轮系和减速器
机械基础第七章第五节教案:轮系05(世福版)

课程机械基础班级15级加工制造升学1、2班任课教师阙建军钟的齿轮系统大钟的齿轮系统某发动机传动系统《闲置的机器》--《摩登时代》传动比一般不大于5-7 可实现较大的传动比轮系的功用:用于原动机和执行机构之间的运动和动力传(一)轮系的类型、定轴轮系每个齿轮的几何轴线都是固定的.)平面定轴轮系:各齿轮在同一个平面或互相平行的平面内运动。
特点:均是由圆柱齿轮组成,各齿轮轴线平行。
含蜗杆的定轴轮系.swf空间定轴轮系2)周转轮系若轮系中至少有一个齿轮的几何轴线不固定,而绕其它齿轮的固定几何轴线回转,则称为周转轮系。
周转轮系是由中心轮、行星轮和行星架组成的。
在行星轮系中,与行星轮相啮合且轴线位置固定的齿轮称为中心;内齿中心轮称为齿圈;齿轮同时与中心轮和齿圈相啮合,其既做自转又做公转称为行星轮;行星轮系与差动轮系两种。
第一课时.可获得很大的传动比.可作较远距离的传动.可以方便地实现变速和换向要求.可以实现运动的合成与分解一对齿轮传动的传动比不能过大(一般i12=3~5,i max≤8),而采用轮系传动可以获得很大的传动比,以满足低速工作的要求。
.可以方便地实现变速和变向要求滑移齿轮变速机构利用中间轮变向机构转向用画箭头的方法表示,主、从动轮转向相反时,两箭头指向相反。
2,圆柱齿轮啮合-内啮合主、从动轮转向相同时,两箭头指向相同。
两箭头指向或相背啮合点。
4,蜗杆蜗轮啮合传动(二)定轴轮系传动比计算轮系中输入轴的角速度(或转速)与输出轴的角速度(或转速)之比,即:和k分别表示输入和输出轮;也等于各对啮合齿定轴轮系的传动比:等于各对啮合齿轮传动比的连乘积;其大小等于各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比。
=各级传动比的连乘积分析如图所示轮系传动路线。
Z1=1,Z 2=48,Z 3=24,Z 4=36,求轮系的传动比。
Z7第三课时当首轮(或末轮)的转向为已知时,其末轮(或首轮)的转向平面定轴轮系:各齿轮在同一个平面或互相平行的平面内运动。
机械设计基础第八章

27
蜗杆蜗轮啮合
n1 z 2 i12 n2 z1
方向如图中箭头所示
28
定轴轮系
n1 i14 ? n4
29
n1 z2 i12 n2 z1
i23 z3 n2 n3 z2
n3 z4 i34 n4 z3
30
n2 n2
n1 n2 n3 i12 i23 i34 n2 n3 n4 z3 z2 z4 ( ) ( ) z1 z 2 z3
时针(h)
分针(m)
12
滚齿机:实现轮坯与滚刀范成运动。轴I的运动和 动力经过锥齿轮1、2传给滚刀,经过齿轮3、4、5、 6、7和蜗杆传动8、9传给轮坯。
13
6. 运动的合成和分解
运动的合成 将两个独立的转动合成为一个转动。 运动的分解 将一个转动分解成两个独立的转动。
14
二、轮系的分类
根据轮系在传动中各齿轮轴线的 位置是否固定,将轮系分类。
A 13
z2 z3 101 99 (1) z1 z2 100 100 n1 101 99 1 1 nA 100 100 10000
2
iA1 nA n1 10000
系杆转10000圈,齿轮1同向转1圈 四个齿轮的齿数相差不多,但可得到大的传动比
52
如果齿轮3的齿数由99改为100
注意的问题
(1)n1、nk、nH必须 是轴线平行的相应构 件的转速; (2)各转速代入公式 时,应带有本身的正
n1 nH i nk nH
H 1k
号或负号。
49
例题6 如图所示行星轮系,各轮 齿数为z1=40, z2=20,z3=80。 试计算中心轮1和系杆H的传动 比i1H。
机械设计基础习题解答6-15

第六章 齿轮传动思考题和练习题6-1渐开线齿轮具有哪些啮合特点?解:能满足定传动比传动的要求,具有可分性,渐开线齿廓之间的正压力方位不变。
6-2什么是节圆?什么是分度圆?二者有什么区别?解:节圆是一对齿轮啮合时,以轮心为圆心,过节点所做的圆,即节点在齿轮上所走的轨迹圆;分度圆则是为了便于计算齿轮各部分的尺寸,在介于齿顶圆和齿根圆之间,人为定义的一个基准圆。
每个齿轮都有自己的分度圆,且大小是确定不变的;而节圆是对一对相啮合的齿轮而言的,节圆的大小随中心距的变化而变化。
6-3渐开线齿轮的五个基本参数是什么?解:模数、齿数、压力角、齿顶高系数、顶隙系数。
6-4标准齿轮传动的实际中心距大于标准中心距时,下列参数:分度圆半径、节圆半径、基圆半径、分度圆压力角、顶隙等哪些发生了变化?哪些不变?解:节圆半径、顶隙变大,分度圆半径、基圆半径、分度圆压力角不变。
6-5已知一对直齿圆柱齿轮的传动比5.112=i ,中心距a =100mm ,模数m =2mm 。
试计算这对齿轮的几何尺寸。
解:5.112=i , a =100mm , m =2mm ,5.1=12Z Z ,100=2)+(21Z Z m 401=z ,602=z8040211=⨯=⨯=z m d mm ,12060222=⨯=⨯=z m d mm84480211=+=+=a a h d d mm ,1244120221=+=+=a a h d d mm 。
6-6相比直齿圆柱齿轮,平行轴斜齿圆柱齿轮有哪些特点?解:一对斜齿圆柱齿轮啮合传动时,其轮齿间的接触线是倾斜的,齿面接触是由一个点开始,逐渐增至一条最长的线,再由最长的接触线减短至一个点而后退出啮合的。
因此,相比直齿圆柱齿轮,斜齿圆柱齿轮传动平稳,冲击和噪声较小,又由于同时啮合的齿对数多(重合度大),故承载能力也高。
但斜齿轮存在派生的轴向力。
6-7齿轮的轮齿切制方法有哪些?各有什么特点?解:齿轮可以通过压铸、热扎、冷扎、粉末冶金、冲压等的无屑加工方法和切削等方法来加工,其中切削加工方法具有良好的加工精度,是目前齿形加工的主要方法。
轮系、减速器

二、周转轮系的构件
ω3
O2 3 2 H O1 ωH O3 OH ω1 4 O1 O3 1 3
2 O2 H 1 4 OH
行星轮2
行星架(系杆)H 基本构件: 中心轮 1、3
轴线与主轴线重合而又承 受外力矩的构件称基本构 件
主轴线——行星架绕之转动的轴线。 2K-H(K—中心轮;H—行量架;V—输出构件) 还有其他:3K,K-H-V
ω1 = ω1′ ω3 = ω3′
例2: 电动卷扬机减速器 Z1=24,Z2=48,Z2'=30, Z3=90,Z3'=20,Z4=30, Z5=80,求i1H
(H,5为一整体)
2 1
H 3 5 4 3' H为 输 出 件
2'
(一)1,2-2',3,H——周转轮系 3',4,5——定轴轮系 (二)
④实现多分路传动 机械式钟表机构就是一例 ⑤实现运动的合成与分解 利用差动轮系的双自由度特点, 可把两个运动合成为一个运动。 图示的差动轮系就常被用来进 行运动的合成。
例1:已知各轮齿数, 求传动比i1H 1、分析轮系的组成 1,2,2',3——定轴轮系 1',4,3',H——周转轮系 2、分别写出各轮系的传动比 定轴轮系 : i13 =
ZZ ω1 = (1)2 2 3 Z1Z2′ ω3
输入
3' 2 1 3 2' 4 H 1' 输出
4、联立求解:
Z3′ Z1′ + ω Z1′ i1H = 1 = ωH 1+ Z1Z2′Z3′ Z2Z3
ω ωH Z H i3′1′ = 3′ = (1) 1′ 周转轮系 : ω1′ ωH Z3′
3、找出轮系之间的运动关系
汽车行驶系的组成和作用

汽车行驶系的组成和作用
汽车行驶系统由发动机、变速箱、减速器、轮系、悬挂系统和操纵系统等组成,其作用是驱动汽车前进,并保持汽车行驶时的稳定性,减少驾驶员及乘客在行驶过程中对舒适性及安全性的影响。
1、发动机:汽车的动力源,将燃料消耗能量转化为机械能,驱动汽车行驶。
2、变速箱:其作用是将发动机的输出动力从较高的转速转换为较低的转速和较大的扭矩,从而根据不同的行驶需求调节传动比以达到节省能源的目的,以及达到舒适和安全的行驶实现。
3、减速器:减速器主要通过减小行车轮或拖拉机轮胎和车轮之间的转速差,来实现汽车慢速前进或停车安全运行。
4、轮系:轮系是汽车前进的重要组成部分,它与发动机、变速箱和减速器搭配使用,负责汽车的行驶和制动。
5、悬挂系统:悬挂系统主要用于支撑汽车的车身,降低路面不平时的振动,并能调整驾驶模式,减少车身的晃动,提供舒适的行车体验。
6、操纵系统:操纵系统是汽车操纵的重要组成部分,包括方向盘和节流阀,通过方向盘操纵汽车前后左右的行驶路线和节流阀调节油门,调整车辆的速度,达到安全驾驶的目的。
第六章轮系和减速器

§6.1 轮系及分类 §6.2 定轴轮系 §6.3 行星轮系 §6.4 轮系的功用 §6.5 减速器
6.1 轮系及分类
§6.1 轮系及分类
在复杂的现代机械中,为了满足各种不同的需要,常常 采用一系列齿轮组成的传动系统。这种由一系列相互啮合的 齿轮(蜗杆、蜗轮)组成的传动系统即齿轮系。
如图所示车床上走 刀丝杆的三星轮换向机 构,扳动手柄可实现两 种传动方案。
6.4 轮系的功用
四、实现变速传动
在主动轴转速不变的情况 下,利用轮系可使从动轴获 得多种工作转速。如右图所 示的汽车变速箱,可使输出 轴得到4个档次的转速。
6.4 轮系的功用
五、用于对运动进行合成与分解
在差动齿轮系中,当给定两个基本构件的运动后,第三个构件的 运动是确定的。换而言之,第三个构件的运动是另外两个基本构件运 动的合成。
6.4 轮系的功用
二、获得大的传动比
如果采用多对齿轮组成的 齿轮系则可以很容易就获得较 大的传动比。只要适当选择齿 轮系中各对啮合齿轮的齿数, 即可得到所要求的传动比。在 行星齿轮系中,用较少的齿轮 即可获得很大的传动比,如右 图所示的轮系。
iH1 1000
6.4 轮系的功用
三、实现换向传动
在主动轴转向不变 的情况下,利用惰轮可 以改变从动轴的转向。
右图所示平面定轴齿轮系中各对齿轮 的传动比为:
i 12
z 1 2
2
z1
z i 2'3
'
2
3
3
Z
' 2
z 3' i 3'4
4
4
Z3/
i 45
z 4 5
5
z4
电子课件-《机械基础(第六版)》-A02-3658 6第六章 轮系

三、实训设备及工具
单级齿轮减速器一台 钳工工作台 活扳手 手锤 旋具 其他钳工拆装工具
1.分析结构,拟定拆卸步骤
(1)单级齿轮减速器主要由箱体和箱盖, 齿轮轴、输出轴及其上的齿轮、轴承、定 位套等零件组成 (2)拆卸时,先拆卸箱盖及其上零件,然 后拆卸齿轮轴组件和输出轴组件等
2.拆卸箱盖
(1)拆卸减速器前,首先要观察减速器 的外部结构,分析其上各零件的作用
机械基础
第六章 轮 系
第六章 轮 系
§6—1 轮系分类及其应用特点 §6—2 定轴轮系传动比及计算 §6—3 实训环节——减速器的拆装
第六章 轮 系
为满足机器的功能要求和实际工作需要,所采 用的多对相互啮合齿轮组成的传动系统称为轮系
三级齿轮减速器
第六章 轮 系
§6—1 轮系分类及其应用特点
一、轮系的分类
第六章 轮 系
§6—2 定轴轮系传动比及计算
一、定轴轮系中各轮转向的判断
若外啮合齿轮的对数是偶 数,则首轮与末轮的转向相 同;若为奇数,则转向相反
若轮系中含有锥齿轮、蜗轮蜗杆或齿轮齿 条时,只能用标注箭头的方法判断旋向
二、传动比
1.传动路线分析
运动和动力由轴 Ⅰ经轴Ⅱ传到轴
Ⅲ
例1 分析轮系的传动路线,并判断轴Ⅵ的旋向 解
(2)用手锤轻轻敲击定位 销的低端,拆下定位销
(3)用活扳手将箱体与箱盖 上的连接螺栓上的螺母拆下
(4)将箱盖及其上零件拆下
(5)观察箱体内各零部件的结构及位置
3.拆卸齿轮轴和输出轴
(1)将齿轮轴和输 出轴及轴上零件随轴 一起从箱体中取出
(2)拆卸齿轮轴和输 出轴上的零件
4.装配减速器
(1)将零件清洗、擦拭干净 (2)将齿轮轴和输出轴上的零件安装好 (3)将透盖安装到箱体上 (4)安装齿轮轴组件和输出轴组件,调整位置
轮系

5、结构小、重量轻时,可实现大功率传动
图7-8所示的周转轮系,在同一圆周上均匀布着三个行星轮。整个 轮系的承载能力得到了提高,而齿轮的尺寸却较小;同时,行星轮 公转产生的惯性力也得到了相应的平衡,这个轮系特别适合于飞行 器。
图7-8 周转轮系
§2 定轴轮系传动比
一、定轴轮系的传动比
轮系的传动比是指轮系中,输入轴与输出轴的角速度(或转速)之 比。轮系传动比的计算,包括计算传动比的大小,以及确定两轴的 相对转动方向。 一对圆柱齿轮传动比可用下式表示
例 如图所示的周转轮系中,各齿轮齿数为z1=27,z2=17,z3=61,转 速n1=6000r/min,转向为顺时针。求传动比i1H和和行星架H的转速 nH、行星轮2的转速n2及它们的转向。 解:
设顺时针转向为正,根据公式代入数据得
解得nH=1840r/min 正号说明轮1和行星架的转向相同,都为顺时针
采用行星轮系,可以在使用较少齿轮的情况下,得到很大的传动比。
图7-4
图7-5
4、实现运动的合成和分解
运动的合成是将两个输入运动合为一个输出运动;运动的分解是将 一个输入运动分为两个输出运动。运动的合成和分解都可用差动轮 系实现。
(1)运动的合成 如图11-6所示的加法机构,其运动的合成常采用 锥齿轮组成的差动轮系来实现。一般取z1=z3,则可得到nH=n1+n3, 说明输出构件(行星架H)的运动是两个输入构件(齿轮1和3)运 动的合成。这种合成运动广泛用于机床、计算机构等机械装置中。 (2)运动的分解 图11-7所示是汽车后桥差速器,其中由齿轮1、2、 3和4(行星架H )组成的主体部分与图11-7所示轮系相同,是差动 轮系。 图7-7 汽车后桥 差速器 图7-6 加法机构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖负号机构:转化轮系的传动比为“–”的周转轮系
注意事项:
1. 上式只适用于转化轮系首末两轮轴线平行的情况。 2. 齿数比之前要加“+”号或“–”号来表示各对齿轮之间的转 向关系。
3. 将ω1、ωn、ωH 的数值代入上式时,必须同时带“±”号。
4、行星轮系
设固定轮为n,即ωn=0,则周转轮系可改写成 :
Z
' 2
n z i n z 45
4 5
5
4
由于 n2 n2' n3 n3' 以上各式连乘可得:
i i i i 12
2'3
3'4
n1n2' n3' n4 (1)3 45 n2n3n4n 5
z2 z3z4 z5 z1z2' z3' z4
(1)3
z2 z3z5 z1z2' z3'
所以
i i i i 12' 3' 4 (1)3 z2 z3 z4 z5
右
旋
蜗 杆
2
1
左
旋
蜗 杆
2
1
2
1
3
[例题一] 在如图所示的齿轮系中,已知 z1 z2 z3' z4 20 ,齿轮1、3、3’
和5同轴线,各齿轮均为标准齿轮。若已知轮1的转速n1=1440r/min,求轮 5的转速
[解]
该齿轮系为一平面定轴齿轮系,齿轮
2和4为惰轮,齿轮系中有两对外啮合齿
轮,根据公式可得
中心轮1或3的角速度关系可以表示为:
i1H2
1 H 2 H
z2 ; z1
i
H 23
2 H 3 H
z3 z2
2. 对于由圆锥齿轮所组成的周转轮系,其行
星轮和基本构件的回转轴线不平行。
H 2
2 H
i1H2
1 H 2 H
上述公式只可用来计算基本构件的角速度,而不能
用来计算行星轮的角速度。
§12-2-2 复合轮系的传动比
对于复合轮系,既不能将其视为 单一的定轴轮系来计算其传动比,也 不能将其视为单一的周转轮系来计算 其传动比。而唯一正确的方法是将它 所包含的定轴轮系和周转轮系部分分开, 并分别列出其传动比的计算公式,然后 进行联立求解。
因此,复合轮系传动比的计算方 法及步骤可概括为:
1)正确划分轮系; 2)分别列出算式; 3)进行联立求解。
n5
n1(1)2
z1
z
'
3
z3 z5
1440 20 20 r / min 60 60
160r / min
n5 为正值,说明齿轮5与齿轮1转向相同。
例二:已知图示轮系中各轮齿数,求传 动比 i15 。
Z2 Z’3
解:1.先确定各齿轮的转向
过轮
2. 计算传动比
Z4
i15 = ω1 /ω5
=
z2 z1
3-3’将两者连接
B-5-4-3’为周转轮系
定轴部分: i13=ω1/ω3 =-z3/ z1
周转部分: iB3’5=(ω3’-ωB)/(0-ωB)=-z5/ z3’ 连接条件: ω3=ω3’
动画
联立解得:
i1B
1 B
z3 (1 z5 )
z1
z3'
3
J
2A
1
2) 刹住K时 5-A将两者连接
A-1-2-3为周转轮系 B-5-4-3’为周转轮系
i 15
n1 n5
(1)2
z3z5 z1 z3'
因齿轮1、2、3的模数相等,故它们之间
的中心距关系为
m 2
( z1
z2
)
m 2
(z3
z2
)
因此: z1 z2 z3 z2
同理: 所以:
z3 z1 2z2 20 2 20 60 z5 z3' 2z4 20 2 20 60
z2z3 z1 z 2
z3 z1
1 nH 90 3 1 nH 30
1 nH 3 3nH
nH
1 2
i1H
n1 nH
2
(负号表明二者的转向相反)
例2:已知齿数z1=30, z2=20, z2’= z3 = 25, n1=100r/min, n3=200r/min。 求nH。
2 2’
2
解: 2’
i1H3
n1 nH n3 nH
z2 z3 z1 z2'
H
1
3
1) n1与n3 同向, n1=100r/min n3=200r/min代入,可得
13
i1H3
100 nH 200 nH
20 25 30 25
nH=-100r/min
2) n1与n3 反向,即用 n1=100r/min,n3= -200r/min代入,
i16 = —ZZ—21 ZZ—43 ZZ—65
i18 =
Z2 Z4 Z6 Z8 Z1 Z3 Z5 Z7
§12-2 周转轮系的传动比
1、周转齿轮系的转动特点 由行星轮、中心轮、转臂和机架组成。行星轮绕自身几何
轴线回转(自转),同时随转臂绕中心轮轴线回转(公转)。
3
3 2
H
行星轮 转臂 中心轮
2
OH
设轮系中有m对外啮合齿轮,则末轮转向为(-1)m
i1m= (-1)m 2)画箭头
所有从动轮齿数的乘积 所有主动轮齿数的乘积
外啮合时:两箭头同时指向(或远离)啮 合点。头头相对或尾尾相对。
内啮合时:两箭头同向。
ω2 转向相反
p
2
转向相同
vp
p vp
ω1
1 2
ω2
11
2 2
对于空间定轴轮系,只能用画箭头的方 法来确定从动轮的转向。 1)锥齿轮 2)蜗轮蜗杆
i1H3
z2z3 z1 z2
101 100 100 100
10100 10000
i1H
1 10100 1 10000 100
O1
iH 1 100
当系杆转100转时,轮1反向转1转。
2 2’
H
OH
1 K(3)
行星轮系中从动轮的转向不仅与主动轮的转向有关, 而且与轮系中各轮的齿数有关。
1. 对于由圆柱齿轮组成的周转轮系,行星轮2与
2 4
O
HO
1 3
1)基本周转轮系的组成:
1、机架
2、行星轮:几何轴线是运动的,至少有一个或有多个
基 3、中心轮(太阳轮):围绕着固定轴线回转,轴线固定并
本 构
与主轴线重合的齿轮
件 4、系杆(转臂):支持行星轮的构件,用“H”表示。只有一个
2)周转轮系的分类
(1)根据其自由度的数目分: ❖差动轮系:
自由度为2的周转轮系。 F=3n-2PL-PH=3×4-2 ×4-2=2 ❖行星轮系: 自由度为1的周转轮系。 F=3n-2PL-PH=3×3-2 ×3-2=1 (2)根据基本构件的组成分:
❖2K-H型:有2个中心轮。
❖3K型:有3个中心轮。
2K-H 型周转 轮系
3K型 周转轮
系
3.复合轮系:
既包含定轴轮系部分,又包含周转轮系部分;或是由几 部分周转轮系组成的复杂齿轮传动系统。
已知:z1=30, z2=20, z2’=30, z3 = 25, z4 = 100
n1=100r/min,
求i1H。
1)分清轮系:1-2为两定轴轮系,2’-3-4, H为行星轮系。
2)分列方程
3
n1 z2
n2' nH z3z4 , 1
H
n2
z1
n4 nH
z 2'z 3
2
2'
3)联立求解:
轮系的分类:
1.定轴轮系(普通轮系) 轮系运转时,各齿轮轴线的位置都相对机架固定不动的
齿轮传动系统。
1、平面定轴轮系: 在定轴轮系中,所有齿轮的
轴线均平行。
2、空间定轴轮系:在定轴 轮系中,所有齿轮的轴线不 都平行。
1 3
2
4
14 23 5
6 7
2.周转轮系:
轮系运转时,至少有一个齿轮的几何轴线绕其他固定轴线 作回转运动。
周转轮系1: 周转轮系2:
i A13=(ω1 -ωA ) /(0 -ωA ) =- z3 / z1
iB3’5=(ω3’-ωB )/(ω5-ωB ) =- z5/ z3’
K 3’ 4 5
B
连接条件: 联立解得:
ω5=ωA
i1B
1 B
(1 z3 )(1 z3' ) 1 5
z1
z5 A B
=i1A ·i5B
12 2'3 3'4 45
234 5
z1
z
' 2
z3'
z
4
推广后的平面定轴齿轮系传动比公式为:
n
i1K
1
(1)m
所有从动轮齿数的连乘积 所有主动轮齿数的连乘积
nK
惰轮:齿轮系中齿轮4同时与齿轮3’ 和齿轮5啮合,不影响齿轮 系传动比的大小,只起到改变转向的作用
2 空间定轴齿轮系传动比的计算
1 平面定轴齿轮系传动比的计算
一对齿轮的传动比大小为其齿数的反 比。若考虑转向关系,外啮合时,两轮转 向相反,传动比取“-”号;内啮合时,两 轮转向相同,传动比取“+”号;则该齿轮 系中各对齿轮的传动比为:
i12
n1 n2
z2 z1
z i3'4
n3i n 2'3
'
2
3
3
第12章 齿轮系与减速器
§12.0 轮系的应用和类型 §12.1定轴齿轮系传动比的计算 §12.2行星齿轮系传动比的计算 §11-3 轮系的功用 §12.4 其他新型齿轮传动装置简介 §12.4 减速器