为例3,试设计实现u0=2u121+u122-1.5u111-0.5u112运算关系的加减运算电路。将所要实现的运算关系式与式(4)对比,确定式(4)中各输入信号的比例系数为确定所设计电路的形式为图1中去掉电阻R’及Rp,按四个输入信号重画。选取RF=150kΩ,代入各输入信号的比例系数表达式中,解出 4 结语本文讨论了加减

相关文档
最新文档