脑电波统计特性

脑电波统计特性
脑电波统计特性

S波段海杂波混沌动力特性研究

Electronic Technology ? 电子技术 Electronic Technology & Software Engineering 电子技术与软件工程? 161 【关键词】混沌 S 波段海杂波 Lyapunov 指数 关联维 在以往对海杂波的研究中,大多使用统计学模型来对海杂波进行建模,常用的统计学模型有对数正态分布、瑞利分布和韦布尔分布等杂波模型,相应的针对海面目标的检测也是基于这些杂波模型建立的。当前海面低速小目标的检测越来越成为对海监视雷达的探测难点,低速的特性使得难以利用运动目标的多普勒特征来分离目标和海杂波;小目标低RCS 的特征又使得自动门限检测方法不能够在强海杂波的背景下顺利检测出目标。 人们开始思考除了使用统计学模型来建模海杂波以外,是否还有其他的方法来建模海杂波,就此能够发展出一种检测海面目标的新方法。 随着对非线性动力学系统时间序列分析方法的产生,对现代海杂波的有效描述产生了一系列与以往不同的量度。S.Haykin 等人于1990年率先发现了海洋杂波的混沌动力学特性,认为存在一个低维的动力学吸引子控制着海杂波的行为。 本文首先描述了混沌动力系统的一些基本概念及其计算方法,给出了海杂波混沌系统的判据。由于以往对海杂波的混沌特性分析大多集中在X 波段实测海杂波的数据,本文着重对S 波段实测海杂波数据进行了混沌特性的计算分析。 1 混沌概念简介 混沌是指确定性系统中由非线性相互作用产生的貌似随机的现象。混沌在短期内是可预测的,因此混沌解既不同于确定解也不同于随机解,长期以来对混沌没有一个统一的定义,有很多种定义方法。 现在一般认为混沌应该具备如下三个主要的特征: S 波段海杂波混沌动力特性研究 文/聂翔 田国银 桂佑林 (1)内随机特征:在一定条件下,如果 系统的某个状态可能出现,或者可能不出现,该系统既被认为具有随机性。一般来说产生混沌的系统具有整体稳定性但是同时还具有局部不稳定性,所谓局部不稳定性是指系统运动的某些方面(如在某些维度上)的行为强烈的依赖于初始条件。 (2)分形特征:混沌系统的非整数维不是用来描述系统的几何外形,而是用来描述系统的轨道在相空间的行为特征。 (3)普适性常数和Feigenbaum 常数:混沌是一种无周期的高级有序运动。 2 混沌特征量 从时间序列角度研究混沌,最早始于1980年重构相空间理论的提出。对于决定系统长期演化的任一变量的时间演化,均包含了系统所有变量长期演化的信息。因此可以通过决定系统长期演化的任意单变量时间序列来研究系统的混沌行为。其中吸引子的不变量: Lyapunov 指数、Kolmogorov 熵、关联维等在表征系统的混沌特性方面起着很重要的作用。2.1 Lyapunov指数 混沌运动的基本特点是对运动初始条件的极端敏感性,两个靠得很近的初值所产生的轨线,将随时间的推移按指数方式分离,Lyapunov 指数就是定量描述动力系统状态演变的一个指标,它从整体上反应了动力系统的混沌量水平,它是区分系统处于混沌状态或非混沌状态的最直接的特征量之一。当Lyapunov 指数小于零的方向,运动稳定,且对初始条件不敏感;而在其大于零的方向,长时间行为对初始条件敏感,运动呈混沌状态。2.2 相图与Poincare截面 相图即相轨迹图,是动力系统在相空间的解曲线图。高维动力系统的相图一般很复杂,为了降低相图的复杂度,引入了Poincare 截面。在n 维相空间中取横截面流的n-1超曲面 ,满足条件:利于观察动力系统的运动特征,且不能与轨迹相切,更不能包含轨迹线,此截面即为Poincare 截面。相空间的连续运动轨迹与截面的交点即为庞卡莱点,此映射为庞卡莱映射,通过观察Poincare 截面上点轨迹运动特征,就可以判定时间序列是否具有混沌特性。2.3 Kolmogorov熵 混沌轨道的局部不稳定性表示为相邻轨 道以指数速率分离。如果两个初始点如此靠近,以至在一段时间里不能靠测量来区分两条轨道。则只有在他们充分分离后才能加以区分,在此意义上混沌运动产生信息,信息量与可以区分的不同轨道数N 有关,N 随时间指数增长。测度熵刻画了信息产生的速率,由Kolmogorov 在1958年定义,所以又称为Kolmogorov 熵。 使用K 的值可以判断系统的运动性质,若K=0, 表示系统做规则运动;若K=∞, 表示系统做随机运动;若0

随机信号分析(常建平-李海林版)课后习题答案

由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。给大家造成的不便,敬请谅解 随机信号分析 第三章习题答案 、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。求 (1)证明X(t)是平稳过程。 (2)X(t)是各态历经过程吗?给出理由。 (3)画出该随机过程的一个样本函数。 (1) (2) 3-1 已知平稳过程()X t 的功率谱密度为232 ()(16) X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率? 解 [][]()[]2 ()cos 2 11 ,cos 5cos 22 X E X t E A E t B A B R t t EA τττ =++=????+=+=+与相互独立 ()()()2 1521()lim 2T T T E X t X t X t X t dt A T -→∞??=<∞ ???==?是平稳过程

()()[]() ()41122 11222222 2 4 2' 4(1)24()()444(0)4 1132 (1 )2244144 14(2)121tan 132 24X X X E X t G d R F G F e R G d d d arc x x τ τωωωωω ππωωπωωπω π ωω∞ ----∞∞ -∞-∞∞--∞∞ ?????==?=???+?? ====+==??+ ?== ??= ++?? =? ????P P P P 方法一() 方:时域法取值范围为法二-4,4内(频域的平均率法功) 2 d ω =

图像颜色特征提取原理

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。 1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法 颜色直方图是最基本的颜色特征表示方法,它反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率。其函数表达式如下: H(k)= n k/N (k=0,1,…,L-1) (1) 其中,k 代表图像的特征取值,L 是特征可取值的个数,n k是图像中具有特征值为 k 的象素的个数,N 是图像象素的总数。由上式可见,颜色直方图所描述的是不同色彩在整幅图像中所占的比例,无法描述图像中的对象或物体,但是由于直方图相对于图像以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,而且对于图像质量的变化也不甚敏感,所以它特别适合描述那些难以进行自动分割的图像和不需要考虑物体空间位置的图像。 由于计算机本身固有的量化缺陷,这种直方图法忽略了颜色的相似性,人们对这种算法进行改进,产生了全局累加直方图法和局部累加直方图法。 2.2 全局累加直方图法 全局累加直方图是以颜色值作为横坐标,纵坐标为颜色累加出现的频数,因此图像的累加直方空间 H 定义为:

第1章随机信号概论特征函数随机过程统计特性

1.4 随机变量的特征函数 引言:分布函数:反映随机变量的统计规律性。 数字特征:反映、掌握分布函数的某些特征。矩是最主要的特征,但随着矩的阶数的 增高,计算机较麻烦,寻求一种有效的方法来计算。 特征函数:一种计算各阶矩的有效工具。特别是计算、处理多个随机变量,特征函数 显示其优越性一。 1.4.1 特征函数的定义 (1) 设X 是定义在概率空间),,(P F S 上的随机变量,它的分布函数为)(x F ,称juX e 的 数学期望)(juX e E 为X 的特征函数,记为)(u C X 。 当X 为离散型随机变量时,其特征函数为: ∑∞ ====1 )()()(i i jux juX X x X P e e E u C i 当X 为连续型随机变量时,其特征函数为: ?+∞ ∞ -==dx x p e e E u C jux juX X )()()( (2) 利用特征函数求概率密度函数 ? +∞ ∞ --= du u C e x p X jux )(21 )(π 证明:利用傅里叶变换与反变换关系可证明。 举例: 例1:求标准正态分布)1,0(N 的特征函数。 2 2 2221)()(u jux x juX X e dx e e e E u C - ∞ +∞ -- ===? π 1.4.2 特征函数的性质 (1) 1)(≤u C X 1)0(=X C (2) 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积,即: 若∑== n k k X Y 1 ,式中n X X X Λ,,21为n 个两两相互独立的随机变量,则 ∏==n k X Y u C u C k 1 )()(

随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法; 2、实现随机序列的数字特征估计。 二、实验原理 1. 随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: N y x N ky Mod y y n n n n /))((110===-, (1.1) 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: (1) 7101057k 10?≈==,周期,N ; (2) (IBM 随机数发生器)8163110532k 2?≈+==,周期,N ; (3) (ran0)95311027k 12?≈=-=,周期,N ; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有

)(1R F X x -= (1.2) 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。 2. MATLAB 中产生随机序列的函数 (1) (0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n) 功能:产生m ×n 的均匀分布随机数矩阵。 (2) 正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m ×n 的标准正态分布随机数矩阵。 如果要产生服从2N(,)μσ分布的随机序列,则可以由标准正态随机序列产生。 (3) 其他分布的随机序列 MATLAB 上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。 MATLAB 中产生随机数的一些函数 表1.1 MATLAB 中产生随机数的一些函数 3、随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列X (n)为遍历过程,样本函数为x(n),其中n=0,1,2,…,N-1。那么,X (n)的均值、方差和自相关函数的估计为

随机信号处理论文分析

项目名称:基于信号循环平稳特性的信号 分离技术研究与实现 项目负责人: ***** 学号: ********** 年级专业: **级通信工程***班 所在学院:潇湘学院 联系电话: *********** E-m a i l: ***********@https://www.360docs.net/doc/9215207742.html, 填写日期: 2016年4月28日

摘要 在信息科技迅猛发展的今天,多个信号时频重叠的情况在通信、雷达以及其他信号处理领域中非常普遍,因而研究多个时频重叠信号的分离在系统抗干扰和提高通信频带利用率等方面都具有非常重要的意义。本文主要研究如何利用信号的循环平稳特性进行信号分离的处理方法及其在实际应用中的参数选择与结构调整。针对基于信号循环平稳特性的信号分离技术,从循环平稳信号的定义出发,讨论了循环自相关性与循环谱相关性,给出了对谱重叠循环平稳信号进行分离的基本思想和基本理论。鉴于在工程实现过程中,无限长时间观测的不可实现性,进一步研究了干扰和噪声在有限数据条件下的消失特性,并在前人平稳干扰消失特性研究的基础上,构造了循环平稳干扰模型,详细推导了循环平稳干扰经循环相关处理后,其均值和方差在有限数据条件下的变化趋势和过程。 关键词:循环平稳信号;信号分离;时频重叠;干扰消失特性;FRESH滤波;DSP;MATLAB

目录 1.1 循环平稳信号与循环平稳性 (4) 1.2 循环平稳信号的定义 (4) 1.3频移(FRESH)滤波基本原理 (5) 1.4实验仿真 (9) 1.5 MATLAB 端主要代码: (10)

1.1 循环平稳信号与循环平稳性 平稳随机过程一般具有时间遍历性特征,因此描述该过程的各阶数字统计量,如均值、相关函数等,均可用时间平均值来代替统计平均值。然而,非平稳信号的统计量是随时间变化的,时间平均不能直接使用。下面讨论一种特殊的非平稳信号–循环平稳信号,分析其均值和相关函数的时间统计特性。下文讨论中,我们不考究数学推导的严密性,而是更多地着重于工程概念的直观理解,主要从同平稳过程的类比中得到所需的结论。由于本论文讨论的方法和性能分析都是围绕着信号的二阶统计特性展开的,所以只讨论信号的二阶统计特性。 1.2 循环平稳信号的定义 定义1.2:所谓循环平稳信号是一种非平稳信号。其统计特性随时间周期性变化,即:如果[x(t)]为二阶的循环平稳信号是指其时变均值和自相关函数都为时间的 周期函数: E[x(t)] = E[x(t + T )] 其中( )?为共轭运算,T为周期。对于具有二阶周期特性的信我

随机信号通过线性和非线性系统后地特性分析报告 实验报告材料

实验三 随机信号通过线性和非线性系统后的特性分析 一、实验目的 1、了解随机信号的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱特性。 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱有何变化,分析随机信号通过线性系统和非线性系统后的特性 二、实验仪器与软件平台 1、 微计算机 2、 Matlab 软件平台 三、实验步骤 1、 根据本实验内容和要求查阅有关资料,设计并撰写相关程序流程。 2、 选择matlab 仿真软件平台。 3、 测试程序是否达到设计要求。 4、 分析实验结果是否与理论概念相符 四、实验内容 1、 随机信号通过线性系统和非线性系统后的特性分析 (1)实验原理 ①随机信号的分析方法 在信号系统中,可以把信号分成两大类:确定信号和随机信号。确定信号具有一定的变化规律,二随机信号无一定的变化规律,需要用统计特性进行分析。在这里引入了一个随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个采样序列。随机过程可以分为平稳的和非平稳的,遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化。则随机过程是平稳的。如果一个平稳的随机过程的任意一个样本都具有相同的统计特性。则随机过程是遍历的。下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,可以随机取随机过程的一个样本值来描述随机过程中的统计特性。 随机过程的统计特性一般采用主要的几个平均统计特性函数来描述,包括、均方值、方差、自相关系数、互相关系数、概率密度、频谱及功率谱密度等。 a.随机过程的均值 均值E[x(t)]表示集合平均值或数学期望值。基于过程的各态历经行,可用时间间隔T 内的幅值平均值表示,即 ∑-==1 /)()]([N t N t x t x E 均值表达了信号变化的中心趋势,或称之为直流分量。

图象视觉特征的提取与表示

第1章图像视觉特征的提取和表示 1.1引言 图像视觉特征的提取和表示是将图像的视觉信息转化成计算机能够识别和处理的定量形式的过程,是基于视觉内容的图像分类与检索的关键技术,因此,图像视觉特征的提取和表示一直是图像内容分析领域中一个非常活跃的课题。 图像底层视觉特征一定程度上能够反映图像的内容,可以描述图像所表达的意义,因此,研究图像底层视觉特征是实现图像分类与检索的第一步。一般来说,随着具体应用的不同,选用的底层特征也应有所不同,在特定的具体应用中,不同底层视觉特征的选取及不同的描述方式,对图像分类与检索的性能有很大的影响。通常认为,一种良好的图像视觉特征的提取和表示应满足以下几个要求: (1)提取简单,时间和空间复杂度低。 (2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。 (3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。 (4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,旋转不变性。 本章重点讨论当前比较成熟的特征提取方法,在此基础上选取合适的特征提取方法,用于图像分类与检索系统的特征提取模块。接下来,将依次介绍颜色,纹理,形状等特征的提取和表示方法,最后对各种特征的特点加以比较。 1.2颜色特征的提取和表示 颜色是图像视觉信息的一个重要特征,是图像分类与检索中最为广泛应用的特征之一。一般来说同一类别的图像之间颜色信息具有一定的相似性,不同类别的图像,其颜色信息具有一定的差异。相对几何特征而言,颜色特征稳定性好,有对大小、方向不敏感等特点。因此,颜色特征的提取受到极大重视并得到深入研究。本章首先介绍几种常用的颜色空间模型,然后介绍各种颜色特征提取和表示方法。 1.2.1颜色空间模型 为了正确地使用颜色这一特征,需要建立颜色空间模型,通常的颜色空间模型可用三个基本量来描述,所以建立颜色空间模型就是建立一个3-D坐标系,其中每个空间点都代表某一种颜色。通常来说,对于不同的应用,应该选取不同的颜色空间模型。常用的颜色空间模型主要有:RGB、HIS、HSV、YUV、YIQ、Munsell、Lu*v*和La*b*等。颜色空间模型的选取需要符合一定的标准,下面就这一标准和最常用的颜色空间模型作一些介绍。 文献[错误!未找到引用源。]中介绍了选择颜色空间模型的标准主要有以下几个: (1)观察角度的鲁棒性

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

随机信号统计特性分析

实验一、随机信号统计特性分析 学生姓名刘冰 学院名称精密仪器与光电子工程 专业生物医学工程 学号3010202286

一、实验目的 随机信号是生物医学信号处理软件调试所必须的信号。通过本实验,了解一种伪随机信号产生的方法,及伪随机信号的数字特征。 二、实验要求 1.用同余法编制产生伪随机信号的程序。 2.检验所产生的伪随机信号是高斯分布的。 3.检验伪随机信号的自相关函数。 三、实验方法 1.伪随机信号的产生 用下式产生一组在[-0.5,0.5]内均匀分布的伪随机信号: ()()() k i C k i M =?-1% (1) ()()n i k i M =-/.05 (2) 其中(1)表示k(i)为(())/C k i M ?-1的余数,n(i)为一组在[-0.5,0.5]区间的均值为0的伪随机信号。令C =+239,M =212,i=0,1,2,…499。通过任意给定k(0),用上式可以产生一组伪随机信号。 2.用中心极限定理产生一组服从正态分布的伪随机信号 中心极限定理:设被研究的随机变量可以表示为大量独立随机变量的和,其中每个随机变量对总和只起微小作用,则这个随机变量是服从正态分布的。 产生一个长度为500的伪随机信号,其中每一项为L 个伪随机变量和。检验落在 []σσ+-,内概率68%,[]-+22σσ,内概率95.4%,[]-+33σσ,内概率99.7%。 () σ2 20 1 1= =-∑N n i i N 3.用自相关函数检验上述信号 对于产生的伪随机信号,其自相关函数是δ函数,k=0时函数值取得最大。 ()()() R k N n i n i k n i N k = *+=-∑1 四.实验流程框图 按照实验方法用matlab 实现

第三章 随机信号分析 总结

第三章 总结 对随机的东西只能作统计描述。 1).统计特性( 概率密度与概率分布); 2).数字特征( 均值、方差、相关函数等)。 节1 随机过程概念 一、随机过程定义 二、随机过程统计特性的描述 1.随机过程的概率分布函数 2.随机过程的概率密度函数 三、随机过程数字特征的描述 1、数学期望: 性质:① E[k] = k ② E[ξ(t) + k] = E[ξ(t)] + k ③ E[ kξ(t)] = k E[ξ(t)] ④ E[ξ 1(t) + …+ξ n (t)] = E[ξ 1 (t)] + …+E[ ξ n (t)] ⑤ ξ 1(t)与ξ 2 (t)统计独立时,E[ξ 1 (t)ξ 2 (t)] = E[ξ 1 (t)] E[ξ 2 (t)] 2、方差: 性质:① D[k] = 0 ② D[ξ(t) + k] = D[ξ(t)] ③ D[kξ(t)] = K2 D[ξ(t)] ④ξ 1(t)ξ 2 (t)统计独立时, D[ξ 1 (t)+ξ 2 (t)] = D[ξ 1 (t)] + D[ξ 2 (t)] 3、相关函数和协方差函数 节2 平稳随机过程概念 一、定义:狭义平稳、广义平稳 广义平稳条件:

① 数学期望与方差是与时间无关的常数; ② 相关函数仅与时间间隔有关。 二、性能讨论 1、各态历经性(遍历性):其价值在于可从一次试验所获得的样本函数 x(t) 取时间平均来得到它的数字特征(统计特性) 2、相关函数R(τ)性质 ① 对偶性(偶函数) R(τ)=E[ξ(t)ξ(t+τ)]=E[ξ(t 1-τ)ξ(t 1 )]= R(-τ) ② 递减性 E{[ξ(t) ±ξ(t+τ)]2} = E[ξ2(t)±2 ξ(t) ξ(t+τ) + ξ2(t+τ) ] = R(0)±2R(τ) + R(0) ≥ 0 ∴R(0)≥±R(τ) R(0)≥|R(τ)| 即τ=0 处相关性最大 ③ R(0)为 ξ ( t ) 的总平均功率。 ④ R(∞)=E2{ξ(t)}为直流功率。 ⑤ R(0) - R(∞)= E[ξ 2(t)]- E2[ξ(t)]=σ2为交流功率 3、功率谱密度Pξ(ω) 节3 几种常用的随机过程 一、高斯过程 定义: 任意n维分布服从正态分布的随机过程ξ(t)称为高斯过程(或正态随机过程)。 ① 高斯过程统计特性是由一、二维数字特征[a k, δ k 2, b jk ]决定的 ②若高斯过程满足广义平稳条件,也将满足狭义平稳条件。 ③若随机变量两两间互不相关,则各随机变量统计独立。二、零均值窄带高斯过程 定义、零均值平稳高斯窄带过程 同相随机分量 ξ c (t), 正交随机分量 ξ s (t) 结论:零均值窄带高斯平稳过程 ξ( t ) ,其同相分量 ξ c ( t ) 和正交分量 ξ s ( t )

实验二 系统对随机信号响应的统计特性分析、功率谱分析及应用实验

大连理工大学实验预习报告 学院(系):信息与通信工程学院 专业: 电子信息工程 班级: 电子1401 姓 名: ****** 学号: ****** 实验时间: 2016.11.4 实验室: c221 指导教师: 郭 成 安 实验II :系统对随机信号响应的统计特性分析、功率谱分 析及应用实验 一、 实验目的和要求 掌握直接法估计随机信号功率谱的原理和实现方法;掌握间接法估计随机信号功率谱的原理和实现方法;掌握系统对随机信号响应的统计特性分析及仿真实现方法。熟悉MATLAB 信号处理软件包的使用。 二、 实验原理和内容 (一)实验原理: 1. 直接法估计随机信号功率谱原理 直接法又称为周期图法,它是把随机信号 x(n)的N 点观察数据xN(n)视为一能 量有限信号, 直接取 xN(n)的傅里叶变换,得到 XN(ej ω),然后取其模值的平方,并除以 N ,作为对 x(n)真实 的功率谱 P(ej ω)的估计。工程上,常使用离散 Fourier 变换(DFT ,编程上使用其快速算法 FFT ),即 PX(k)=2|)k (|1N X N 进行计算。 2. 间接法估计随机信号功率谱 间接法的理论基础是 Wiener-Khintchine 定理,具体的实现方法是先由 xN(n) 估计出自相关函数(m)r ?,然后对(m)r ?求傅里叶变换得到 xN(n)的功率谱,记之为 XN(ej ω),并以此作为对真实功率谱 P(ej ω)的估计。工程上,常使用离散 Fourier 变换(DFT ,编程上使用其快速算法FFT ),即122)(?)(+--=∑= M km j M M m X e m r k P π,1||-≤N M ,进 行计算。因为由这种方法求出的功率谱是通过自相关函数间接得到的,所以又称为间接法或 Blackman-Tuckey(BT)法,该方法是 FFT 出现之前 常用的谱估计方法。 3. 时域中系统对随机信号响应的统计特性分析及仿真 根据系统卷积性质,计算系统输出信号的统计特性。有如下性质:

海杂波的建模与仿真

信息与通信工程学院 综合实验(1)设计报告海杂波的建模与仿真 学号:S310080092 专业:通信与信息系统 学生姓名:韩鹏 任课教师:穆琳琳 2011年6月

海杂波的建模与仿真 韩鹏 摘要:海杂波的建模与仿真是雷达目标模拟中环境模拟的重要部分。仿真得到的海杂波数据良好与否是雷达最优化设计及雷达信号处理的关键。海杂波的存在对雷达的目标检测、定位跟踪的性能都将产生影响,因此,在海杂波为主要干扰源的情况下,有必要对雷达探测区域内的海杂波特性进行分析,本文给出了海杂波的一些相关特性和几种分布下海杂波的模型以及两种海杂波的模拟方法,一种是无记忆非线性变换法(Zero Memory Nonlinearity,ZMNL),另一种是球形不变随机过程法(Spherically Invariant Random Process,SIRP),最后给出ZMNL模拟方法的仿真。 关键词:海杂波随机过程建模与仿真ZMNL SIRP 一、实验目的 海面上反射回来的不需要的杂波称为海杂波。海杂波的存在对雷达的目标检测、定位跟踪的性能都将产生影响,因此,在海杂波为主要干扰源的情况下,有必要对雷达探测区域内的海杂波特性进行分析,建立准确的海杂波模型,一方面可以为雷达系统仿真提供逼真的杂波环境的模型;另一方面则有助于雷达杂波滤波器的设计和实现,提高抑制杂波的能力,提高雷达的探测性能。因此,海杂波的建模与仿真具有重要意义。 二、实验内容简介 2.1海杂波的概念和统计性质 2.1.1海杂波的概念 大家都知道,雷达系统的主要功能是目标检测,即发现目标。还可以在一个或者多个雷达坐标上,粗略的确定目标的位置。雷达可以对目标进行重复测量的方法,沿目标轨道对目标进行跟踪,可以外推到未来位置,估计拦截点或落点,也可以向后外推,估计发射点。 但是当雷达探测位于陆地或海面上的目标时,雷达接受的不仅有目标的回波,而且叠加有不需要的被照射区域的回波,这部分回波在雷达术语里就被称为杂波。雷达杂波就是雷达波束在物体表面形成的后向散射,海杂波就是海面上反射回来的杂波,它表现出更强的动态特性。海面作为雷达波的反射面,其性能十分复杂,海风、海流、海浪、潮汐和不同的水质等都对海杂波的产生有着不同的影响。 2.1.2海杂波的统计性质 雷达接受信号一般包括下面三个组成部分:1)有用的雷达目标回波;2)由于电干扰和雷达设备本身等形成的噪声;3)地面、海面及空中的云雨、干扰箔条等背景形成的杂波。由于杂波信号的强度远远超过目标信号,并且杂波谱常常接近于目标,同时还受雷达设备参数的影响,这些因素增大了雷达对杂波的处理难度。

信息熵与图像熵计算

p (a i ) ∑ n 《信息论与编码》课程实验报告 班级:通信162 姓名:李浩坤 学号:163977 实验一 信息熵与图像熵计算 实验日期:2018.5.31 一、实验目的 1. 复习 MATLAB 的基本命令,熟悉 MATLAB 下的基本函数。 2. 复习信息熵基本定义, 能够自学图像熵定义和基本概念。 二、实验原理及内容 1.能够写出 MATLAB 源代码,求信源的信息熵。 2.根据图像熵基本知识,综合设计出 MATLAB 程序,求出给定图像的图像熵。 1.MATLAB 中数据类型、矩阵运算、图像文件输入与输出知识复习。 2.利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。所发出 的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。不能作为整个信源的信息测度,因此定义自信息量的数学期望为信源的平均自信息量: H (X ) = E [ log 1 ] = -∑ p (a i ) log p (a i ) i =1 信息熵的意义:信源的信息熵H 是从整个信源的统计特性来考虑的。它是从平均意义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个。不同的信源因统计特性不同,其熵也不同。 1. 学习图像熵基本概念,能够求出图像一维熵和二维熵。 图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。图像的一维熵表示图像中灰度分布的聚集特征所包含的信息量,令 P i 表示图像中灰度值为 i 的像素所占的比例,则定义灰度图像的一元灰度熵为: 255 H = p i log p i i =0

地海杂波对雷达成像的影响——幅度统计分布

地杂波对雷达成像的影响 背景 在雷达系统的设计和分析、微波遥感资料的研究过程中,人们需要了解地物回波特性。特别是对于机载雷达,其必须在强杂波环境监测目标。所以研制机载雷达时首先要明确杂波模型,以便更好地分析强杂波环境下的目标成像问题。 一般的地物分类可包括:楼群、草地、树林、庄稼地、湖泊等。此案例将分析湖泊地形的杂波,并模拟其对ISAR成像的影响。 基于统计特性的地海杂波建模 地海杂波幅度统计模型: 地海杂波统计模型主要有:Raylaigh分布、Log-Normal分布、Weibull分布、复合K分布、混合高斯分布。 Raylaigh分布杂波幅度概率密度函数为: 其中x为随机数,γ为Raylaigh参数。 Log-Normal分布杂波幅度概率密度函数为: 其中u为阶梯函数,为尺度参数,δ为形状参数。 Weibull分布杂波幅度概率密度函数为:

其中b为形状参数,u为阶梯函数。 复合K分布杂波幅度概率密度函数为: 其中x为随机数,K为得二阶修正v阶贝塞尔函数,Γ为gamma函数σ 为尺度参数。 混合高斯分布: 设{}为二阶零均值高斯混合噪声序列,则该序列可看作是概率从。高斯μ()中得到的样本之和,m维高斯混合模型概率密度函数如下:, 地海杂波实验值拟合算法(统计模型参数估计方法) 常见拟合算法:矩估计法(MOM)、最大似然估计法(ML)、最小二乘法(LS)、遗传算法(GA)。 杂波分析流程图

根据实验、杂波模型拟合分析,各种地面情况的参数估计方法归纳如下表: 在对比各种参数估计方法的吻合度后得出5种类型地杂波对应的最佳策略: 案例:湖泊杂波建模 湖泊杂波生成: 下图为湖泊杂波不同方法建模的D值,D值越小说明建模方法越接近实验值。由下图可见,weibull分布最适合湖泊杂波建模。

随机信号分析(常建平,李林海)课后习题答案第四章习题讲解

4-4设有限时间积分器的单位冲激响应 h(t)=U(t)-U(t -0.5) 它的输入是功率谱密度为 210V Hz 的白噪声,试求系统输出的总平均功率、交流平均功率和输入输出互相关函数 ()() ()()() 2 222 1:()2[()][()]0Y Y Y Y XY X P E Y t G d D Y t E Y t m E Y R R R h ωω πτττ∞ -∞??==????=-==??=*?思路 ()()()10()() 10()10[()(0.5)] ()()10[()(0.5)] XY X YX XY R R h h h U U R R U U τττδτττττττττ=*=*==--=-=----解:输入输出互相关函数 000 2 0.0 25 ()0()10()10()0()()()()10(()00[()(0.)() 10()()()10()()10101100.55 [()5)]](0)X X X Y X Y X Y Y X t m G R m m h d R U R h h h h h h d R h h d d d E Y t R U ωτττττττττλτλδτλλλ λλλλ μ∞ ∞ ∞∞ ==?====**-=*-=+=+=-=-=?=?==????? 时域法 平均功是白噪声,,, 率面积法 : 22 5 [()][()]5 Y Y D Y t E Y t m ==-=P 交流:平均功率 ()h t 白噪声 () Y R τ

()()()2 14 12 24 2 22Y 2 (P1313711()2415()()()102 42411 5112522242j j j Y X Y U t U t Sa e H e Sa G G H e Sa Sa G d Sa S d a d ωτωωωτ ττωωωωωωωωωωωπ π ωωπ - --∞ ∞ ∞ -∞ ∞--∞??--?? ??? ?? -???= ? ?? ???? === ? ? ???? ?? = = =??= ? ? ?? ??? ??P 矩形脉冲A 的频谱等于A 信号与线性系统书式域法 ) 频()()22 20000 [()][()][()]5 Y X Y Y m m H H D Y t E Y t m E Y t =?=??=-===P 交直流分量为平均功率:流

图像的直方图是图像的重要统计特征

图像的直方图是图像的重要统计特征,它可以认为是图像灰度密度函数的近似。直方图虽然不能直接反映出图像内容,但对它进行分析可以得出图像的一些有用特征,这些特征能反映出图像的特点。当图像对比度较小时,它的灰度直方图只在灰度轴上较小的一段区间上非零,较暗的图像由于较多的像素灰度值低,因此它的直方图的主体出现在低值灰度区间上,其在高值灰度区间上的幅度较小或为零,而较亮的图像情况正好相反。通常一幅均匀量化的自然图像的灰度直方图在低值灰度区间上频率较大,这样的图像较暗区域中的细节常常看不清楚。为使图像变清晰,可以通过变换使图像的灰度动态范围变大,并且让灰度频率较小的灰度级经变换后,其频率变得大一些,使变换后的图像灰度直方图在较大的动态范围内趋于均化。事实证明,通过图像直方图修改进行图像增强是一种有效的方法。 均匀量化的自然图像的灰度直方图通常在低值灰度区间上频率较大,使得图像中较暗区域中的细节常常看不清楚。为了使图像清晰,可将图像的灰度范围拉开,并且让灰度频率较小的灰度级变大,即让灰度直方图在较大的动态范围内趋于一致。 前面介绍的直方图均衡化处理方法从实验效果看还是很不错的,从实现算法上也可以看出其优点主要在于能自动整幅图像的对比度,但具体的增强效果也因此不易控制,只能得到全局均衡化处理的直方图。在科研和工程应用中往往要根据不同的要求得到特定形状的直方图分布以有选择的对某灰度范围进行局部的对比度增强,此时可以采用对直方图的规定化处理,通过选择合适的规定化函数取得期望的效果。 a=imread('花.jpg'); subplot(2,2,1); imshow(a); title('原始图像'); subplot(2,2,2); a=rgb2gray(a); imhist(a); title('原始图像直方图'); subplot(2,2,3);

图像目标提取及特征计算

摘要 对图像进行研究和应用时,人们往往对图像中的某些部分感兴趣,这些部分常被称为目标或对象 目标或对象特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 本课设需要解决的问题是,利用阈值分割方法,对该图像进行分割,得到提取那个目标后的二值图像,计算该目标的面积、周长、中心坐标等三个参数。阈值分割采用的是全局阈值分割方法,而面积、周长的计算则是先通过将图像转换成二值图像,在通过计算二值图像像素点的方式求取。 关键词:阈值分割,边缘检测,像素点

1绪论 目标的特征提取是图像处理和自动目标识别(ATR)中的一个重要的研究课题,是解决图像识别问题的难点和关键。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。 2 设计原理 2.1 常用的特征提取的方法 提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。 本课程设计是采用的第一种方法,即先对该图像进行分割,得到提取那个目标后的二值图像,计算该目标的面积、周长、中心坐标等三个参数。阈值分割采用的是全局阈值分割方法,而面积、周长的计算则是先通过将图像转换成二值图像,在通过计算二值图像像素点的方式求取。其中计算周长时,先需要对二值图像进行边缘检测,然后再统计其像素点。 2.2 阈值分割原理 图像阈值化分割是一种最常用,同时也是最简单的图像分割方法,它特别适用于目标和背景占据不同灰度级范围的图像[1]。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征

相关文档
最新文档