高频实验报告_石英晶体振荡器实验报告
数电实验报告总结

数电实验报告总结相关热词搜索:数电实验报告电子时钟数电实验报告闹钟大一数电实验报告八扬州大学数电实验报告篇一:上海大学数字电路实验报告数字电路实验报告实验名称加法器班级机械10班学生姓名张俊楠学号所在专业上海大学二? 年月日篇二:数电实验课程设计总结报告(电子表)数字电路课程设计数字定时器:课程设计任务书:)集成数字定 1时器 2)技术指标1、设计一个数字定时器,要求它具有数字钟的功能,又可以按预定时刻发出控制信号对被控对象实施开关控制2、时钟功能:具有24小时计时方式,显示时、分、秒。
计时范围要求自00点00分00秒到23点59分59秒3、要求具有校时电路,可对小时、分、秒分别校准。
4、可以同时设置四个以上的预定时刻,时刻的预选以5分钟为单位。
、被控对象在 5达到预选时刻后,电铃连续响10秒,而监听器在10秒内断续鸣叫5次,即想一秒停一秒。
集成数字定时器的组成和工作原理数字定时器一般由振荡器、分频器、计数器、译码器、显示器及部分扩展电路等组成,其基本逻辑功能框图如下所示:数字电子钟的基本组成:振荡器振荡器是数字电子钟的核心,其作用是产生一个频率标准,即时间标准信号,然后再由分频器生成秒脉冲,所以,振荡器频率的精度和稳定度就基本决定了数字电子钟的准确度,为产生稳定的时间标准信号,一般采用石英晶体振荡器。
如果精度要求不是很高的话我们可以采用由集成逻辑门与RC组成的时钟源振荡器。
一般而言,选用石英晶体振荡器所选用的晶振频率为32768Hz,再通过15级2分频集成电路得到1Hz的标准秒脉冲。
分频器振荡器产生的时标信号频率很高,要使它变成用来计时的“秒”信号,需要若干级分频电路,分频器的级数和每级分频次数要根据时标信号的频率来决定。
其功能主要有两个:一是产生标准秒脉冲信号,二是提供功能扩展电路所需的信号。
计数器有了“秒”信号了就可以根据60秒为一分,60分为一小时,24小时为一天的进制,分别选定没“秒”、“分”、“时”的计数器。
电子线路第8章

Rb2 -
Re
判断是否是满足 相位条件——相 相位条件 相 位平衡法: 位平衡法:
C Uf 断开反馈到放大 R b1 L1 L2 器的输入端点, 器的输入端点,假设 (-) 在输入端加入一正极 C b (+) Uo 性的信号, 性的信号,用瞬时极 性法判定反馈信号的 极性。若反馈信号与 极性。 R b2 Re 输入信号同相, 输入信号同相,则满 足相位条件; 足相位条件;否则不 满足。 满足。
8.2 LC正弦波振荡电路 正弦波振荡电路
1. LC并联谐振回路的选频特性 并联谐振回路的选频特性 并联谐振回路的
i
+ u
当 ω = ω0 ≈
1 LC
时,
iC
C
iL
L R
并联谐振。 并联谐振。 谐振时,电路呈阻性: 谐振时,电路呈阻性:
-
R为电感和回路中的损耗电阻 为电感和回路中的损耗电阻
L (阻性 阻性) Z0 = 阻性 RC
石英晶体振荡电路
8.3.2 石英晶体的基本特性与等效电路 1. 石英晶体的压电效应
V
极板间加电场 晶体机械变形 极板间加机械力 晶体产生电场
V
晶片 敷银层
V
符号
V
压电效应: 压电效应:
交变电压
机械振动
交变电压 压电谐振
固有频率时, 当交变电压频率 = 固有频率时,振幅最大
机械振动的固有频率与晶片尺寸有关,稳定性高。 机械振动的固有频率与晶片尺寸有关,稳定性高。
| AF | =1
ϕ A + ϕ F = 2 nπ
n是整数 是整数
起振条件和稳幅原理
起振条件: 起振条件: & & 略大于1 | A F |>1 (略大于1)
高频实验指导书.

实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性2.做本实验时所用到的仪器:●单调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。
三、实验内容1.用万用表测量晶体管各点(对地)电压V B、V E、V C,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。
四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。
单调谐回路谐振放大器原理电路如图1-1所示。
图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。
C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。
为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。
图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图32.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。
其基本部分与图1-1相同。
图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1Q02为射极跟随器,主要用于提高带负载能力。
石英晶振

石英晶振即所谓石英晶体谐振器(无源晶振)和石英晶体振荡器(有源晶振)的统称。
一般把晶振等同于谐振器理解,振荡器就是通常所指钟振。
无源晶振为crystal(晶体),有源晶振叫做oscillator(振荡器)。
无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振有4只引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件,因此体积较大。
无源晶体没有电压的问题,信号电平是可变的,也就是说是根据起振电路来决定的,同样的晶体可以适用于多种电压,可用于多种不同时钟信号电压要求的DSP (Digital Signal Processing数字信号处理器),而且价格通常也较低。
无源晶体相对于晶振而言其缺陷是信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。
有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。
有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。
相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。
石英晶振是一种用于稳定频率和选择频率的电子元件,已被广泛地使用在无线电话、载波通讯、广播电视、卫星通讯、仪器仪表等各种电子设备中。
晶振封装一般分为插件(Dip)和贴片(SMD)。
插件又分为HC-49U、HC-33U、HC-49S、音叉型(圆柱状晶振)。
HC-49U一般称49U,有些采购俗称“高型”,而HC-49S一般称49S,俗称“矮型”,音叉型(圆柱状晶振)按照体积分可以分为φ3*10、φ3*9、φ3*8、φ2*6、φ1*5、、φ1*4等。
达盛科技高频指导书

目录第一部分高频电路实验系统介绍一、实验系统概述 (2)二、实验箱箱体结构说明 (2)三、高频实验模块介绍及实验说明 (4)第二部分高频电路实验部分实验一电容反馈三点式振荡器实验 (6)实验二石英晶体振荡器实验 (9)实验三单调谐回路谐振放大器及通频带展宽实验 (11)实验四双调谐回路谐振放大器实验 (14)实验五幅度调制器实验 (16)实验六调幅波信号的解调实验 (18)实验七丙类功率放大器实验 (21)实验八变容二极管频率调制电路实验 (23)实验九频率解调电路实验 (25)实验十小功率调频发射、接收实验 (27)实验十一相位调制器实验....................................... . (29)实验十二锁相环及压控振荡器电路实验 (31)实验十三频率合成电路实验...................................... (36)实验十四集成混频器电路实验 (40)高频电路实验系统介绍一、高频电路实验系统概述本系统由实验箱和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。
实验箱带有一个0Hz~120KHz的低频信号源(可产生正弦波、方波、三角波等)、一个20KHz~10MHz的高频信号源、一个音频接口单元。
此外高频Ⅳ型实验系统还带有一个频率计单元(高频Ⅲ型无此单元)。
实验箱可使用自带电源,也可通过右上角的4针电源接口从外部引入。
高频电路单元采用模块式设计,将有关联的单元电路放在一个模块内。
高频模块可插在实验箱的4个固定孔上,配合高、低频信号源和频率计即可进行高频电路实验。
二、实验箱箱体结构说明箱体结构如图一所示:图一1、电源接口实验箱提供-8V、+5V、-5V、-12V、+12V五组电源输出。
当电源正常时,各组电源对应的指示灯均被点亮。
2、低频信号源本实验箱采用集成函数发生器ICL8038产生正弦波、方波和三角波,频率为0Hz —120KHz连续可调。
电子测量实验报告

黄淮学院电子科学与工程系 电子测量技术课程基础性实验报告实验名称 秒脉冲信号发生器实验时间 年 月 日学生姓名实验地点 同组人员专业班级电技1101班一、实验目的1. 熟悉用石英晶体和CMOS 反相器构成多谐振荡器的电路。
2. 熟悉用分频器获得秒信号的方法。
二、实验主要仪器设备和材料1. 实验仪器直流稳压电源×1、双踪示波器×1、万用电表×1、IC3 16脚插座×1、IC2 14脚插座×1、BX05模块(含有1C 、2C 、R 和石英晶体)。
2. 实验器件 CD4060、CD4013三、实验内容图4-1 秒脉冲信号发生器电路图4-2图4-1所示为秒脉冲信号发生器电路,石英晶体的固有频率为32.768kHz ,4060为十四级二进制计数/分频/振荡器,其内部有1G 、2G 二个反相器和14级二进制计数器,电阻R 连在1G 两端,用来确定1G 静态为电压传输特性中点Q ,使1G 有较大放大倍数,如图4-2所示。
当接上电源后,石英晶体与电容1C 、2C 组成振荡回路,从噪声中选出32.768kHz 正弦信号,通过2C 输入到1G 门的I u ,经1G 放大后得到O u 获得很大削顶信号。
经2G 反相器整形,从O Φ得到32.768kHz 方波,再经14级二进制分频获得频率为32.768×1432/10=32.768×310/16384=2Hz 信号再由D 触发器组成T '触发器为二分频电路,即在Q 端获得频率为1Hz 的方波信号,这即为周期为1S 的秒信号。
为防止小电容连线受分布电影响,故将1C 、2C 、R 、石英晶体等制作于BX05模块内,使连线缩短。
四、实验步骤1. 在不接电源情况下,按图4-1所示电路进行连接、要求BX05模块与4060器件连线,尽可能短。
或用屏蔽线(如图4-1所示)。
2. 将直流稳压电源调节到+5V ,关闭电源后,将各器件电源端与稳压电源相连。
数字电子技术基础课程设计实验报告

数字电子技术课程设计(数字时钟逻辑电路的设计与实现)学院:信息学院班级:学号:姓名:刘柳指导教师:楚岩课设时间:2009年6月21日—2009年6月26日一摘要数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
诸如按时自动打铃,时间程序自动控制,定时启闭路灯,定时开关烘箱,通断动力设备,甚至各种定时电气的的自动启用等。
这些都是以数字时钟作为时钟源的。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
目前,数字钟的功能越来越强,并且有多种专门的大规模集成电路可供选择。
经过了数字电路设计这门课程的系统学习,特别经过了关于组合逻辑电路与时序逻辑电路部分的学习,我们已经具备了设计小规模集成电路的能力,借由本次设计的机会,充分将所学的知识运用到实际中去。
二主要技术指标1.设计一个有时、分、秒(23小时59分59秒)显示的电子钟2.该电子钟具有手动校时功能三方案论证与选择要想构成数字钟,首先应选择一个脉冲源——能自动地产生稳定的标准时间脉冲信号。
而脉冲源产生的脉冲信号的频率较高,因此,需要进行分频,使高频脉冲信号变成适合于计时的低频脉冲信号,即“秒脉冲信号”(频率为1HZ)。
经过分频器输出的秒脉冲信号到计数器中进行计数。
将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。
“时计数器”采用24进制计时器,可实现对一天24小时的累计。
此时需要分别设计60进制,24进制计数器,各计数器输出信号经译码器到数字显示器,使“时”、“分”、“秒”得以数字显示出来。
值得注意的是:任何计时装置都有误差,因此应考虑校准时间电路。
石英晶体谐振器和振荡器

慢跳变 快跳变 延长无线电静寂时间 延长校准间隔时间 正交性 互用性
钟和 C3 频率跳变系统
好钟 较好的钟 较好的钟 较好的钟 较好的钟 较好的钟
敌我识别(IFF)
在现代化作战中,空中充满着敌我飞机和各种从地面和机载平台上发射的先进武器,所 以可靠的敌我识别是极其重要的。例如,在 20 世纪所有战争中,由于识别错误所引起的自 相残杀行为成了重要问题。
低)。
频谱展宽系统
在频谱展宽系统中,发射信号是在比正在被发送的信息所要求带宽宽得多的带宽内加以 展宽的(例如数千赫带宽的音频电路扩展到数兆赫)。这是用被发送的信息和用多种频率伪 噪声编码信号对载波加以调制来实现的。具有相应伪噪声码的频谱展宽接收机能够调解并取 出所发送的信息,没有伪噪声码的接收机也许完全漏掉信号,或者如果这些接收机检测出信 号,则他们是以噪声形式出现的。
第一章 应用和要求
石英晶体在电子学上的应用
军用和航天应用 通讯 导航 敌我识别系统 雷达 传感器 制导系统 引信 电子战 声纳浮标
研究和工艺 原子钟 仪器 天文学和大地测量 空间跟踪 天体导航
工业应用 通讯 电视通讯 轻便式、分区式、手提式 无线电设备和电话 航空,航海 导航 仪器 计算机 数字系统 阴极射线显示器 软盘 调制解调器 标签/标志 公用事业 传感器
目录
第一章 应用和要求 ............................................................. 4 第二章 石英晶体振荡器 ................................................... 12 第三章 石英晶体谐振器 ................................................... 23 第四章 振荡器的稳定度 ................................................... 41 第五章 石英材料的特性 ................................................... 89 第六章 原子频率标准 ....................................................... 98 第七章 振荡器的比较和技术指标 ................................. 111 第八章 时间和守时 ......................................................... 117 第九章 相关器件和设备 ................................................. 128
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石英晶体振荡器实验报告
学号 200805120109 姓名 刘皓 实验台号
实验结果及数据
(一) 静态工作点(晶体管偏置)不同对振荡器振荡频率、幅度和波形的影响 1、把单刀开关K2闭合,用示波器和频率计在c 点监测。
调整DW 1,使振荡器振荡;微调C 2,使振荡频率在4MHz 左右。
2、调整DW 1,使BG 1工作电流E Q I 逐点变化,E Q I 可用万用表在A 点通过测量发射极电阻R 4两端的电压得到(R 4=1k Ω)。
振荡器工作情况变化及测量结果如表1所示:
表1 静态工作点变化对振荡器的影响
(二)2C 取值不同对振荡器振荡频率范围的影响
2C 变化对振荡器的影响 测量条件:E Q I = 1.5 m A
保持4.433MHz 基本不变
(三)负载变化对振荡器的影响
1、K 1断开的情况下,将振荡器的振荡频率调整到4MHz 左右,此时频率osc f = 4.433 MHz ,幅度opp V = 2.92 V 。
2、将K 1分别接1—2、1—
3、1—4的位置,即接入不同的负载电阻R 5,测得的相应的频率和幅度及计算结果如表3所示。
表3 负载变化对振荡器的影响 测量条件:osc f =4.433 MHz ,幅度opp V =2.92 V
由表3知:负载变化对振荡器工作频率的影响是: 几乎没有影响。
负载变化对振荡器输出幅度的影响是: 随着负载阻抗的减小,输出幅度略微减小。
(四)比较负载变化对LC 正弦波振荡器和石英晶体振荡器的不同影响
负载变化对LC 正弦波振荡器的影响比较明显。
而对石英晶体振荡器的影响很小。
这主要是由于石英晶体振荡器的稳定性很高。
思考题
晶体振荡器的振荡频率比LC 振荡器稳定得多,为什么? 答:因为
(1)石英晶体谐振器具有很高的标准性。
(2)石英晶体谐振器与有源器件的接入系数 ,受外界不稳定因素的影响少。
(3)石英晶体谐振器具有非常高的Q 值,维持振荡频率稳定不变的能力极强。