基于化学反应釜过程控制系统-水温控制

合集下载

反应釜控制方案

反应釜控制方案

反应釜控制方案引言反应釜是一种常见的化工设备,广泛应用于化学工业生产过程中的反应、合成及加热等。

为了确保反应釜的正常运行和安全性,需要采用科学有效的控制方案,以实现对反应釜的精确控制和监测。

本文将介绍一种典型的反应釜控制方案,并讨论其原理及优势。

一、反应釜控制方案概述反应釜控制方案主要包括三个核心部分:传感器、控制器和执行机构。

传感器用于感知反应釜内部的温度、压力、液位等参数,控制器根据传感器数据进行计算和决策,然后通过执行机构来实现对反应釜的控制。

二、传感器选择及原理1. 温度传感器在反应釜控制中,温度是一个关键参数,对于大多数反应过程来说,温度的控制精度要求相当高。

常用的温度传感器包括热电偶和温度传感器。

热电偶是一种基于热电效应的温度传感器,利用不同金属导体间的温差产生电动势来测量温度。

温度传感器则是一种利用温度与电阻之间的关系进行测量的传感器。

2. 压力传感器反应釜内部压力的变化会直接影响到反应过程,因此压力传感器的选择十分重要。

常用的压力传感器有压阻式传感器和电容式传感器。

压阻式传感器利用金属薄膜或金属线张力的变化实现对压力的测量,而电容式传感器则利用电容与压力的关系进行测量。

3. 液位传感器液位传感器用于监测反应釜内的液位变化,以确保反应过程的安全性和稳定性。

常用的液位传感器包括浮球式传感器和电容式传感器。

浮球式传感器利用液体浮力原理进行液位检测,而电容式传感器则是通过测量电容与液位之间的关系来实现液位测量。

三、控制器选择及原理控制器是反应釜控制方案的核心部分,主要负责对传感器数据进行处理和决策,并输出控制信号给执行机构。

目前常用的控制器有PID控制器和模糊控制器。

1. PID控制器PID控制器是一种经典的控制器,通过对比反馈和期望输入,按照比例-积分-微分的方式进行控制。

PID控制器可以根据传感器数据的变化进行实时调整,以实现对温度、压力和液位等参数的精确控制。

2. 模糊控制器模糊控制器是一种基于模糊逻辑的控制器,可以处理模糊或不精确的输入变量,并输出相应的控制信号。

反应釜温度控制系统的研究

反应釜温度控制系统的研究

可“文本选择”有较多的PROTEL的电路图P17开始有很多的PID的介绍2.2 PID 及新型PID 控制算法简介2.2.1 PID 控制算法的理论基础PID(Proportional Integral and Differential)控制是工业过程控制领域应用最早使用最广泛的控制策略,大部分工业过程控制仍然在使用“传统”的PID 控制,至今仍有90%左右的控制回路具有PID 结构。

我们今天所熟知的PID 控制器产生并发展于1915-1940 年期间。

尽管自1940年以来,许多先进控制方法不断推出,但PID 控制器以其结构简单、可靠性高、对模型误差具有鲁棒性及易于操作等优点,仍被广泛应用于冶金、化工、电力、轻工和机械等工业过程控制中,尤其适用于可建立精确数学模型的确定性控制系统。

概括地讲,PID 控制的优点主要体现在以下两个方面:(1)原理简单、实现方便,是一种能够满足大多数实际需要的基本控制器。

(2)适用于多种截然不同的对象,算法在结构上具有较强的鲁棒性。

事实表明,对于PID 这样简单的控制器,能够适用于如此广泛的工业与民用对象,并仍以很高的性能/价格比在市场中占据着重要地位,充分的反应了PID 控制器的良好品质。

在大多数微机控制系统中使用以模拟PID 算法为基础的数字PID 算法,数字式PID 控制算法分为位置式PID 控制算法和增量式PID 控制算法。

2.2.1.1 模拟PID 算法模拟PID 算法为:控制器的输入为e (t )= r(t) c(t),其中r(t)为温度设定值,c(t)为温度实际测定值,e(t)为温度偏差,控制器的输出u(t):= +∫()+)1()K(()pdtdeetdtTTutetDI(2-1)式中PK 为比例系数,IT 为积分时间常数,DT 为微分时间常数[16]。

控制原理框图如图2-1 所示。

简单说来,PID 控制器各个校正环节的作用如下:(1)比例环节及时成比例地反应控制系统的偏差信号e (t),偏差一旦产生,控制器立即产生控制作用,以减少偏差。

反应釜自动化控制说明

反应釜自动化控制说明

反应釜自动化控制说明一、引言反应釜是一种用于化学反应的设备,它能够在一定条件下控制反应的温度、压力和搅拌速度等参数,以实现反应的自动化控制。

本文将详细介绍反应釜自动化控制的原理、操作步骤和注意事项,以帮助用户正确使用和维护反应釜设备。

二、原理1. 控制系统反应釜自动化控制系统由传感器、执行器、控制器和人机界面组成。

传感器用于采集反应釜内的温度、压力和搅拌速度等参数,执行器根据控制器的指令调节反应釜的加热、冷却和搅拌等设备,控制器根据传感器采集的数据进行逻辑运算和控制策略,人机界面用于操作和监控整个控制系统。

2. 控制策略反应釜自动化控制系统采用PID控制策略,即比例-积分-微分控制。

PID控制器根据反应釜内的实时数据进行计算,通过调节执行器的输出信号来控制反应釜的温度、压力和搅拌速度等参数。

PID控制器的参数需要根据具体的反应过程进行调整,以实现稳定的控制效果。

三、操作步骤1. 启动反应釜首先,确保反应釜设备和控制系统的电源连接正常,然后按照操作手册的要求进行设备的启动操作。

启动过程中,需要注意检查反应釜的密封性能和安全阀的工作状态,确保设备运行的安全可靠。

2. 设置控制参数通过人机界面进入控制系统的设置界面,根据反应的要求设置控制参数,包括目标温度、目标压力和目标搅拌速度等。

同时,根据具体的反应过程,调整PID控制器的参数,以实现稳定的控制效果。

3. 开始反应确认控制参数设置无误后,点击开始按钮启动反应。

控制系统将根据设定的控制策略自动调节反应釜的温度、压力和搅拌速度等参数,以实现反应过程的自动化控制。

在反应过程中,可以通过人机界面实时监控反应釜内的各项参数,并根据需要进行调整。

4. 反应结束当反应达到预定的时间或达到设定的终止条件时,点击停止按钮结束反应。

同时,需要注意及时关闭反应釜的加热、冷却和搅拌设备,确保设备的安全停机。

四、注意事项1. 安全操作在操作反应釜时,必须严格按照操作手册的要求进行操作,遵循相关的安全操作规程。

基于TRIZ理论的反应釜温度控制系统的设计毕业设计 精品

基于TRIZ理论的反应釜温度控制系统的设计毕业设计 精品

毕业设计报告(论文)题目:基于TRIZ理论的反应釜温度控制所属系:自动化技术系毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日摘要在近几年,微机技术的已经得到了迅速的发展,已经达到了比较成熟的阶段。

现在基于单片机的温度控制系统越来越多,因为单片机具有体积小,编程简单,成本低等优点。

反应釜自动化控制说明

反应釜自动化控制说明

反应釜自动化控制说明一、概述反应釜自动化控制系统是一种用于控制和监测反应釜操作的先进技术。

本文将详细介绍反应釜自动化控制系统的功能、工作原理、控制策略和操作流程。

二、功能描述1. 温度控制:反应釜自动化控制系统能够实时监测反应釜内的温度,并根据设定的温度范围自动调节加热或冷却设备,以保持反应釜内温度稳定。

2. 压力控制:系统能够监测反应釜内的压力,并根据设定的压力范围自动调节排气或加压设备,以保持反应釜内压力在安全范围内。

3. 液位控制:系统能够实时监测反应釜内的液位,并根据设定的液位范围自动调节液位控制装置,以保持反应釜内液位稳定。

4. 搅拌控制:系统能够控制反应釜内的搅拌装置,根据设定的搅拌速度和时间来实现反应物的充分混合。

5. 数据记录与报警:系统能够记录反应釜内的温度、压力、液位和搅拌速度等数据,并在出现异常情况时及时报警,以确保操作的安全性和稳定性。

三、工作原理反应釜自动化控制系统通过传感器实时采集反应釜内各项参数的数据,然后将数据传输给控制器进行处理。

控制器根据预设的控制策略,通过输出信号控制加热、冷却、排气、加压和搅拌等设备,从而实现对反应釜操作的自动控制。

四、控制策略1. 温度控制策略:根据反应釜内的温度变化趋势,通过PID算法计算出合适的加热或冷却功率,并输出控制信号给加热或冷却设备,以实现温度的稳定控制。

2. 压力控制策略:根据反应釜内的压力变化趋势,通过PID算法计算出合适的排气或加压力度,并输出控制信号给排气或加压设备,以实现压力的稳定控制。

3. 液位控制策略:根据反应釜内的液位变化趋势,通过PID算法计算出合适的液位控制信号,并输出给液位控制装置,以实现液位的稳定控制。

4. 搅拌控制策略:根据反应釜内的反应物性质和工艺要求,设定合适的搅拌速度和时间,通过控制搅拌装置的转速和运行时间,实现反应物的充分混合。

五、操作流程1. 启动系统:按下启动按钮,系统开始工作。

2. 参数设定:根据反应釜内的工艺要求,设定温度、压力、液位和搅拌速度等参数。

化工反应釜控制系统

化工反应釜控制系统

化工反应釜控制系统化工反应釜作为化学反应的主要设备,在一定温度、压力和物质的条件下实现化学反应。

在化工生产过程中,由于反应釜内的化学反应涉及到放热和吸热等过程,因此需要对反应釜进行精确的控制和调节。

为此,化工反应釜控制系统应运而生。

一、化工反应釜控制系统的构成化工反应釜控制系统是由加热系统、压力传感器、流量传感器、液位传感器、温度控制系统、数据采集系统和计算机控制系统等组成的一套完整的系统。

加热系统:加热系统用于反应釜内物质的加热,可分为电加热、蒸汽加热、导热油加热等多种形式。

加热系统的主要作用是提供反应釜内所需的温度。

压力传感器:反应釜内的压力是反应速率的重要因素之一。

因此,要控制反应釜内的压力,就需要使用压力传感器检测反应釜内的压力,再通过计算机控制系统来实现压力的控制。

流量传感器:反应釜内反应物料的进出口需要通过管路进行调节,而流量传感器可以实时监测反应物料的流量,确保反应物料进出的平衡性和恰当性。

液位传感器:液位传感器用于测量反应釜的液位高度,保证反应釜内反应物料在标准液位范围内运行,以免发生溢出或过量情况。

温度控制系统:温度控制系统是化工反应釜控制系统的核心部分。

通过温度控制系统可以实时控制反应物料的温度,确保反应物料在最适温度下进行反应,从而保证反应过程的有效完成。

数据采集系统:数据采集系统用于收集和存储反应釜内的各项参数(如温度、压力、液位、流量等),并将其转换成计算机可处理的信号。

计算机控制系统:计算机控制系统是化工反应釜控制系统的灵魂。

通过对各种传感器监测到的数据进行处理和分析,计算机控制系统可以自动调节反应釜内的温度、压力、流量和液位等参数,实现化学反应的精确控制。

二、化工反应釜控制系统的优势化工反应釜控制系统的优势主要表现在以下几个方面:1. 提高化学反应的安全性。

控制系统可实现对反应釜内压力、温度和液位等参数的实时监测和控制,以确保反应物料在安全的温度、液位和压力下进行反应。

反应釜自动化控制说明

反应釜自动化控制说明

反应釜自动化控制说明一、背景介绍反应釜是一种常用的化学实验设备,用于进行各种化学反应。

为了提高反应釜的操作效率和安全性,自动化控制系统被广泛应用于反应釜中。

本文将详细介绍反应釜自动化控制系统的工作原理、功能和操作流程。

二、工作原理反应釜自动化控制系统基于先进的传感器技术和计算机控制算法,通过实时监测和分析反应釜内的温度、压力、液位等参数,实现对反应过程的自动控制。

系统根据预设的控制策略,调节加热、冷却、搅拌等设备的工作状态,以达到预期的反应效果。

三、功能介绍1. 温度控制:系统可以实时监测反应釜内的温度,并根据设定的目标温度自动调节加热或冷却设备的工作状态,使反应釜内的温度保持在设定范围内。

2. 压力控制:系统可以监测反应釜内的压力,并根据设定的目标压力自动调节加压或减压设备的工作状态,保持反应釜内的压力稳定。

3. 液位控制:系统可以实时监测反应釜内的液位,并根据设定的液位范围自动控制进料和排放设备的工作状态,保持反应釜内的液位在合适的范围内。

4. 搅拌控制:系统可以调节反应釜内的搅拌速度和方向,以实现反应物质的充分混合和传质效果。

5. 安全保护:系统具备多种安全保护功能,如过温、过压、过液位等报警机制,以及紧急停机按钮等应急措施,保障操作人员和设备的安全。

四、操作流程1. 启动系统:按下系统启动按钮,系统开始自检并进入工作状态。

2. 设置参数:通过系统界面输入所需的温度、压力和液位等参数,并进行确认。

3. 自动控制:系统根据设定的参数和控制策略,自动调节加热、冷却、搅拌等设备的工作状态,以实现反应釜内的自动控制。

4. 监测反应过程:系统实时监测反应釜内的温度、压力、液位等参数,并将数据显示在系统界面上,供操作人员参考。

5. 安全保护:系统会在出现异常情况(如温度过高、压力过大等)时发出报警,并采取相应的应急措施,保障操作人员和设备的安全。

6. 停止系统:按下系统停止按钮,系统停止工作,并进行必要的清理和维护工作。

化学反应炉温度控制系统

化学反应炉温度控制系统

化学反应炉温度控制系统设计与仿真科目:姓名:学号:专业:日期:摘要:本文针对化学反应炉温度控制系统中的纯滞后环节,设计了以大林算法为基础的计算机控制器。

经过控制器的调节作用,使系统的稳定性及性能指标得到满足,消除了纯滞后环节对控制系统的不利影响。

在控制器的设计过程中,通过改变设计参数,进一步了解了大林算法的设计理念,并通过系统仿真,对结果进行了进一步的分析。

关键词:纯滞后环节;大林算法;计算机控制器;系统仿真;1 前言温度是最为普遍和重要的热工参数之一,温度控制在化工生产、金属冶炼及其他领域中,具有十分普遍的应用。

在化学反应过程中,反应炉内部温度变化一般划分为四个阶段:自由升温阶段、恒速升温阶段、保温阶段、自由降温阶段。

生产过程对以上每个阶段温度变化过程的时间要求,及对整个控制系统的性能要求,可以归结为以下几点。

1.自由升温阶段:系统启动工作后,对炉温进行监视,而不检测和反馈,直接控制反应炉的温度由常温快速上升至某指定温度。

2.恒速升温阶段:反应炉的温度一旦上升至某指定温度,系统进入对温度的监测状态,目的是使反应炉的温度能够按要求变化。

恒速升温阶段要求反应炉的温度线性上升。

3.保温阶段:反应炉温度到达恒速升温阶段的指定值后,系统进入保温阶段。

要求温度保持在恒定值一段时间。

4.自由降温阶段:保温阶段结束后,系统又恢复到只对炉温进行监视,而不检测和反馈的状态,直接控制反应炉的温度迅速下降至常温,然后停止工作。

反应炉温度控制系统是一个具有纯滞后环节的不稳定系统,其滞后性对温度的控制造成了不利的影响,为了满足以上各阶段的反应要求,需要设计有效的控制器,克服纯滞后环节的影响,使系统能够较准确的跟随温度的给定值。

研究表明,对于被控对象无滞后的控制系统应用常规PID控制方法和最小拍无纹波设计能够得到很好的控制效果。

而对于被控制对象含有大滞后的控制系统,仅仅应用常规PID控制方法和最小拍无纹波设计,其控制效果并不理想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指导教师评定成绩: 审定成绩: 大 学 自 动 化 学 院

过程控制系统课程设计报告 设计题目:基于工业化学反应釜的温度控制系统设计

指 导 教 师: 老师 单位(二级学院): 自 动 化 学 院 专 业: 自动化

学 生 姓 名:

设计时间: 2014 年 6 月 自动化学院制 基于过程控制反应釜温度控制系统设计 摘要:温度是化学反应釜生产过程中对反应过程影响最重要的的因素之一,温度的控制精度、系统响应速度及稳定度是衡量温度系统性能指标的关键因素,准确地控制反应釜内原料在不同温度下进行化学反应具有重要意义。首先,本系统对反应釜的温度进行分析,得出了冷剂流量对反应釜内温度的传递函数。其次,通过单片机,利用继电器、DS18B20温度传感器、LCD液晶显示屏等设计了对反应釜进行加热与降温来实现反应釜温度控制的具体电路和实时系统,对实际化学反应过程中的温度变化进行模拟,并利用经典控制理论中的PID算法得到反应时的最优控制,并给出了详细的分析步骤和控制算法。最后,通过组态软件对整个化学反应过程进行实时监控的模拟。

关键词:温度控制 PID 单片机 组态王 一、背景及国内外研究现状 1.1 问题研究背景 在化工生产过程中, 连续反应釜是一种常用的、重要的反应容器。其化学反应机理较为复杂, 受到外界条件、原料纯度、催化剂的类型等诸多因素的影响,所以难以建立精确的数学模型, 致使整套设备的自动化水平较低。而且在反应釜中进行的反应一般属于放热反应, 反应放热量大, 传热效果却不理想, 因此反应釜内温度一般具有大滞后、非线性等特征。针对反应釜内温度变化的特点, 设计良好的温度控制系统是保证产品质量的关键。

在我国,尽管大中城市的科学技术和工业自动化的发展比较快,但是在众多的小城市与农村地区由于经济不够发达,政府扶持力度不够,存在许多不太安全的小规模化工生产项目,给人们的人生安全与财产安全带来了一定的威胁。所以,如何更安全的进行化工生产已经成为了政府和各种研究机构亟待解决和完善的事。

1.2 国内外研究现状 目前关于反应釜温度控制系统设计问题国内外都有一些研究,并且已经基本满足了工业需求。如Shinskey 与Weinstein 提出的双模控制(dual-mode),采用bang-bang+PID 控制,其大致步骤为:过程开始时,全力加热,直至反应釜温度距其设定值为t1 度,然后全力冷却,持续TD1分钟,此后,将夹套水温设定值定在某个合适的中间温度,持续TD2 分钟,最后,用串级PID 控制器控制夹套水温度。如果参数选择得当,双模控制是有效的。

Arthur Jutan 与 Ashok Uppal 提出将反应热作为一种扰动,采用适当的方法估计出来,用前馈控制抵消;余下的部分近似为线性系统,可以用PID 控制。Barry 与Sandro 采用GMC 方法控制反应釜温度,得到了很好的仿真结果,并且进一步考察了操作条件与过程参数变动时被控过程的鲁棒性,发现GMC的鲁棒性明显强于双模控制。

为适应化工生产的新特点,一些过程控制领域中的新技术正在由理论研究转向生产践,如信息综合处理技术、现场总线控制系统、各种智能控制技术、软计算技术和快速仿真技术、多媒体技术等。过程控制采用的技术工具,由基地式仪表、气动单元式组合式仪表、电动单元组合式仪表Ⅰ型、Ⅱ型、Ⅲ型,发展到现在的可编程单回路、双回路、三回路调节器和分散综合控制系统(DCS)。当前,传统的DCS 正借助于微处理器硬软件和通信网络技术,朝着标准化、开放化和尽量采用市场通用的优良硬、软件的方向,逐渐地、相互融合地向开放的DCS发展。如Honeywell 的 TPS,它采用通用的软件将企业的internet 网与局部控制网、通用控制网和系统总线连接在一起,配备各种平台、操作站以满足不同层次使用人员的要求。另外,最近发展起来的现场总线网络控制系统(FCS)也是一种新的开放式的分布式控制系统。它把专用封闭协议变成标准开放协议,使系统共有完全数字计算和数字通信能力:在结构上,采用了全分布式方案,把控制功能彻底下放到现场,提高了系统灵活性和可靠性:它突破了集散型控制系统DCS 中采用专用网络的缺陷。因此对于现场总线的工业控制系统研究具有重大的意义。据报道,美国犹他州盐湖城Flying 炼油厂、孟山都化工厂、我国安庆安菱化工厂、吉林油田甲醇厂已采用FCS,取得了明显的经济效益。专家估计,FCS 将在石化行业得到广泛的应用。

二、化学反应釜的过程分析 所谓过程系统是指研究一类以物质和能量转换为基础的生产过程。为了进一步改善工艺操作,提高自动化水平,优化生产过程,加强生产上的管理,需要研究这类过程的描述、设计、模拟、仿真、控制和管理,最终能够显著地增加经济效益。在了解和掌握了工艺流程和生产过程动态的基础上,需要根据生产对控制提出要求。而过程控制就是应用控制理论,对生产过程进行综合分析并设计出包括被控对象、调节器、检测装置和执行器在内的过程控制系统,最后采用合适的技术手段加以实现

2.1反应釜的基本结构 化学反应釜有间歇式和连续式两种。间歇式反应釜通常用于液相反应,而连续式反应釜通常用于均相和非均相的液相反应。

图 1 反应釜结构示意图 反应釜的基本结构如图1所示。反应釜由搅拌容器和搅拌机两部分组成,搅拌容器包括筒体、换热元件级内构件;搅拌机由搅拌器、搅拌轴及其密封装置、传动装置等组成。

筒体为一个钢罐形容器,可以在罐内装入物料,使物料在其内部进行化学反应。为了维持反应釜内的反应温度,需要设置换热元件。常用的换热元件为夹套,它包围在筒体的外部,其与容器外壁形成密闭的空间。在此空间通入冷却或加热介质,通过夹套内壁传热,可冷却或加热容器内的物料。为了测量釜内的温度,在罐内装有钢制的温度计套管,可将温度计或温度传感器放入其中。为了满足工艺的需求还可以外接附件装置。

2.2反应釜的工作原理 在进行化学之前,先将反应物按照一定的比例进行混合,然后与催化剂一同投入反应釜内,在反应釜的夹套中通以一定的高压蒸汽,进而提高反应釜内的温度,通过搅拌使物料温度均匀,当釜内温度达到预定的温度时,保持一定时间的恒温以使化学反应正常进行,反应结束后进行冷却。然而,大多数的化学反应都是放热反应,在反应的过程中釜内的温度会进一步上升,所以需要采取一定的技术手段把釜内的温度控制在某一个适宜的温度范围内,使整个化学反应速率一直保持到最大。如果温度偏低或偏高,会影响反应进行的深度和反应的转化率,从而影响了产品的质量并浪费了资源。为了是釜内温度稳定,本系统采用喷雾的形式对放热反应的釜内进行降温,从而把釜内的温度控制在一个适宜的温度范围内使之符合工艺要求。 2.3反应釜的控制方案 在设计反应釜控制器时有必要弄清反应釜的控制目标和可能的控制手段。本系统将从将从以下几个方面考虑控制指标。

(1)能量平衡 要保持反应釜的热量平衡,应使进入反应器的热量与流出的热量及反应生成的热量之间相互平衡。能量平衡控制对反应釜来说至关重要,它决定了反应过程中的生产安全,也间接的保证反应釜的产品质量达到工艺要求。

(2)约束条件 与其他化工操作设备相比,反应釜操作的安全性具有更重要的意义没这样就构成了反应釜控制中的一系列约束条件。例如,不少具有催化剂的反应中,一旦温度过高或过低,反应物中含有杂质,将会导致催化剂的破损和中毒。在有些氧化反应中,反应物的配比不当会引起爆炸等等。因此,在设计中经常配置报警或自动选择性控制系统。

反应釜控制指标的选择是反应釜控制方案设计中的一个关键问题。其主要是反应的转化率、产量、收率、主要产品的含量和产物分布等。如果直接把这些问题作为被控对象,反应要求就得到了保证。但是,由于考虑的指标越多,对整个反应过程的控制就越难准确的控制。并且,由于测量手段的限制某些指标并不便测量,从而难以作为真正的控制指标。然而,反应过程中,温度和上述指标密切相关,又便于测量,所以本作品主要将温度作为被控量。

三、总体方案及控制算法 3.1 总体方案分析 反应釜内的温度控制是化工生产过程的中心环节,目的是保证反应过程的产物达到一定质量和控制要求,并确保反应的安全进行。由于温度能较好地测量与分析,并且能够一定程度上反映出釜内化学反应的过程,所以选用温度为间接参数是最有效的方法。因此本作品的主要任务就是要实现温度的智能控制。

要实现温度的精确控制,就要有精确的温度传感器,本作品采用DS18B20温度传感器实现多点温度采集,模拟整个反应釜内物料的温度采集,其精度较高。然而,反应釜内的温度有一定的限制,在开始阶段,由于温度低于设定的反应温度,需要通过加热装置对反应釜进行加热进而提高物料的温度。当温度接近催化剂的最适温度时,釜内的原料进行快速反应,并释放出反应热,使釜内的温度上升较快,当温度超过给定值时,催化剂的活性被抑制,从而使化学反应的速率迅速下降,所以为了将釜内温度控制在某一适宜的温度范围内,本作品采用对釜内进行冷剂喷雾来平衡釜内的温度,从而使釜内的化学反应始终保持在最适宜的状态下。

为了便于读取和控制釜内温度,本作品采用LCD液晶显示屏来实现显示功能,同时通过键盘来实现工况、反应釜内要达到的温度设定。

3.2反应釜的控制算法及其动态特性 为了对釜内温度进行较为精确的控制,有必要将反应过程分成釜内物料升温过程和化学反应开始两个阶段,其每个过程中釜内温度的变化情况有较大的差异。下面将对这两个过程加以分析。

(1)升温过程 一般的化学反应在常温条件下基本上可以忽略其反应速率,所以需要采用加热装置对釜内物料进行加热。其结构框图如下所示:

图 2 釜内升温过程结构示意图 图2 反应釜系统调节框图 此升温过程类似于工业中较为成熟的电加热炉问题,类比两者可得出反应釜内温度变化量对控制热蒸汽变化量之间的传递函数形式为:

1)(mmTKsG

为一阶惯性环节。 (2)反应过程 一旦化学反应开始,由于反应过程中会自动放热,所以釜内温度会升高的越来越快。当内部温度达到催化剂最适宜的温度时,化学反应达到最快。当温度超过给定值时,催化剂的活性被抑制,从而使化学反应的速率迅速下降,所以为了将釜内温度控制在某一适宜的温度范围内,所以采用对釜内进行冷剂喷雾来平衡釜内的温度,从而使釜内的化学反应始终保持在最适宜的状态下。其过程的结构框图如下所示:

图 3 反应过程中结构框图 四、系统硬件电路设计 4.1 系统硬件构成 本作品设计的控制系统硬件电路主要由主控制器、DS18B20数字温度计、输出控制电路、键盘、LCD显示电路及电源等组成,系统的硬件组成下图所示:

相关文档
最新文档