渗透压摩尔浓度

渗透压摩尔浓度
渗透压摩尔浓度

SMC30C渗透压摩尔浓度测定仪标准操作程序

1 目的建立渗透压摩尔浓度测定仪标准操作程序可药品、食品等各个领域水溶液渗透压摩尔浓度测定及科学研究。

2 适用范围大容量注射剂。

3 责任者化验分析员。

4 依据【中国药典】2010年版二部附录ⅣA

5 正文

5.1渗透压摩尔浓度测定仪原理

5.1.1稀溶液的“依数特性”

从物理、化学的论述得知,稀溶液中溶剂的蒸汽压降低、冰点下降、沸点升高(溶质不挥发)和产生渗透压(有半透膜条件下)的数值,仅与一定量溶液中溶质的质点(分子、离子)数有关,而与溶质的本性无关,这些性质称其为稀溶液的“依数特性”。

从理论上看,欲测某种溶液和生物体液中所含的溶质的分子、离子总数,可以利用上述任意一个依数特性,但在实践中,由于直接测量渗透压比较困难,而冰点下降的测量比较方便、易行,且检测精度高,样品量少,对生物无变性作用,适合各种生物体液和食品的测定。故目前国内、外推出的各种渗透压摩尔浓度测定仪,多数都是按冰点下降法设计的。

5.1.1.1冰点下降的测量法

冰点是指以水为溶剂的溶液从液态变为固态的温度。也是该溶液冰水共存平衡状态下的温度。对水溶液进行连续冷却过程中,当温度已达到该溶液的冰点,甚至低于冰点而不发生结冰的温度,称之为过

冷温度。当溶液达到过冷温度时是极为不稳定的,如果给其引入冰晶或扰动都会引起结冰现象发生。其过程可见如下结冰示意图:

从结冰过程示意曲线可以看出,当供试溶液从室温冷却到设定的过冷温度时,带冰晶探针自动插入供试溶液,立刻引起公式溶液结晶,在溶液由液态变为固态过程中,分子能量由高能态向低能态转化,多余的分子能量便以热的形式释放出来,即为“晶化热”,而使供试溶液温度暂短回升,并呈冰水共存平衡状态,短时间内温度相对保持不变,为测温系统提供准确测温的平台,此时测得的温度,即为供试溶液冰点温度。

渗透压摩尔浓度测定仪即是采用冰点下降法的原理设计的。5.1.1.2渗透压重量摩尔浓度(Osmo lallity)的计算。

溶液的渗透压取决于溶液中离散地存在于溶液中的粒子(可分为分子,离子或聚合体)的数量。溶液的性能在溶质与溶剂中无交换作用时处于理想状态。对于含有非电解质的溶液,渗透压与其重量摩尔浓度(每千克溶剂中溶质的摩尔数)直接成比例。

实验表明,纯水的冰点为0℃,若1渗透压重量摩尔的溶质溶解于1千克水中,则使水的冰点由0℃下降至—1.860 0℃。因此,可以通过侧冰点下降值来计算某种溶液中的溶质的渗透压重量摩

尔浓度,其计算公式如下:

Δt

m =

1.860

m ——总的渗透压重量摩尔浓度(Osmol/kg)

Δt ——冰点下降值(℃)

1.860 ——以水为溶剂的冰点下降常数

在药检和医学临床上是用毫渗透压摩尔浓度。mOsmol/kg H2O

1mOsmol/kg H2O则表示1千克水中溶解1毫渗透压摩尔的溶质。

5.2.仪器结构与外观

5.2.1仪器结构

SMC30C测定仪由一个高灵敏度的测温探头、上下双制冷器、微电脑处理器等系统组成。上部制冷系统由半导体制冷器、冷却铜槽、不锈钢探针组成,冷却铜槽探针提供恒定低温,使探针头部产生冰晶;下部制冷系统由半导体制冷器、检品冷却池、控温电路等组成,可以自动调节检品冷却池温度,使被测样品降至设定温度;测温探头由高灵敏的温度传感器等组成,测量时由下部制冷系统对样品进行降温,测温探头及其测温电路进行实时监测,由微电脑处理器将被测样品的温度变化(冰点下降值)转化为电信号并显示测量值。

5.2.2仪器环境要求

5.2.2.1 仪器远离振动源、干扰源与热源。

5.2.2.2仪器下部设有通风口,放置时注意防止异物堵塞。

5.2.2.3仪器供电要求:仪器电源插座的接地端要有可靠的接地线,以保证人身安全及仪器工作可靠。

5.2.2.4仪器工作室内,环境温度、湿度条件应满足要求。

5.3 仪器操作

5.3.1 仪器操作功能一览表

5.3.2 操作步骤

5.3.1. 单次测试状态下可进行一次测试。

5.3.2.连续测试状态下可进行1—5次的单次测试,如超出5次,取后5次结果。

5.3.3.校准状态下可对零点和0—3000范围内的30个标准点进行校准。

5.3.4. 设置状态下可进行系统时中设置及打印的样品名称、样品批号进行设置。

5.3.5. 数据状态下,可查看测试时存储的历史数据。

5.4. 仪器的校准

5.4.1概述

5.4.1.1 仪器出厂前厂方已进行零点及300 Osmol/kg 校准液的精确校准,并将校准值存储在微电脑处理器内。

用户可根据实际要求,对仪器进行校准,微电脑将保留后一次校准值。

若用户将微电脑内存储的校准值全部删除,在使用前则必须进行零点校准和量程内任一校准点的校准。

5.4.1.2仪器准备:接通仪器电源;打开仪器后部电源开关,仪器显示开机界面,一起启动进行预冷,触摸显示屏显示自检界面,约两分钟后停止,仪器预冷完毕触摸显示屏进入主界面。

5.4.2、使用标准液进行分段量程两端点的校准

该仪器对分段量程的设计:在0~3000测量范围内,每100为一个校准量程(循环)。

(1)校准前,应根据供试品的渗透压摩尔浓度值选择与量程相符的标准液,并按动校准按钮,使触摸显示屏显示的

数据与预选的标准液数值相符,否则会产生校准错误。

(2)按动确认按钮

(3)将选出的标准液充分摇匀,取50μl注入测试管(注意其中无可见气泡),并将测试管推入支撑座至停止位置,使

测温探头完全浸入测试管内标准液中。

(4)确认触摸显示屏现实的数值与选择的标准液数值相符合。

(5)操作移动手柄轻缓下移,使测温探头(测试管)稳稳插入冷却池,溶液开始结晶,仪器测出冰点值,触摸显示

屏自动显示测试过程及结果。

(6)将移动手柄上移,取下测试管。尔后需用标准液进行一次测试,结果应符合≤400mOsmol/kgH2O时±

2mOsmol/kg、>400mOsmol/kgH2O时±1.0%的标准,

否则重新进行标准液校准。

(7)每次校准均应使用新的测试管以及校准用的标准溶液。

3、出现校准错误,须清楚错误数据

校准时选错了校准液,校准后触摸显示屏显示校准数据与校准液不一致,出现校准错误,需要清除此错误数据,并重新校准,使校准数据复位。

5.4.3、供试样品的测试

校准完成后,可进行供试样品测试。供试样品的测试,应在与校准仪器相同的条件下进行,校准时使用50μl校准液,测试时也必须使用50μl样品,并将其置于一干净、干燥的测试管中。

5.4.3.1、选择测试方式

开机状态下,自检完成后,在主界面中选择单次、连续测试。

单次测试自动测试一次,不累计计算测试均值,连续测试最多可以进行五次,超过五次,覆盖前几次数据,打印出后五次测试数据并计算出平均值。

5.4.3.2、测试操作

(1)用取样器取出供试样品50μl,注入测试管中(确保其中无可中气泡)。

(2)将测试管推入支撑座至停止位置,使测温探头完全浸入测试管内供试样品中。

(3)在主界面选择测试方式(单次或连续)。

5.4.3.3测试开始界面

选择单次或连续测试后,触摸显示屏显进入测试开始界面,若为连续测试,则触摸显示屏左上方提示测试次数“测试数据(0—4)”。(1)操作移动手柄轻缓下移,使测温探头(测试管)稳稳插入冷却池。

此时仪器触摸显示屏上显示供试样品温度变化,当供试样品处于过冷温度(—7℃)时,上部冷却系统内的不锈钢探头,带少量冰晶快速自动下探刺入过冷供试样品,同时会听到报警铃声,尔后探针向上返回,仪器即测出供试样品质量摩尔浓度。(测试过程界面参见校准测试过程界面)

(2)若测试过程中,抬起移动手柄后,触摸显示屏提示“用户手动停止”,结束当前测试,返回主界面。

(3)当触摸显示屏显示测试完成时,触摸显示屏上现实的数据就是被测供试样品的渗透压摩尔浓度、冰点及摩尔浓度。

5.4.3.4、测试完成

(1)单次测试完成界面

单次测试结束后,进入单次测试完成界面,按动继续按钮,继续

单词测试,触摸显示屏幕提示“请更换检品,继续测试”;按动存储按钮,存储当前测试数据,触摸显示屏提示“测试数据已存储,存储在第02组”;按动打印按钮,打印当前测试数据后,返回测试完毕界面;按动返回按钮,返回主界面。

(2)连续测试完成界面

连续测试结束后,进入连续测试完成界面,安东继续按钮,继续连续测试,触摸显示屏幕提示“请更换检品,继续测试”;按动查看按钮,进入连续查看界面,查看连续测试中其它次的测试数据;按动存储按钮,存储当前测试数据,触摸显示屏提示“测试数据已存储,存储在第02组”;按动打印按钮,打印当前测试数据后,返回测试完毕界面;按动返回按钮,返回主界面。

(3)连续查看界面

连续测试结束后,按动??键,可查看连续测试中其他次的测试数据;按动删除按钮,删除当前次的连续数据;安东返回按钮,返回上一界面。

5.4.3.5、打印结果

单次、连续测试完成后按动打印按钮后,自动打印测试结果,打印选项由打印设置界面中设置,参考格式如下图。

5.4.3.6、测试结束

(1)将移动手柄上移,取下测试管。

(2)测试结果在关闭仪器前,应使用纯水进行二次以上测试操作,以便测温探头和探针进行清洗(如检测粘稠度大的检品,应使用

清洗瓶对探针探头进行清洗),在使用滤纸将测温探头擦拭清理干净,免被污染。

(3)在不使用仪器时,应给测温探头套上干净的空的测试管,以保护测温探头。

5.4.3.7、数据查看

数据查看界面

在主界面,按动数据按钮,可查看已存储数据,按动清空按钮,清空所有测试数据;按动删除按钮,删除当前存储数据;安东打印按钮,打印当前存储数据;按动返回按钮,返回上一界面。

连续和单次测试仪器可分别存储99组数据。连续测试查看时左侧两个按键变为上次和下次,点击查看各次数据。

5.5、常见测试错误现象及处置

5.5.1、自然结晶及自然结晶的处置方法

(1)自然结晶系指仪器在过冷却过程中,被测样品在未由探针向其中刺入冰晶时便自动结晶的现象。

(2) 自动结晶多因测试管不清洁、被测样品中有杂质,或测温探头上有未被融化的冰晶以及重复使用测试管等情形。

(3)自然结晶会在触摸显示屏上显示“检品自然结晶,请更换检品重新测试”。

(4)除去自然结晶方法:

—对检品中含盐分浓度高的溶液,防止盐分结晶可将检品稀释;—如测温探头表面粘有结晶体可清洗后用滤纸擦拭干净;

—更换测试管。

5.5.2、结晶迟缓或不结晶的原因及处置

结晶迟缓或者不结晶时,触摸显示屏显示“检品未结晶,请更换检品重新测试”。

(1)样品渗透压摩尔浓度值太高,其冰点与探针插入点温度很接近,则探针插入后样品不易结晶(粘性溶液尤其明显),在此情况下,只能稀释样品。

(2)探针引晶不成功:

—探针所处环境湿度太小或仪器开机使短时间即开始测试,探针尚未形成冰晶此时将探针护罩上提,露出探针片刻即可。—附有冰晶的探针从高位向下移动时并未插入样品之中应使用后面板上的启动电机键调整探针位置,使其能准确地接触到超冷却被测溶液。

—探针下移过程中遇阻或探针引导孔内有水滴使探针上冰晶被溶化

应用专备清洁吸管清除探针引导孔内的水滴。

5.5.3、测试数据偏差大的因素

(1)校准所用的标准液与实际被测样品的摩尔浓度值是否相差太大。应使用与被测样品摩尔浓度值相近的标准液进行校准。(2)所用标准液和样品是否为新鲜制备。标准液和样品在干燥环境下,两个小时后即可发生变化,因此仪器校准和测试时,请使用新鲜制备的标准液和样品。

标准液的存放环境要求:避光、阴凉、密闭。

(3)每次测试时是否更换测试管。一次性测试管重复使用会引起误差。

(4)测试管的规格是否符合要求。SMC 30C 仪器精度很高,因此,测试管的差别会引起测量误差。建议使用我公司推荐的测试管。

(5)取样器前端的吸嘴是否更换。测试不同的样品应更换吸嘴。(6)仪器测温探头和探针是否被污染。每次更换样品后都应使用样品清洗测温探头和探针。

5.6、注意事项

(1)连续测试不同样品时,测温探头及探针容易受到污染。因此,在更换检品时,应其两倍量待测检品或纯水注入测试管中,将测试管推入支撑座至停止位置,使测温探头完全浸入测试管内待测样品中。按动后面板启动电机键,使探针下探至少三次,取下测试管,更换新的测试管及待测样品,重复以上的步骤至少两次,(对于浓度差别大的样品,应增加操作次数)以清洗测温探头及探针。最后用滤纸将残留液体吸附干净。

(2)每次校准或测试必须更换新的测试管、标准液及样品。

(3)仪器关机后,若要在20分钟内再次开机,务必将上部制冷槽及探针上冰晶融化的积水,用滤纸吸附干净,否则将使探针冻结。

(4)如果工作环境湿度>60%或发现测试速度变慢,应注意

检查清除冷却池内部将积水吸出。

(5)不得使用有机溶剂进行检测、清洗,(本仪器只限于水溶液测试、清洗)。

(6)检测粘度大的检品后,应使用清洗瓶对探头及探针进行清洗。

5.7、标准溶液的制备

按照表列数据,精密称取经500—650℃干燥40—50分钟并置干燥器(硅胶)中放冷至室温的氯化钠(基准试剂)一定量,将氯化钠至量瓶中,加水1kg溶解摇匀,即得。

毫渗透压摩尔浓度比的测定供试品与0.9%(g/ml)氯化钠溶液的毫渗透压摩尔浓度比率称为毫渗透压摩尔浓度比。用渗透压计分别测得供试品与标准溶液的毫渗透压摩尔浓度O T与O S,并用下列公式计算毫渗透摩尔浓度比;

O T

毫渗透压摩尔浓度比=

O S

毫渗透压摩尔浓度比测定用标准溶液的制备精密称取经500~650℃干燥40~50分钟并置干燥器(硅胶)中放冷至室温的氯化钠(基准试剂)0.900g,至100ml量瓶中,加水溶解并稀释至刻度,摇匀。

渗透压与张力

在液体治疗中,液体的渗透压与张力是很重要的概念,是我们了解、认识液体特点的基础 一.定义 1.液体渗透压(Fluid osmolality):当两种不同浓度溶液用一种理想的半透膜隔开时,则溶剂从低浓度溶液向高浓度溶液中渗透,这种溶剂渗透的力,通常称为渗透压,可简单理解为溶质分子对溶剂分子产生的吸引力,反映的是单位体积溶液中溶质微粒的数目 液体渗透压的计算 摩尔浓度(mmol/L)=1000×ρ×A%÷摩尔质量×1000 备注: ρ为溶剂密度(水密度为1); A%为质量百分比浓度; 上式计算结果数值与渗透压(单位mOsm/L)的数值相等 2. 液体张力(Fluid tonicity):指溶液进入到体内后能够维持渗透压的能力,是指溶液中电解质产生的渗透压与血浆渗透压正常值的比值,是一个没有单位的数值 液体张力计算:电解质渗透压/血浆渗透压 说明:葡萄糖进入体内后很快被代谢,只剩自由水,渗透液压就消失了。因此说葡萄糖溶液是无张力的 3. 等渗液(iso-osmotic solution): 渗透压与血浆相等或相似的溶液 是一个物理化学观念 4. 等张液(isotonic solution) 与红细胞张力相等或相似的溶液 是一个生物学概念

在等张液中红细胞既不肿胀也不皱缩,维持原有形态 等张溶液是由不能自由透过细胞膜的溶质形成的等渗溶液 二.一些治疗液体的渗透压与张力 液体渗透压(mOsm/L)张力 0.45%氯化钠154 1/2 5%葡萄糖252 0 0.9%氯化钠308 1 复方氯化钠305 1 乳酸钠林格273 1 5%葡萄糖0.9%氯化钠560 1 2.5%葡萄糖0.45%氯化钠280 1/2 2.5%葡萄糖1/2张林格278.5 1/2 2.5%葡萄糖1/2张乳酸林格262.5 1/2 10%葡萄糖504 0 3%氯化钠1026 3.4 5%碳酸氢钠1190 4 说明:5%葡萄糖液中的葡萄糖是水合葡萄糖(分子式为C6H12O6·H2O ;分子量为198)。如是无水葡萄糖(分子式为C6H12O6;分子量为180),渗透压是278(mOsm/L) 三.根据渗透压与张力将液体分类 1. 根据渗透压 低渗液:0.45%氯化钠,5%葡萄糖 等渗液:0.9%氯化钠,复方氯化钠,乳酸林格液 高渗液:10-50%葡萄糖,3-7%氯化钠,5%葡萄糖0.9%氯化钠,5%碳酸氢钠

STY-2渗透压摩尔浓度检测仪操作规程

STY-2渗透压摩尔浓度检测仪操作规程 1. 仪器准备:接通仪器电源;打开仪器后部电源开关,仪器显示开机界面,仪器启动进行预冷,彩屏显示自检界面,约两分钟后停止,仪器预冷完毕,彩屏显示屏进入主界面。 2. 测试: 按键盘数字键1后,仪器显示页面,“按下手柄,开始测试”,测试操作(或者直接按下手柄)。 ●用取样器取出供试品60-80ul,注入测试管中(确保其中无可见气泡)。 ●将测试管推入支撑座至停止位置,使测温探头完全侵入测试管内供试品样中。 按下已放置好的样品的手柄,仪器自动显示当前温度,(注意:务必上推冰针观察窗,用注射器或者镊子松动使保持冰针松动状态,否者会出现冰针无法下探,数据出现超出范围值。)温度降到零下6.5度时(或仪器内部程序达到温度范围时)探针自动插入离心管,同时显示测量数据后显示:冰点值和摩尔浓度值。按打印键打印当前测试单次报告,按存储存储当前数据;按返回返回主界面。 注:①仪器显示温度时未见探针下探,显示自然结晶,需要按返回键返回主测试页面重新测试 ②若测试过程中,中断抬起移动手柄后,仪器自动返回主界面,需再次重新测试 ③若测试过程中,仪器未出现探针刺入供试样品,仪器显示自然结晶,需抬起手柄, 重新测试 ④每次应使用新的测试管,更换移液器枪头 3. 校准: 按数字键3仪器进入校准界面 (校准时必须预先选择纯水0摩尔浓度校准;后选择测试点校准液校准) 按动上下键选择校准点(31个校准点供选择),选择好校准点后,按校准键,仪器进入测试界面,取已知浓度的和已选择校准点匹配的标准液,将选出的标准液充分摇匀,取 50-70ul注入测试管(注意其中无可见气泡),并将测试管推入支撑座值停止位置,使测温探头完全侵入测试管内标准液中,后进行测试样品方式测试样品方式测试校准,仪器自动默认校准液的信号值并自动测算和显示校正后摩尔浓度值。(如后发现选择校准点值和标准品值未匹配但已校准,只需要返回校准页面重新选择校准点按校准键后和匹配的标准液再次测试方法校准即可)每次校准均应使用新的测试管和移液器以及校准用的标准溶液。 4. 参数设置 按数字键4仪器进入预先测试前名称和批号设置 名称设置:查看说明书序列表对照编号数字,按编号数字键后仪器显示已选择的药品名称批号设置:按数字键设置数字批号,最高10位数字批号 如发现药品名称和批号错误设置,按左键取消已设置数据,按数字键重新设置,按下键切换,最后按确认键确认设置,按返回键返回主界面。 仪器测试使用前需预先设置好药品名称和批号,如不预先设置仪器默认上次的打印设置。 5. 测试结束后处理 ●将移动手柄上移,取下测试管。 ●测试结束在关闭仪器前,应使用纯水进行两次以上测试操作,以便对测温探头和探 针进行清洗(如检测粘稠度大的检品,应使用清洗瓶对探针及探针进行清洗),再 使用滤纸将测温探头檫试清理干净,以免污染。 ●在不使用仪器时,应给测温探头套上干净的空的测试管,以保护测温探头。

药典三部(版)-通则-0632渗透压摩尔浓度测定法复习过程

0632 渗透压摩尔浓度测定法 生物膜,例如人体的细胞膜或毛细血管壁,一般具有半透膜的性质,溶剂通过半透膜由低浓度向高浓度溶液扩散的现象称为渗透,阻止渗透所需要施加的压力,称为渗透压。在涉及溶质的扩散或通过生物膜的液体转运各种生物过程中,渗透压都起着极其重要的作用。因此,在制备注射剂、眼用液体制剂等药物制剂时,必须关注其渗透压。处方中添加了渗透压调节剂的制剂,均应控制其渗透压摩尔浓度。 静脉输液、营养液、电解质或渗透利尿药(如甘露醇注射液)等制剂,应在药品说明书上标明其渗透压摩尔浓度,以便临床医生根据实际需要对所用制剂进行适当的处置(如稀释)。正常人体血液的渗透压摩尔浓度范围为285~310mOsmol/kg,0.9%氯化钠溶液或5%葡萄糖溶液的渗透压摩尔浓度与人体血液相当。溶液的渗透压,依赖于溶液中溶质粒子的数量,是溶液的依数性之一,通常以渗透压摩尔浓度(Osmolality)来表示,它反映的是溶液中各种溶质对溶液渗透压贡献的总合。 渗透压摩尔浓度的单位,通常以每千克溶剂中溶质的毫渗透压摩尔来表示,可按下列公式计算毫渗透压摩尔浓度(mOsmol/kg): 毫渗透压摩尔浓度(mOsmol/kg) =×n×1000 式中,n为一个溶质分子溶解或解离时形成的粒子数。在理想溶液中,例如葡萄糖n=1,氯化钠或硫酸镁n=2,氯化钙n=3,枸橼酸

钠n=4。 在生理范围及很稀的溶液中,其渗透压摩尔浓度与理想状态下的计算值偏差较小;随着溶液浓度增加,与计算值比较,实际渗透压摩尔浓度下降。例如0.9%氯化钠注射液,按上式计算,毫渗透压摩尔浓度是2×1000×9/58.4=308 mOsmol/kg,而实际上在此浓度时氯化钠溶液的n稍小于2,其实际测得值是286 mOsmol/kg;这是由于在此浓度条件下,一个氯化钠分子解离所形成的两个离子会发生某种程度的缔合,使有效离子数减少的缘故。复杂混合物(如水解蛋白注射液)的理论渗透压摩尔浓度不容易计算,因此通常采用实际测定值表示。 1、渗透压摩尔浓度的测定 通常采用测量溶液的冰点下降来间接测定其渗透压摩尔浓度。在理想的稀释溶液中,冰点下降符合△T f=K f·m的关系,式中,△T f为冰点下降,K f.为冰点下降常数(当水为溶剂时为1.86),m为重量摩尔浓度。而渗透压符合P0=K0·m的关系,式中,P0为渗透压,K0为渗透压常数,m为溶液的重量摩尔浓度。由于两式中的浓度等同,故可以用冰点下降法测定溶液的渗透压摩尔浓度。 仪器采用冰点下降的原理设计的渗透压摩尔浓度测定仪通常 由制冷系统、用来测定电流或电位差的热敏探头和振荡器(或金属探针)组成。测定时将探头浸入供试溶液中心,并降至仪器的冷却槽中。启动制冷系统,当供试溶液的温度降至凝固点以下时,仪器采用振荡器(或金属探针)诱导溶液结冰,自动记录冰点下降的温度。仪器显示的测定值可以是冰点下降的温度,也可以是渗透压摩尔浓度。

SMC 30C型渗透压摩尔浓度测定仪操作规程

1.目的:制定SMC 30C型渗透压摩尔浓度测定仪的操作规程,确保操作人员的规范操作。 2.范围:本标准适用于SMC 30C型渗透压摩尔浓度测定仪的操作。 3.责任:技术质量部QC负责本规程实施。 4.内容: 仪器组成及装置: 4.1.1组成:触摸显示屏、测试管支撑座、测温探头、测试管、冷却池、探针及护罩、移动手柄等。 4.1.2装置:按仪器说明书进行安装与使用。 操作方法: 4.2.1准备: 4.2.1.1按要求接通电源,打开仪器后面电源开关,仪器显示开机界面,仪器启动进行预冷,触摸显示屏显示自检界面,约二分钟后停止,仪器预冷完毕触摸显示屏进入主界面。 4.2.1.2 首次使用仪器要按动电机后面的启动电机键,使探针回到正确位置。 4.2.2校准: 4.2.2.1使用纯水进行零点校准(新制备的水溶剂) a 使用取样器将60μL纯水注入干净、干燥的测试管内,确保其中无可见气泡。 b将测试推入支撑座直至停止位置,使测定探头完全浸入测试管内纯水中。

c 4.2.2.2校准界面 确认界面。 4.2.2.3零点校准界面 操作移动手柄轻缓下移,测温探头(测试管)稳稳插入冷却池。纯水。纯水的温度被实时地触摸显示屏上以摄氏温度显示出来。 4.2.2.4测试界面被测纯水冷却完成之后,不锈钢探针带冰晶自动插入,纯水开始结晶,仪器测出纯水的冰点,并将其记为“0”值,显示读数为“0”。将移动手柄上移,取下测试管。尔后需要用用纯水进行一次测试,测试结果应符合 0±2mOmol/kg H 2 O的标准,负责重新进行零校准。 4.2.2.5使用标准液进行分段量程两端点的校准 该仪器对分段量程的设计:在0~3000测量范围内,每100为一个校准量程(循环)。 校准前,应根据供试品的渗透压摩尔浓度值选择与量程相符的标准液,并按 使触摸显示屏显示的数据与预选的标准数值相符,否则会产生校准错误。按动确认按钮。将选出的标准液充分摇匀,取60μL注入测试管(注意其中无可见其中无可见气泡),并将测试管内标准液中。确认触摸显示屏显示的数值与选择的标准液数值相符合。 操作移动手柄轻缓下移,使测温探头(测试管)稳稳插入冷却池,溶液开始结晶,仪器测出冰点值,触摸显示屏自动显示测试过程结果。 将移动手柄上移,取下测试管。尔后需用标准液进行一次测试,结果应符合 ≤400mOmol/kg H 2O时±2mOmol/kg H 2 O、﹥400mOmol/kg H 2 O时±%的标准,否则 重新进行标准液校准。每次校准均应使用新的测试管及校准用的标准溶液。

渗透压摩尔浓度测定法

附录Ⅸ G 渗透压摩尔浓度测定法 生物膜,例如人体的细胞膜或毛细血管壁,一般具有半透膜的性质,溶剂通过半透膜由低浓度溶液向高浓度溶液扩散的现象称为渗透,阻止渗透所需施加的压力,即为渗透压。在涉及溶质的扩散或通过生物膜的液体转运各种生物过程中,渗透压都起着极其重要的作用。因此,在制备注射剂、眼用液体制剂等药物制剂时,必须关注其渗透压。处方中添加了渗透压调节剂的制剂,均应控制其渗透压摩尔浓度。 静脉输液、营养液、电解质或渗透利尿药(如甘露醇注射液)等制剂,应在药品说明书上标明其渗透压摩尔浓度,以便临床医生根据实际需要对所用制剂进行适当的处置(如稀释)。正常人体血液的渗透压摩尔浓度范围为285~310mOsmol/kg ,0.9%氯化钠溶液或5%葡萄糖溶液的渗透压摩尔浓度与人体血液相当。 溶液的渗透压,依赖于溶液中溶质粒子的数量,是溶液的依数性之一,通常以渗透压摩尔浓度(Osmolality )来表示,它反映的是溶液中各种溶质对溶液渗透压贡献的总和。 渗透压摩尔浓度的单位,通常以每千克溶剂中溶质的毫渗透压摩尔来表示,可按下列公式计算毫渗透压摩尔浓度(mOsmol/kg ): 1000mOsmol/kg ??=n 分子量的克数每千克溶剂中溶解溶质 )毫渗透压摩尔浓度( 式中,n 为一个溶质分子溶解或解离时形成的粒子数。在理想溶液中,例如葡萄糖n=1,氯化钠或硫酸镁n=2,氯化钙n=3,枸橼酸钠n=4。 在生理范围及稀溶液中,其渗透压摩尔浓度与理想状态下的计算值偏差较小;随着溶液浓度的增加,与计算值比较,实际渗透压摩尔浓度下降。例如0.9%氯化钠注射液,按上式计算,毫渗透压摩尔浓度是2×1000×9/58.4=308 mOsmol/kg ,而实际上在此浓度时氯化钠溶液的n 稍小于2,其实际测得值是286 mOsmol/kg ;复杂混合物,如水解蛋白注射液的理论渗透压摩尔浓度不容易计算,因此通常采用实际测定值表示。 1.渗透压摩尔浓度的测定 通常采用测量溶液的冰点下降来间接测定其渗透压摩尔浓度。在理想的稀溶液中,冰点下降符合ΔT f =K f 〃m 的关系,式中,ΔT f 为冰点下降,K f 为冰点下降常数(当水为溶剂时为1.86),m 为重量摩尔浓度。而渗透压符合P o =K o 〃m 的关系,式中,P o 为渗透压,K o 为渗透压常数,m 为溶液的重量摩尔浓度。由于两式中的浓度等同,故可以用冰点下降法测定溶液的渗透压摩尔浓度。 仪器 采用冰点下降的原理设计的渗透压摩尔浓度测定仪通常由制冷系统、用来测定电流或电位差的热敏探头和振荡器(或金属探针)组成。测定时将测定探头浸入供试溶液的中心,并降至仪器的冷却槽中。启动制冷系统,当供试溶液的温度降至凝固点以下时,仪器采用振荡器(或金属探针)诱导溶液结冰,自动记录冰点下降的温度。仪器显示的测定值可以是冰点下降的温度,也可以是渗透压摩尔浓度。 标准溶液的制备 取基准氯化钠试剂,于500~650℃干燥40~50分钟,置干燥器(硅胶)中放冷至室温。根据需要,按表中所列数据精密称取适量,溶于1kg 水中,摇匀,即得。

等摩尔连续变化法测定磺基水扬酸合铁的组成及稳定

光度法对磺基水杨酸铁配合物的组成及稳定常数的实验研究四:等摩尔连续变化法测 定磺基水扬酸合铁的组成及稳定 fggdj分光光度计来源:东海仪表 等摩尔连续变化法是配制一系列溶液,保持溶液中度、离子强度、温度和金属离子与配体的总物质的量不 变改变金属离子cM和配体的摩尔分数使之连续化,在最大吸收波长处测定各溶液的吸光度,以吸光 度A配体的摩尔分数xR作图(图4),根据两边线性部分的延线相交之点所对应的配体摩尔分数值,即可求出 配合的组成比 可以认为相交之点Amax为配合物以n完全配位而不离解的吸光度,而实验测得值为A,两者之差就是由配合物离解所造成的.由此可求K稳,相应计算同摩尔比法.按表2配制溶液,用1cm比色皿,以1号试剂作参比液在500nm处测各溶液的吸光度,以A对xR作图,确定n.并求K稳.实验数值表明,摩尔比法和等摩尔连续变化法两种测定方法的配位数相同,最大吸光度偏差为0.002,实验测量值偏差为0.003,解离度偏差为0.028,平衡常数数值相对偏差为2.5%.考虑误差来源,认为两种分析方法无显著性差异.

一、 实验原理 1、 等物质的量系列法求配合物组成及稳定常数 对于配合物体系而言,如果组成配合物的中心离子和配体的吸收光谱与配合物不重合。就可以选择对配合物有较大吸收的波长,测得平衡体系吸光度与相应的配合物浓度[MLn]间应符合:,得知了吸光度A 就可以求出的浓度。 本实验选用磺基水杨酸(简写为H 3R )与Fe 3+形成的配位平衡体系, H 3R 和Fe 3+等试剂与配合物的吸收光谱不重合,因此可用分光光度法测定。 但由于配位反应: 所以配合物的组成受溶液的pH 影响,在pH=2~3时, 4~9时,9~11时,二者可形成三 种颜色不同、组成不同的配离子。 本实验是测定pH=2~3时形成的红褐色磺基水杨酸铁配离子的组成及其稳定常数,实验中是通过加入一定量的HClO 4来控制溶液的pH 值。 由于配合物系统的复杂性,因此建立了不同的平衡系统及相应的处理方法,本实验选用等物质的量连续变化法(浓比递变法)。 所谓等物质的量变化法就是保持金属离子和配体二者的总物质的量(摩尔数)不变,将金属离子和配体按不同物质的量(摩尔)比混合,配制系列等体积溶液(即配置一系列保持金属离子浓度C 和配体浓度之和不变的溶液) ,分别测其吸光度。虽然这一系列溶液中总

渗透压摩尔浓度检测仪

渗透压摩尔浓度检测仪渗透压摩尔浓度测试仪 型号:H110511 冰点渗透压摩尔浓度检测仪是用于测定溶液和各种体液渗透压或渗摩尔浓度(Osmolality)的仪器,渗透压摩尔浓度测定法是国家药典2010版中新增的检测方法, 在药品质控中具有重要意义,欢迎药物研究单位、药检机构和制药厂选用。本仪器 完全满足2010版《中国药典》、《美国药典》检测标准的规定。 主要特点: ◆采用LED彩色大屏幕液晶显示屏;具有测试数据自动处理、打印。本仪器可以存储两万次历史使用数据;随时可调用和打印功能; ◆采用冰点下降原理及高精度传感器,测量精度高,重现性好。 ◆采用半导体双制冷系统,预冷时间短,检测速度快,便于连续检测。 ◆振荡原理,检测样品量少,范围宽,可满足不同领域需求。 ◆可同时显示检品的渗透压摩尔浓度值,冰点值。 ◆本仪器具有有31个校正点,可进行两点及多点的线性校正,保证仪器精准度。 ◆冷却系统采用无热传导液设计,免除频繁的维护。 ◆内置《中国药典》数百种注射剂药品名称,方便预设检品资料。 技术参数: 1.测量范围:0~3000 mOsmol / kg H2O 2.样品量:50-100μl(根据离心管大小适量) 3.测试时间:<2min30sec 4.预冷时间:≤3min 5.重复性:RSDs≤1% (300mOsmol/kg H2O) 6.准确度:±1% (300mOsmol/kg H2O) 7. 分辨率:1mOsmol/kg 8. 线性:<1%的直线 9. 环境温度:-10~25℃ 10. 环境湿度:5~60% 11. 电源:AC220V 1.5A 12. 外形尺寸:230*210*360mm

pH值测定法(通则0631)及渗透压摩尔浓度测定法(通则0632)培训试题及答案

依据:1、《中国药典》2015年版四部 2、《中国药典分析检测技术指南》(2017年7月第一版) pH值测定法(通则0631)及渗透压摩尔浓度测定法(通则0632)培训试题及答案2018.6 姓名:成绩: 一、单选题(每题4分,共20分) 1、我公司在测量pH值时选用的电极为:。(根据实际情况填写)(A) A、玻璃电极-饱和甘汞电极 B、玻璃电极-银-氯化银电极 C、氢电极 D、醌-氢醌电极 2、pH值测定法是测定水溶液中活度的一种方法。(B) A、氢氧根离子 B、氢离子 C、金属离子 D、水溶液中可溶性盐的阳离子 3、下列电极中为复合电极的是:。(C) A、氢电极 B、醌-氢醌电极 C、玻璃电极-银-氯化银电极 D、甘汞电极 4、《中国药典》 2015年版规定渗透压摩尔浓度测定法采用:。(A) A、冰点下降法 B、露点测定法 C、含水量测定法 D、冷点测定法 5、中国药典2015年版四部规定采用校正渗透压摩尔浓度测定仪。(B) A、一点法 B、两点法

C 、三点法 D 、四点法 二、多选题(每题4分,共20分) 1、采用冰点下降法的原理设计的渗透压摩尔浓度测定仪通常由: 组成。(ABC ) A 、制冷系统 B 、用于测定电流或电位差的热敏感探头 C 、振荡器(或金属探针) D 、微量进样器 2(ABC ) A 、饱和甘汞电极 B 、1mol/L 甘汞电极 C 、0.1mol/L 甘汞电极 D 、5mol/L 甘汞电极 3、理想的稀溶液具有的依数性质包括: 。 (ABCD ) A 、渗透压 B 、沸点上升 C 、冰点下降 D 、蒸气压下降 4、不为pH 值测试的理想温度的是: 。 (ABD ) A 、20℃ B 、23℃ C 、25℃ D 、27℃ (ABCD ) A 、大容量注射剂 B 、小容量注射剂

摩尔气体常数的测定

摩尔气体常数的测定 一、实验目的 1.了解一种测定摩尔气体常数的方法。 2.熟悉分压定律与气体状态方程的应用。 3.练习分析天平的使用与测量气体体积的操作。 二、实验原理 气体状态方程式的表达式为:pV = nRT = r M m RT (1) 式中: p ——气体的压力或分压(Pa ) V ——气体体积(L) n ——气体的物质的量(mol ) m ——气体的质量(g ) M r ——气体的摩尔质量(g·mol -1) T ——气体的温度(K ); R ——摩尔气体常数(文献值:8.31Pa·m 3·K -1·mol -1或J·K -1·mol -1) 可以看出,只要测定一定温度下给定气体的体积V 、压力p 与气体的物质的量n 或质量m ,即可求得R 的数值。 本实验利用金属(如Mg 、A1或Zn)与稀酸置换出氢气的反应,求取R 值。例如: Mg(s)* + 2H +(aq)* = Mg 2+(aq) + H 2(g)* (2) Δr H m 298=-466.85(kJ· mol -1) [说明] * s :表示固态(分子); aq :表示水合的离子(或分子); g :表示气态(分子) 将已精确称量的一定量镁与过量稀酸反应,用排水集气法收集氢气。氢气的物质的量可根据式(2)由金属镁的质量求得:M g M g H H H 2 22M m M m n = = 由量气管可测出在实验温度与大气压力下,反应所产生的氢气体积。 由于量气管内所收集的氢气是被水蒸气所饱和的,根据分压定律,氢气的分压2H p ,应是混合气体的总压p (以100Kpa 计)与水蒸气分压O H 2p 之差: O H H 22p p p -= (3) 将所测得的各项数据代入式(1)可得: T n V p p T n V p R ??-= ??=2222H O H H H )( 三、实验用品 仪器:分析天平,称量纸(蜡光纸或硫酸纸),量筒(10mL),漏斗,温度计(公用),砂纸,测定摩尔气体常数的装置(量气管1,水准瓶2,试管,滴定管 夹,铁架,铁夹,铁夹座,铁圈,橡皮塞,橡皮管,玻璃导气管),气压计(公用),烧杯(100mL 、400mL ) 1 量气管的容量不应小于50mL ,读数可估计到0.01mL 或0.02mL 。可用碱式滴定管代替。 2 本实验中用短颈(或者长颈)漏斗代替水准瓶。 图1 摩尔气体常数测定装置

络合物组成和不稳定常数的测定--等摩尔系列法

韩山师范学院化学系化学专业物化实验课实验报告 班级20011312 学号23 姓名高旺珠同组陈红乳、吴和生评分 实验日期: 2004年3月10日室温21.7℃气压101.22*103Pa 教师 实验题目:络合物组成和不稳定常数的测定-----等摩尔系列法 实验目的: 1.学会用等摩尔系列法测定络合物组成、不稳定常数的基本原理和实验方法。 2.计算络合反应的标准自由能变化。 3.熟练掌握测定溶液pH值和光密度的操作技术。 实验原理: 络合物MA n在水溶液中的络合与解离反应式为: M+nA MA n 达到平衡时,K不稳=[M][A]n [MA n] 式中,K不稳为络合物不稳定常数,[M]、[A]和[MAn]分别为络合平衡时 金属离子、配位体和络合物的浓度、n为络合物的配位数。 在络合反应中,常伴有颜色的明显变化,因此研究这些络合物的吸收光谱可以测定它们的组成和不稳定常数。测定方法较多,本实验采用应用最广的等摩尔 系列法测定Cu(Ⅱ)-磺基水杨酸络合物的组成和不稳定常数。 1、络合物组成的测定 在维持金属离子M和配位体A总浓度不变的条件下,取相同浓度的M溶液和 A溶液配成一系列CM/(CM+CA)不同的溶液,这一系列溶液称为等摩尔 系列溶液,当所生成的络合物MAn的浓度最大时,络合物的配位数n可按下 述简单关系直接由溶液的组成求得 n=C A/CM 显然,通过测定某一随络合物含发生相应变化的物理量,例如光密度D的变 化,作出组成-性质图,从曲线的极大点便可直接得到络合物的组成。 络合物的浓度和光密度的关系符合朗伯-比尔定律: D=lgI0/I=acl 利用分光光度计或光谱仪测定溶液光密度D与浓度c的关系,即可求得络合 物的组成,不同络合物的组成-光密度图具有不同的形式。 2、不稳定常数的测定 在络合物明显解离的情形下,用等摩尔系列法得到的曲线,并作切线交于N 点。设在N点的光密度为D0,曲线2的极大的光密度为D,则络合物的解离 度为: α=解离部分/总浓度 =(总浓度-络合物浓度)/总浓度 =(D0-D)/D0 对于MA型络合物的K不稳=cα2/(1-α),故将该络合物浓度c及上面求 出的α代入此式即可算出不稳定常数。 当络合物解离度很小时,此法不易得到准备结果,此时,可在 ΔD-CM/(CM+CM)曲线上找出光密度相等的两点,在对应两点的溶液

094渗透压摩尔浓度检查中的一个特殊现象及原因分析

发布日期20060414 栏目化药药物评价>>化药质量控制 标题渗透压摩尔浓度检查中的一个特殊现象及原因分析 作者张震陈海峰 部门 正文内容 审评四部审评八室张震陈海峰 关键词:渗透压,渗透压摩尔浓度检查。 摘要:本文就静脉输液渗透压摩尔浓度检查中出现的一个特殊现象进行了说明,并 对该现象产生的原因进行了分析。 渗透现象和渗透压是人体血浆和各种液体制剂的特性。静脉输液和滴眼液的渗透压 必须与人体血浆渗透压保持基本一致,制剂渗透压过高和过低都会对人体产生损害。 在该类制剂的处方工艺研究中,必须考虑其渗透压。 人体血浆渗透压可分为两类:晶体渗透压和胶体渗透压。晶体渗透压由无机盐(如:氯化钠、氯化钾等)和有机小分子(如:葡萄糖、尿素等)产生,占总渗透压的99%以上,是构成血浆渗透压的主要成分;胶体渗透压又称膨胀压,由血浆蛋白等高分子 物质产生,仅占总渗透压的不到1%。 液体制剂由于一般皆为小分子药物的溶液,因而这类药物仅能产生晶体渗透压,制 剂研究中所测定的渗透压一般测定的也是晶体渗透压。一些高分子化合物(如右旋糖苷、羟乙基淀粉、明胶衍生物等)的溶液也能产生一定的胶体渗透压,但由于胶体渗 透压往往很小,常可忽略不计,因而高分子药物在制成大输液时一般需要加入小分子 物质来调节渗透压,使制剂的总渗透压与人体渗透压基本一致。如右旋糖苷常制成5%的葡萄糖注射液或0.9%的氯化钠注射液,羟乙基淀粉一般制成0.9%的氯化钠注射液。 在审评中我们发现,某些静脉输液中高分子物质的存在对溶液渗透压摩尔浓度的测 定有干扰。如某明胶代血浆产品,处方由水解明胶和一定量的钠、钾、钙等离子组成。研究表明该产品的毫渗透压摩尔浓度很低,一般只有230~260mOsmol/kg,甚至只有200mOsmol/kg左右,该产品的国家标准中未对渗透压摩尔浓度进行控制。但是,当 仔细分析该产品的处方并经计算,却发现:本品处方中的钠、钾、钙离子所产生的晶 体渗透压已经能够达到280mOsmol/kg以上,已基本可以达到与血浆的等渗;而处方 中的水解明胶也能产生一定量的胶体渗透压,应该可以使渗透压有一定提高,但实测 的结果反而使样品的渗透压降低了。同时有关研究表明,产品的毫渗透压摩尔浓度与 产品的浓度没有相关性,即样品浓度的提高不能相应地提高样品的渗透压摩尔浓度, 与理论存在相悖之处。多家申报单位的测定值皆比理论值偏小很多,提示测定可能存 在系统误差。

最新渗透压摩尔浓度测定法

渗透压摩尔浓度测定法 -----------2017 1 简述 生物膜,例如人体的细胞膜或毛细血管壁,一般具有半透膜的性质,溶剂通过半透膜由低浓度溶液向高浓度溶液扩散的现象称为渗透,阻止渗透所需施加的压力,即为渗透压。在涉及溶质的扩散或通过生物膜的液体转运各种生物过程中,渗透压都起着及其重要的作用。因此,在制备注射剂、液体型眼用制剂等药物制剂时,必须关注其渗透压。凡处方中添加了渗透压调节剂的制剂,均应控制其渗透压摩尔浓度。 静脉输液、营养液、电解质或渗透利尿药(如甘露醇注射液)等制剂,应在药品说明书上标明其渗透压摩尔浓度,以便临床医生根据实际需要对所用制剂进行适当的处置。正常人体血液的渗透压摩尔浓度范围为285~310mOsmol/kg,0.9%氯化钠溶液或5%葡糖糖溶液的渗透压摩尔浓度与人体血液相当口虽然人体本身具有一定的渗透压调节能力,但静脉输液、眼用溶液应尽可能与血液等渗。 除另有规定外,等渗的范围一般为260~320mOsmol/kg;冰点下降0.48~0.59℃或渗透压比0.9~1.1。甘露醇注射液、氨基酸注射液等高渗注射剂及注射用无菌粉末渗透压摩尔浓度的限值,可根据生产工艺及临床使用情况做出相应的规定。 2 渗透压与渗透压摩尔浓度 溶液的渗透压,依赖于溶液中粒子的数量,是溶液的依数性之一,通常以渗透压摩尔浓度(Osmolality)来表示,它反映的是溶液中各种溶质对溶液渗透压贡献的总和。渗透压摩尔浓度的单位,通常以每千克溶剂中溶质的毫渗透压摩尔来表示,可按下列公式计算毫渗透压摩尔浓度(mQsmol/kg): 毫渗透压摩尔浓度(mOsmol/kg) = (每千克溶剂中溶解的溶质克数/分子量)×π×1000 式中,n为一个溶质分子溶解并解离时形成的粒子数。在理想溶液中,例如葡萄糖n=1,氯化钠或硫酸镁n=2,氯化钙n=3,枸橼酸钠n=4。 在生理范围及稀溶液中,其渗透压摩尔浓度与理想状态下的计算值偏差较小;随着溶液浓度的增加,与计算值比较,实际渗透压摩尔浓度下降。例如0.9%氯化钠注射液,按上式计算,毫渗透压摩尔浓度是2×1000×9/58.4=308 mQsmol/kg,而实际上在此浓

渗透压摩尔浓度测定法标准操作规程

渗透压摩尔浓度测定方法操作规程 一、目的:建立渗透压摩尔浓度测定法标准操作规程,为检验人员提供正确的操作规程,确保规范操作以及检验数据的准确性。 二、适用范围:适用于需进行渗透压摩尔浓度测定的供试品。 三、责任者:化验室负责人及QC检验员。 四、分发部门:质量部,化验室 五、正文: 1、依据标准:《中华人民共和国药典》2015版三部通则0632 2、原理: 2.1、渗透压简介 生物膜,例如人体的细胞膜或毛细血管壁,一般具有半透膜的性质,溶剂通过半透膜由低浓度向高浓度溶液扩散的现象称为渗透,阻止渗透所需要施加的压力,称为渗透压。在涉及溶质的扩散或通过生物膜的液体转运各种生物过程中,渗透压都起着极其重要的作用。因此,在制备注射剂、眼用液体制剂等药物制剂时,必须关注其渗透压。处方中添加了渗透压调节剂的制剂,均应控制其渗透压摩尔浓度。 静脉输液、营养液、电解质或渗透利尿药(如甘露醇注射液)等制剂,应在药品说明书上标明其渗透压摩尔浓度,以便临床医生根据实际需要对所用制剂进行适当的处置(如稀释)。正常人体血液的渗透压摩尔浓度范围为285?310mOsmol/kg,0. 9 % 氯化钠溶液或5%葡萄糖溶液的渗透压摩尔浓度与人体血液相当。 2.2、渗透压摩尔浓度 溶液的渗透压,依赖于溶液中溶质粒子的数量,是溶液的依数性之一,通常以渗透压摩尔浓度(Osmolality)来表示,它反映的是溶液中各种溶质对溶液渗透压贡献的总和。 2.3、渗透压摩尔浓度的单位 渗透压摩尔浓度的单位,通常以每千克溶剂中溶质的毫渗透压摩尔来表示,可按下列公式计算毫渗透压摩尔浓度(mOsmol/kg): 毫渗透压摩尔浓度(mOsmol/kg)=每千克溶剂中溶解溶质的克数 分子量 ×n×1000 式中,n为一个溶质分子溶解或解离时形成的粒子数。 在理想溶液中,例如葡萄糖n=1,氯化钠或硫酸镁n=2,氯化钙n=3,枸橡酸钠n= 4。 在生理范围及很稀的溶液中,其渗透压摩尔浓度与理想状态下的计算值偏差

渗透压

2.4.4 溶液的渗透压与反渗透技术 1.溶液的渗透现象 当我们用一种仅让溶剂分子通过而不让溶质分子通过的半透膜把一种溶液和它的纯溶剂分隔开时,纯溶剂将通过半透膜扩散到溶液中从而使其稀释,这种现象称渗透。实际上,溶剂是同时沿着两个方向通过半透膜。由于纯溶剂的蒸气压比溶液的蒸气压大,所以纯溶剂向溶液的渗透速率要比向相反方向的渗透速率大。 若将一半透膜紧扎在漏斗的口上,将漏斗内充人浓糖水并倒置在一杯水中。由于渗透作用,水将扩散进入糖水溶液,因而溶液体积渐渐增大,垂直的管子中液面上升。随着液柱的升高,压力增大,从而使漏斗中糖水中水分子通过半透膜的速度增大。当压力达到一定的数值时,液柱不再升高,体系达到平衡。如图2-2。若在管口上方加一外压,使得糖水的液面保持不变。所外加的阻止液面上升的最小压力叫作该糖水的渗透压。与拉乌尔发现溶液蒸气压与纯溶液蒸气压之间关系的同一年,Van't Hoff发现了稀溶液的渗透压(π)服从如下方程: 式中π——渗透压,kPa; R——气体常数(R=8.314 kPa·L·mol-1·K-1); c——溶质的物质的量的浓度,mol·L-1; T——绝对温度,K。 值得注意的是,从形式上看,溶液的渗透压与理想气体状态方程十分相似,但两种压力(π和p)产生的原因和测定方法完全不同。渗透压(π)只有在半透膜两侧分别存在溶液和溶剂(或两边浓度不同的溶液)时才能表现出来。

关于渗透现象的原因至今还不十分清楚。但生命的存在与渗透平衡有极为密切的关系,因此渗透现象很早就引起生物学家的注意。动植物由无数细胞所组成的,细胞膜均具有奥妙的半透膜功能。细胞膜是一种很容易透水而几乎不能透过溶解于细胞液中的物质的薄膜。例如,若将红血球放进纯水,在显微镜下将会看到水穿过细胞壁而使细胞慢慢肿胀,直至最后胀裂;若将细胞放入浓糖水溶液时,水就向相反方向运动,细胞因此渐渐的萎缩、干瘪。又如,人们在游泳池或河水中游泳时,睁开眼睛,很快就会感到疼痛,这是因为眼睛组织的细胞由于渗透而扩张所引起的;而在海水中游泳,却没有不适之感,这是因为海水的浓度很接近眼睛组织的细胞液浓度。正是因为海水和淡水的渗透压不同,海水鱼和淡水鱼才不能交换生活环境,否则,将会引起鱼体细胞的肿胀或萎缩而使其难以生存。 除细胞膜外,人体组织内许多膜,如红血球的膜、毛细管壁等也都具有半透膜的性质,因而人体的体液如血液、细胞液和组织液等也具有一定的渗透压。因此对人体静脉输液或注射时,必须使用与人体体液渗透压相等的等渗溶液,如临床常用的是0.9%生理食盐水及5%葡萄糖溶液。否则由于渗透将会引起红血球肿胀或萎缩而导致严重的后果。 由于同样的道理,渗透压与植物也是休戚相关的。浸入糖溶液或盐溶液的花卉,将因渗透压的作用而脱水枯萎,若再将它插入纯水,花卉将因水重返细胞又会像原有那样的鲜艳美丽。 值得注意的是,稀溶液的渗透压是相当大的。例如25℃时,0.1mol·L-1溶液的渗透压为: π=cRT=0.1×8.314×298=248(kPa) 这相当于约25米高水柱的压力,可见渗透压是十分可观的。一般植物细胞液的渗透压大约可达 2000 kPa。正因为有如此巨大的推动力,自然界才有高达几十米甚至百余米的参天大树。 实际工作中常用渗透压法和沸点升高法及凝固点下降法来测定物质的相对分子质量。由于直接测定渗透压相当困难,因此对一般不挥发的非电解质的测定,常用沸点上升和凝固点下降法。但对高分子化合物相对分子质量的测定,因为其相对分子质量很大,所以配成溶液的浓度很小,这时用渗透压法有其独特的优点。 例2-3 将血红素1.00 g溶于适量水中,配成100 cm3溶液,此溶液的渗透压为0.366 kPa(20℃时)。求:(1)溶液的物质的量浓度;(2)血红素的相对分子质量;(3)此溶液沸点升高和凝固点降低值。 解:(1)由(2-7)式 (2)设血红素的摩尔质量为M,则 M=6.7×104(g·mol-1)

中国药品检验标准操作规范2010版渗透压摩尔浓度测定法

文件内容: 1、主题内容和适用范围 (2) 2、引用标准 (2) 3、简介 (2) 4、渗透压与渗透压摩尔浓度 (2) 5、仪器 (3) 6、操作程序 (3) 7、注意事项 (5) 8、更改信息 (5) 颁发部门: 分发清单:

1 主题内容和适用范围 本程序规定了渗透压摩尔浓度的测定方法和注意事项,使其规范化、标准化,并描述了更改信息。 本程序适用于渗透压摩尔浓度的测定法的操作。 2 引用标准 中国药典2010年版二部附录Ⅸ G “渗透压摩尔浓度测定法”、中国药品检验标准 “渗透压摩尔浓度测定法”。 操作规范2010年版P 262 3 简介 生物膜,例如人体的细胞膜或毛细管壁,一般具有半透膜的性质,溶剂通过半透膜由低浓度溶液向高浓度溶液扩散的现象称为渗透,阻止渗透所需施加的压力,即为渗透压。在涉及溶质的扩散或通过生物膜的液体转运各种生物过程中,渗透压都起着及其重要的作用。因此,在制备注射剂、液体型滴眼液等药物制剂时,必须关注其渗透压。凡处方中添加了渗透压调节剂的制剂,均应控制其渗透压摩尔浓度。 静脉输液、营养液、电解质或渗透利尿药(如甘露醇注射液)等制剂,应在药品说明书上表明其渗透压摩尔浓度,以便临床医生根据实际需要对所用制剂进行适当的处置。正常人体血液的渗透压摩尔浓度范围为285~310mOsom/kg,0.9%氯化钠溶液或5%葡萄糖溶液的渗透压摩尔浓度与人体血液相当。虽然人体本身具有一定的渗透压调节能力,但静脉输液、眼用溶液应尽可能与血液等渗。 除另有规定外,等渗的范围一般为260~320mOsmol/kg;冰点下降0.48~0.59℃或渗透压比0.9~1.1.甘露醇注射液、氨基酸注射液等高渗注射剂及注射用无菌粉末渗透压摩尔浓度的限值,可根据生产工艺及临床使用情况做出相应的规定。 4 渗透压与渗透压摩尔浓度 溶液的渗透压,依赖于溶液中粒子的数量,是溶液的依数性之一,通常以渗透压摩尔浓度(Osmolality)来表示,它反映的是溶液中各种溶质对溶液渗透压贡献的总和。渗透压摩尔浓度的单位,通常以每千克溶剂中溶质的毫渗透压摩尔来表示,可按下列公式计算毫渗透压摩尔浓度(mOsmol/kg): 毫渗透压摩尔浓度(mOsmol/kg)=(每千克溶剂中溶解的溶质克数/分子量)×n×1000 式中,n为一个溶质分子溶解并解离时形成的粒子数。在理想溶液中,例如葡萄糖n=1,氯化钠或硫酸镁n=2,氯化钙n=3,枸橼酸钠n=4。 在生理范围及稀溶液中,其渗透压摩尔浓度与理想状态下的计算值偏差较小;随着

化学反应摩尔焓变的测定.

实验1 化学反应摩尔焓变的测定 一. 实验目的 1. 了解测定化学反应摩尔焓变的原理和方法; 2. 学习物质称量、溶液配制和溶液移取等基本操作; 3. 学习外推法处理实验数据的原理和方法。 二. 背景知识及实验原理 化学反应过程中,除物质发生变化外,还伴有能量变化。这种能量变化通常表现为化学反应的热效应(简称为化学反应热)。化学反应通常是在等温、等压、不做非体积功的条件下进行的,此时反应热效应亦称作等压热效应,用Q p表示。化学反应的等压热效应(Q p)在数值上等于化学反应的摩尔反应焓变(△r H m)(热力学规定放热反应为负值,吸热反应为正值)。在标准状态下,化学反应的摩尔反应焓变称为化学反应的标准摩尔焓变,用△r H mθ表示。 化学反应焓变或化学反应热效应的测定原理是:在绝热条件下(反应系统不与量热计外的环境发生热量交换),使反应物仅在量热计中发生反应,并使量热计及其内物质的温度发生改变。通过反应系统在反应前后的温度变化,以及有关物质的质量和比热,可以计算出反应的热效应值。 实验中溶液反应的焓变值测定采用如图1所示的简易量热计进行测定,通过测定CuSO4溶液与Zn粉的反应进行焓变值的获取。 图1保温杯式量热计 CuSO4溶液与Zn粉的反应式为: Cu2+(aq) + Zn(s) = Cu(s) + Zn2+(aq) 由于该反应速率较快,且能进行得相当完全。实验中若使用过量Zn粉,则CuSO4溶液中Cu2+可认为完全转化为Cu。系统中反应放出的热量等于溶液所吸收的热量。 在简易量热计中,反应后溶液所吸收的热量为:

Q p =m ? c? ?T =V ? ρ? c ? ?T 式中: m —反应后溶液的质量(g ); c —反应后溶液的质量热容(J ? g -1?K -1) ?T —为反应前后溶液的温度之差(K ),经温度计测量后由作图外推法确定; V —反应后溶液的体积(mL ) ρ—反应后溶液的密度(g ?m L -1) 设反应前溶液中CuSO 4的物质的量为n mol ,则反应的焓变为: 111000 1--??????-=????-=?mol kJ n T c V mol J n T c m H ρ (1) 设反应前后溶液的体积不变,则 mol V c n CuSO 10004? = 式中,C CuSO4——反应前溶液中CuSO 4的浓度(mol ?.L -1) 将上式代入式(1)中,可得 114 4100011000 --????-=???????-=?m ol kJ c T c m ol kJ V c T c V H CuSO CuSO ρρ (2) 由于此系统非严格绝热体系,因而在反应液温度升高的同时,量热计的温度也相应提高,而计算时忽略此项内容,故会造成温差的偏差。故在处理数据时可采用外推法,按图2中虚线外推至反应开始的时间,图解求得反应系统的最大温升值T ,这样则可较客观地反映出由反应热效应引起的真实温度变化值。在图2中,线段bc 表明量热计热量散失的程度。考虑到散热从反应一开始就发生,因此应将该线段延长,使与反应开始时的纵坐标相交于d 点。图中ddˊ所示的纵坐标值,即为外推法补偿的由热量散失造成的温度差。为获得准确的外推值,温度下降后的实验点应足够多。T 2与T 1的差值即为所求的?T 。 图2 温度校准曲线

22-SMC-30C型渗透压摩尔浓度测定仪操作规程

1.目的:制定SMC 30C 型渗透压摩尔浓度测定仪的操作规程,确保操作人员的规范操作。 2.范围:本标准适用于SMC 30C 型渗透压摩尔浓度测定仪的操作。 3.责任:技术质量部QC 负责本规程实施。 4.内容: 4.1仪器组成及装置: 4.1.1组成:触摸显示屏、测试管支撑座、测温探头、测试管、冷却池、探针及护罩、移动手柄等。 4.1.2装置:按仪器说明书进行安装与使用。 4.2操作方法: 4.2.1准备: 4.2.1.1按要求接通电源,打开仪器后面电源开关,仪器显示开机界面,仪器启动进行预冷,触摸显示屏显示自检界面,约二分钟后停止,仪器预冷完毕触摸显示屏进入主界面。 4.2.1.2 首次使用仪器要按动电机后面的启动电机键,使探针回到正确位置。 4.2.2校准: 4.2.2.1使用纯水进行零点校准(新制备的水溶剂) a 使用取样器将60μL 纯水注入干净、干燥的测试管内,确保其中无可见气泡。 b 将测试推入支撑座直至停止位置,使测定探头完全浸入测试管内纯水中。 c 4.2.2.2校准界面

确认界面。 4.2.2.3零点校准界面 操作移动手柄轻缓下移,测温探头(测试管)稳稳插入冷却池。纯水。纯水的温度被实时地触摸显示屏上以摄氏温度显示出来。 4.2.2.4测试界面被测纯水冷却完成之后,不锈钢探针带冰晶自动插入,纯水开始结晶,仪器测出纯水的冰点,并将其记为“0”值,显示读数为“0”。将移动手柄上移,取下测试管。尔后需要用用纯水进行一次测试,测试结果应符合0±2mOmol/kg H 2 O的标准,负责重新进行零校准。 4.2.2.5使用标准液进行分段量程两端点的校准 该仪器对分段量程的设计:在0~3000测量范围内,每100为一个校准量程(循环)。 校准前,应根据供试品的渗透压摩尔浓度值选择与量程相符的标准液,并按 使触摸显示屏显示的数据与预选的标准数值相符,否则会产生校准错误。按动确认按钮。将选出的标准液充分摇匀,取60μL注入测试管(注意其中无可见其中无可见气泡),并将测试管内标准液中。确认触摸显示屏显示的数值与选择的标准液数值相符合。 操作移动手柄轻缓下移,使测温探头(测试管)稳稳插入冷却池,溶液开始结晶,仪器测出冰点值,触摸显示屏自动显示测试过程结果。 将移动手柄上移,取下测试管。尔后需用标准液进行一次测试,结果应符合 ≤400mOmol/kg H 2O时±2mOmol/kg H 2 O、﹥400mOmol/kg H 2 O时±1.0%的标准, 否则重新进行标准液校准。每次校准均应使用新的测试管及校准用的标准溶液。 4.2.2.6出现校准错误,须清除错误数据 校准时选择了错的校准液,校准后触摸显示屏显示校准数据与标准液不一致,出现校准错误,需要清除错误数据,并重新校准,使校准数据复位。 4.2.2.7清空界面

相关文档
最新文档