各向同性材料弹性常数间的关系推导
复合材料结构设计部分习题

1.已知铝的工程弹性常数E=69Gpa,G=26.54Gpa,υ=0.3,试求铝的柔量分量和模量分量。
2.由T300/4211复合材料的单向层合构成的短粗薄壁圆筒,如图2-2所示,单层方向为轴线方向。
已知壁厚t为1mm,圆筒平均半径R0为20mm,试求在轴向力p= 10kN作用下,圆筒平均半径增大多少(假设短粗薄壁圆筒未发生失稳,且忽略加载端对圆筒径向位移的约束)?3.一个用单向层合板制成的薄壁圆管,在两端施加一对外力偶矩M=0.1kN·m和拉力p=17kN(见图2-10)。
圆管的平均半径R0=20mm,壁厚t=2mm。
为使单向层合板的纵向为最大主应力方向,试求单向层合板的纵向与圆筒轴线应成多大角度?4.试求B(4)/5505复合材料偏轴模量的最大值与最小值,及其相应的铺层角。
5.一个由T300/4211单向层合板构成的薄壁圆管,平均半径为R0,壁厚为t,其单层纵向与轴线成450。
圆管两头在已知拉力P作用下。
由于作用拉力的夹头不能转动,试问夹头受到多大力偶矩?6.由T300/4211复合材料构成的单向层合圆管,已知圆管平均半径R0为20mm ,壁厚t为2mm ,单层的纵向为圆管的环向,试求圆管在受有气体内压时,按蔡-胡失效准则计算能承受多大压力p?7.试求斯考契1002(玻璃/环氧)复合材料在θ=450偏轴下按蔡-胡失效准则计算的拉伸与压缩强度。
8.试给出各向同性单层的三维应力-应变关系式。
9.试给出各向同性单层的三维应力-应变关系式。
10.试给出单层正轴在平面应变状态下的折算柔量和折算模量表达式。
11.试给出单层偏轴时的ij与正轴时的Cij之间的转换关系式。
12.已知各向同性单层的工程弹性常数E、G、υ具有如下关系式:------------------------------------G=E/2(1+v)试分别推导其对应的模量分量与柔量分量表达式。
13.两个相同复合材料的单向层合板构成同样直径与壁厚的圆筒,一个单层方向是轴线方向,另一个单层方向是圆周方向,将两个圆筒对接胶接,当两端受有轴向力时,试问两个圆筒的直径变化量是相同还是不相同的,为什么?2.14. 在正轴下,一点处的正应变ε1、、ε2只与该处的正应力σ1、、、σ2有关,而与剪应力τ12无关,为什么?15.一块边长为a的正方形单向层合板,材料为T300/4211,厚度为h=4mm,紧密地夹在两块刚度无限大的刚性板之间(见图2-16),在压力p=2kN作用下,试分别计算在(a)、(b)两种情况下,单向层合板在压力p方向的变量△a,哪一种情况的变形较小?16.试用应力转换和应变转换关系式,证明各向同性材料的工程弹性常数存在如下关系式:--------------------------------G=E/2(1+v)。
材料力学 第四章 本构关系

W t
ijij
(9)
其中 ij 为应变张量对时间的变化率,称为应变率张量。
§4-1 热力学定律与应变能
令初始状态的应变能W=0,则
W Wdt d t
ij (t )
t0
ij (t0 ) ij ij
(10)
W
ij
ij
(11)
此式给出了弹性物质的应力-应变关系,称之为格林公式。
§4-2 各向异性材料的本构关系
y C12 x C22 y C23 z
具有这种应力-应变关系的 材料称为正交各向异性弹
z C13 x C23 y C33 z
性材料,这时独立的弹性 常数只有9个。
yz C44 yz zx C55 zx
xy C66 xy
(17)
§4-3 具有弹性对称面的弹性材料的本构关系
x ' y, y ' x, z ' z
由应力分量和应变分量之间的坐标变换得 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy
§4-3 具有弹性对称面的弹性材料的本构关系
(四)完全弹性对称与各向同性材料
其中kk xx yy zz , 和 称为拉梅系数。
(20)称为各向同性线性弹性介质的广义胡克定律。 各向同性线性弹性材料只有2个独立的弹性常数; 伴随正应变只有正应力,同时伴随切应变也只有切 应力。 由(20)可得
第四章 本构关系
静力学问题和运动学问题是通过物体的材 料性质联系起来的。力学量(应力,应力 速率等)和运动学量(应变,应变速率等) 之间的关系式称之为本构关系或本构方程。 本章仅讨论不考虑热效应的线弹性本构关 系——广义胡克定律。
材力网络测试题

第一章绪论判断题1、根据均匀性假设,可认为构件的应力在各点处相同。
()2、根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
()3、固体材料在各个方向具有相同力学性能的假设,称为各向同性假设。
所有工程材料都可应用这一假设。
()4、在小变形条件下,研究构件的应力和变形时,可用构件的原始尺寸代替其变形后的尺寸。
()5、任何物体都是变形固体,在外力作用下,都将发生变形。
当物体变形很小时,就可视其为刚体。
填空题1、材料力学的任务是。
2、为保证机械或工程结构的正常工作,其中各构件一般应满足、和三方面的要求。
3、物体受力后产生的外效应是,内效应是;材料力学研究的是效应问题。
4、认为固体在其整个几何空间毫无空隙地充满了物质,这样的假设称为假设。
根据这一假设,构件的就可用坐标的连续函数表示。
5、受外力而发生变形的构件,在外力解除够后具有消除变形的这种性质称为;而外力除去后具有保留变形的这种性质为。
选择题1、根据均匀性假设,可认为构件的()在各点处相同。
A 应力B 应变C 材料的弹性常数D 位移2、根据各向同性假设,可认为构件的()在各方向都相同。
A 应力B 应变C 材料的弹性常数D 位移3、确定截面的内力的截面法,适用于()。
A 等截面直杆B 直杆承受基本变形C 直杆任意变形D 任意杆件4、构件的强度、刚度和稳定性( )。
A 只与材料的力学性质有关B 只与构件的形状尺寸有关C 与A、B都有关D 与A、B都无关5、各向同性假设认为,材料沿各个方向具有相同的( )。
A 外力B 变形C 位移D 力学性能6、材料力学主要研究( )。
A 各种材料的力学问题B 各种材料的力学性能C 杆件受力后变形与破坏的规律D 各类杆中力与材料的关系7、构件的外力包括( )。
A 集中载荷和分布载荷B 静载荷和动载荷C 载荷与约束反力D 作用在物体上的全部载荷第二章杆件的内力分析判断题1、材料力学中的内力是指由外力作用引起的某一截面两侧各质点间相互作用力的合力的改变量。
各向同性材料弹性常数间的关系推导

各向同性材料弹性常数间的关系推导*§8-8 各向同性材料弹性常数之间的关系在建⽴应⼒和应变间的关系时,对于各向同性材料,引⽤了三个弹性常数,它们是E 、G 、µ。
§3-3中曾经提到,三个弹性常数之间存在着以下关系2(1)E G µ=+ (8-21) 现在就证明这个关系。
图8-22 变⼀纯剪切应⼒状态下的单元体。
根据倒8-3的分析,主应⼒σ1存在于α0=-45°的主平⾯上,σ3存图8-22在于α0=-135°的主平⾯上,且σ1=-σ3=τ。
将σ1和σ3代⼊公式(8-18)1123223133121[()]1[()]1[()]E E E εσµσσεσµσσεσµσσ??=-+=-+=-+????(8-18)(单元体的周围六个⾯皆为主平⾯时,⼴义胡克定律)并令σ2=0,得出σ1⽅向的线应变为1131()(1)E Eτεσµσµ=-=+ (a) 此外,由剪切胡克定律,可以求得直⾓xoy 的剪应变xy λ为xy xy G G ττλ== (b )对单元体abcd 来说,由于0x y z σσσ===,故有0x y εε==。
将所求出的x ε、y ε、xy γ代⼊公式(8-11),c o s 2s i n 2222x y x y x y αεεεεγεαα+-=+- (8-11)(平⾯应变状态分析),并令45α=- ,再次求得沿σ1⽅向的应变为12xyγε=将(b )式代⼊上式,得12G τε= (c )令(a ),(c) 两式相等,便可得到需要证明的关系式2(1)E G µ=+,因为⼴义胡克定律只适⽤于各向同性材料,因⽽由⼴义胡克定律导出的以上关系式,也只适⽤于各向同性材料。
以上参考《材料⼒学》刘鸿⽂主编第⼆版上册§8-9 复杂应⼒状态下的变形⽐能这⼀章能过变形⽐能推导。
如果应⼒和应变关系是线性的,变形⽐能的公式12u σε=。
材料力学复习笔记

材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度—-构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形.刚度-—构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性--构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设-—假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体).(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力.外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等.当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况.在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。
材料力学(清华大学)-学习笔记

第一章1.工程上将承受拉伸的杆件统称为拉杆,简称杆rods;受压杆件称为压杆或柱column;承受扭转或主要承受扭转的杆件统称为轴shaft;承受弯曲的杆件统称为梁beam。
2.材料力学中对材料的基本假定:a)各向同性假定isotropy assumptionb)各向同性材料的均匀连续性假定homogenization and continuity assumption3.弹性体受力与变形特征:a)弹性体由变形引起的内力不能是任意的b)弹性体受力后发生的变形也不是任意的,而必须满足协调compatibility一致的要求c)弹性体受力后发生的变形与物性有关,这表明受力与变形之间存在确定的关系,称为物性关系4.刚体和弹性体都是工程构件在确定条件下的简化力学模型第二章1.绘制轴力图diagram of normal forces的方法与步骤如下:a)确定作用在杆件上的外载荷和约束力b)根据杆件上作用的载荷以及约束力,确定轴力图的分段点:在有集中力作用处即为轴力图的分段点;c)应用截面法,用假象截面从控制面处将杆件截开,在截开的截面上,画出未知轴力,并假设为正方向;对截开的部分杆件建立平衡方程,确定轴力的大小与正负:产生拉伸变形的轴力为正,产生压缩变形的轴力为负;d)建立F N-x坐标系,将所求得的轴力值标在坐标系中,画出轴力图。
2.强度设计strength design 是指将杆件中的最大应力限制在允许的范围内,以保证杆件正常工作,不仅不发生强度失效,而且还要具有一定的安全裕度。
对于拉伸与压缩杆件,也就是杆件中的最大正应力满足:,这一表达式称为轴向载荷作用下杆件的强度设计准则criterion for strength design,又称强度条件。
其中称为许用应力allowable stress,与杆件的材料力学性能以及工程对杆件安全裕度的要求有关,由下式确定:,式中为材料的极限应力或危险应力critical stress,n为安全因数,对于不同的机器或结构,在相应的设计规范中都有不同的规定。
弹塑性力学习题集 很全有答案

为 ε1 = 1.7 ×10−4 , ε 2 = 0.4 ×10−4 。已知ν = 0.3,试求主应变 ε 3 。 3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。
2—9 已知一点的应力张量为:
50 50 80
σ ij
=
0 − 75MPa
(对称)
− 30
试求外法线
n
的方向余弦为: nx
=
1 2
,ny
=
1 2
, nz
=
1 2
的微斜面上的全应力 Pα
,正
应力 σ α 和剪应力τ α 。
2—10 已知物体的应力张量为:
50 30 − 80
σ ij
=
0 − 30MPa
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为:
εz
=
γz E
,
εx
=εy
=
− νγz E
;
γ xy = γ yz = γ zx = 0;
试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
2—42 如题 2—42 图所示的圆截面杆扭转时得到的应变分量为:ε x = ε y = ε z = γ xy = 0,
2
3
各弹性常数的物理意义。
3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据
单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来
弹性力学-02-2

产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程: 说明: 1.方程表示了各向同性材料的应 力与应变的关系,称为广义 Hooke定义。也称为本构关系或 物理方程。
2.方程组在线弹性条件下成立。
二. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力;
q 称为体积应变
三. 物理方程的其他表示形式
应力分量:
可表示为:
缩写为: 同理,应变分量可表示为:
向量
表示为
三阶线性方程组
可表示为 缩写为
2.爱因斯坦求和约定
在表达式的某项中,某指标重复出现一次,则表示要把 该项在该指标的取值范围内遍历求和。重复指标称为哑指标 (简称哑标) 例
求和指标
j求和指标
i非大于1的指标,求和约定无效。 例:
2. 解的唯一性定理:
在给定载荷作用下,处于平衡状态的弹性体,其内部 各点的应力、应变解是唯一的,如物体刚体位移受到约束, 则位移解也是唯一的。 无论何方法求得的解,只要能满足全部基本方程和边 界条件,就一定是问题的真解。
3.圣维南原理:
提法一:若在物体的一小部分区域上作用一自平衡力系,则 此力系对物体内距该力系作用区域较远的部分不产生 影响只在该力系作用的区域附近才引起应力和变形。 提法二:若在物体的一小部分区域上作用一自平衡力系,该 力系在物体中引起的应力将随离力系作用部分的距离 的增大而迅速衰减,在距离相当远处,其值很小,可 忽略不计。 提法三:若作用在物体局部表面上的外力,用一个静力等效 的力系(具有相同的主矢和主矩)代替,则离此区域较 远的部分所受影响可以忽略不计。
例题:(习题2-11)
已知位移分量 由几何方程得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*§8-8 各向同性材料弹性常数之间的关系
在建立应力和应变间的关系
时,对于各向同性材料,引用了三个
弹性常数,它们是E 、G 、μ。
§3-3
中曾经提到,三个弹性常数之间存在
着以下关系
2(1)
E G μ=+ (8-21) 现在就证明这个关系。
图8-22 变一纯剪切应力状态下的单
元体。
根据倒8-3的分析,主应力σ1
存在于α0=-45°的主平面上,σ3存
图8-22
在于α0=-135°的主平面上,且σ1=-σ3=τ。
将σ1和σ3代入公式(8-18)
11
23223133121[()]1[()]1[()]E E E εσμσσεσμσσεσμσσ⎧⎫=-+⎪⎪⎪⎪⎪⎪=-+⎨⎬⎪⎪⎪⎪=-+⎪⎪⎩⎭
(8-18)(单元体的周围六个面皆为主平面时,广义胡克定律)
并令σ2=0,得出σ1方向的线应变为
1131()(1)E E
τεσμσμ=-=+ (a) 此外,由剪切胡克定律,可以求得直角xoy 的剪应变xy λ为
xy
xy G G ττ
λ== (b )
对单元体abcd 来说,由于0x y z σσσ===,故有0x y εε==。
将所求出的x ε、y ε、xy γ代入公式(8-11),cos 2sin 2222x y x y xy αεεεεγεαα+-=
+- (8-11)(平面应变状态分析),
并令45α=-,再次求得沿σ1方向的应变为12xy γε=
将(b )式代入上式,得12G τ
ε= (c )
令(a ),(c) 两式相等,便可得到需要证明的关系式
2(1)E G μ=+,因为广义胡克定律只适用于各向同性材料,因而由广义胡克定律导出的以上关系式,也只适用于各向同性材料。
以上参考《材料力学》刘鸿文 主编 第二版 上册
§8-9 复杂应力状态下的变形比能
这一章能过变形比能推导。
如果应力和应变关系是线性的,变形比能的公式12
u σε=。
于是三向应力状态下的应变能为112233111222u σεσεσε=++,以应变的广义胡克定律 1123223133121[()]1[()]1[()]E E E εσμσσεσμσσεσμσσ⎧⎫=-+⎪⎪⎪⎪⎪⎪=-+⎨⎬⎪⎪⎪⎪=-+⎪⎪⎩⎭
(8-18)代入上式,整理得2221231223311[)2()]2u E
σσσμσσσσσσ=++-++ 8-24
以上参考《材料力学》刘鸿文 主编 第三版 上册。