高频电子线路实验报告
高频电子线路实验报告

实验一 高频小信号放大器1.1 实验目的1、 掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、 熟悉谐振回路的调谐方法及测试方法。
3、 掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。
MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。
波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,f(KHz)65 75 165 265 365 465 1065 1665 2265 2865 3465 4065U0 (mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。
,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。
BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。
高频电子线路实验报告高频小信号调谐放大器

太原理工大学现代科技学院高频电子线路课程实验报告专业班级测控1001班学号姓名指导教师实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号微弱信号的线性放大。
在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数、通频带、矩形系数),进一步掌握高频小信号调谐放大器的工作原理。
学会小信号调谐放大器的设计方法。
二、实验仪器1.BT-3(G)型频率特性测试仪(选项)一台2.20MHz模拟示波器一台3.数字万用表一块4.调试工具一套三、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。
它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。
在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。
晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。
图1 小信号调谐放大器该放大电路在高频情况下的等效为如图1-2所示,晶体管的4个y参数y ie,y oe,y fe 及y re分别为:输入导纳(1-1)输出导纳(1-2)正向传输导纳(1-3)反向传输导纳(1-4)图1-2 放大器的高频等效回路式中,gm——晶体管的跨导,与发射极电流的关系为(1-5) gb’e——发射结电导,与晶体管的电流放大系数β及IE有关其关系为(1-6)rb’b——基极体电阻,一般为几十欧姆; Cb’c——集电极电容,一般为几皮法;Cb’e——发射结电容,一般为几十皮法至几百皮法。
由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β关外,还与工作频率ω有关。
晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。
如在f0=30MHz,I E=2mA,U CE=8V条件下测得3DG6C的y参数为:如果工作条件发生变化,上述参数则有所变动。
高频电子线路实验报告

南京信息工程大学高频电子线路实验报告实验一高频小信号放大器 (3)一、实验原理 (3)二、实验内容 (4)实验二振幅调制实验 (6)一、实验原理 (6)二:实验结果: (7)实验三调幅信号的解调 (9)一、实验原理 (9)二.实验内容 (12)实验四混频器 (14)一、实验原理 (14)二、实验内容 (15)实验一 高频小信号放大器一、实验原理高频小信号放大器的作用就是放大无线电设备中的高频小信号, 以便作进一步变换或处理。
所谓“小信号”,主要是强调放大器应工作在线性范围。
高频与低频小信号放大器的基 本构成相同,都包括有源器件(晶体管、集成放大器等)和负载电路,但有源器件的性能及负载电路的形式有很大差异。
高频小信号放大器的基本类型是以各种选频网络作负载的频带 放大器,在某些场合,也采用无选频作用的负载电路,构成宽带放大器。
频带放大器最典型的单元电路如图 1-1 所示, 由单调谐回路做法在构成晶体管调谐放大器。
图 1-1 电路中,晶体管直流偏置电路与低频放大器电路相同,由于工作频率高,旁路电 容C b.、C e 可远小于低频放大器中旁路电容值。
调谐回路的作用主要有两个:图 1-1 晶体管单调谐回路调谐放大器第一、选频作用,选择放大0f f =的信号频率,抑制其它频率信号。
第二、提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。
高频小信号频带放大器的主要性能指标有:(1)中心频率 0f :指放大器的工作频率。
它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。
(2)增益:指放大器对有用信号的放大能力。
通常表示为在中心频率上的电压增益和 功率增益。
电压增益 /VO O i A V V = (1—1)功率增益 /PO O i A P P = (1—2)式中 O V 、i V 分别为放大器中心频率上的输出、输入电压幅度, O P 、i P 分别为放大器中心频率上的输出、输入功率。
增益通常用分贝表示。
高频电子线路_小信号调谐放大器和高频功放_实验报告

1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
高频电子电路实验报告一

调频接收机设计与调试一设计目的通过本课程设计与调试,提高动手能力,巩固已学的理论知识,能建立无线电调频接收机的整机概念,了解调频接收机整机各单元电路之间的关系及相互影响,从而能正确设计、计算调频接收机的单各元电路:输入回路、高频放大、混频、中频放大、鉴频及低频功放级。
初步掌握调频接收机的调整及测试方法。
二调频接收机的主要技术指标1.选择性接收机从各种信号和干扰中选出所需信号(或衰减不需要的信号)的能力称为选择性,单位用dB(分贝)表示dB数越高,选择性越好。
调频收音机的中频干扰应大于50dB。
2.灵敏度接收机接收微弱信号的能力称为灵敏度,通常用输入信号电压的大小来表示,接收的输入信号越小,灵敏度越高。
调频广播收音机的灵敏度一般为5~30uV。
3.工作频率范围接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。
接收机的工作频率必须与发射机的工作频率相对应。
如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz4.频率特性接收机的频率响应范围称为频率特性或通频带。
调频机的通频带一般为200KHz。
5.输出功率接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。
三基本设计原理调频接收机的组成一般调频接收机的组成框图如图所示。
其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。
本机振荡器输出的另一高频 f2亦进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。
混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。
由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。
中放的任务,是把变频器输出的中频信号放大后,输入到检波器。
《高频电子线路》频率调制与解调实验报告

《高频电子线路》频率调制与解调实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:频率调制与解调一、实验目的和要求通过实验,学习频率调制与解调的工作原理、电路组成和调试方法,学习用锁相环电路实现频率调制、斜率鉴频实现调频信号的解调的设计方法,利用Multisim仿真软件进行仿真分析实验。
二、实验内容和原理1、实验原理所谓调制,就是用一个信号(原信号也称调制信号)去控制另一个信号(载波信号)的某个参量,从而产生已调制信号,解调则是相反的过程,即从已调制信号中恢复出原信号。
根据所控制的信号参量的不同,调制可分为:调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。
调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。
调相,利用原始信号控制载波信号的相位。
这三种调制方式的实质都是对原始信号进行频谱搬移,将信号的频谱搬移到所需要的较高频带上,从而满足信号传输的需要。
2、实验内容(1)设计实现中心频率为100kHz的调频信号发生器。
绘出电路原理图,采用锁相调频的方式,给出仿真结果图。
(2)对产生的调频信号,采用斜率鉴器进行鉴频,设计失谐网络和包络检波器,绘出电路图,给出仿真结果图。
三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、函数发生器、直流电源。
四、操作方法与实验步骤及实验数据记录和处理1、采用锁相环路实现调频信号,调频信号的中心频率为100kHz。
2、对调频信号进行解调,采用斜率鉴器,对调频信号进行解调。
将AD741输出的100kHz 的调频信号加到电容C7与地之间,设计失谐网络和包络检波器。
C21nFR65kΩR550ΩC71µF L11.2mHU2AD741CH3247651U3AD741CH3247651R131kΩR141kΩR152kΩR164kΩD21N4150D31N4150V712VV812VC81µFXSC1A BExt Trig++__+_C3160nFR810kΩR71kΩR111kΩR121kΩC4160nFC510µF C9160nF4、分析说明U2、U3、D2、D3的作用。
高频电子的实验报告

一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。
2. 熟悉高频电子线路中常用元件的性能和特点。
3. 培养实验操作技能,提高分析问题和解决问题的能力。
三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。
本实验主要研究高频放大器、振荡器和调制解调器等基本电路。
四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。
(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。
(3)测量放大器的输入输出阻抗,分析匹配网络的设计。
2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。
(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。
(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。
3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。
(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。
(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。
六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。
(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。
(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。
2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。
(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。
(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。
高频电子线路实验报告 - 3

实验报告课程:高频电子线路学院:电子与信息工程学院专业:电子与信息工程班级:电信17-1 班姓名:XXX XXX XXX学号:XX XX指导教师:李海军实验项目名称: LC 正弦波振荡电路实验 实验日期: 11月12日实验概述:【实验目的及实验设备】 1、实验目的:(1)进一步学习掌握正弦波振荡电路的相关理论;(2)掌握电容三点式LC 振荡电路的基本原理,熟悉其各元件功能,熟悉静态工作点、耦合电容、反馈系数等对振荡幅度和频率的影响。
2、实验设备及仪器名称:(1)LC 、晶体正弦波振荡电路实验板 (2)20MH 双踪示波器 (3)万用表3、实验原理LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器是指振荡回路是由LC元件组成的。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。
普通电容三点式振荡器的振荡频率不仅与谐振回路的LC 元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。
当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。
为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图4-1和4-2所示。
串联改进型电容三点式振荡电路——克拉泼电路振荡频率为:∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 选C C >>1,C C >>2时,C C -∑~,振荡频率0ω可近似写成 LC10≈ω这就使0ω几乎与o C 和i C 值无关,提高了频率稳定度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频实验报告班级班级学号学号姓名姓名预习成绩预习成绩实验成绩实验成绩实验报告成绩实验报告成绩总成绩总成绩2013年 12月实验一、调幅发射系统实验一、实验目的与内容:通过实验了解与掌握调幅发射系统,了解与掌握LC三点式振荡器电路、三极管幅度调制电路、高频谐振功率放大电路。
二、实验原理:1、LC三点式振荡器电路:原理:LC三点式振荡器电路是采用LC谐振回路作为相移网络的LC正弦波振荡器,用来产生稳定的正弦振荡。
图中5R5,5R6,5W2和5R8为分压式偏置电阻,电容5C7或5C8或5C9或5C10或5C11进行反馈的控制。
5R3、5W1、5L2以及5C4构成的回路调节该电路的振荡频率,在V5-1处输出频率为30MHZ 正弦振荡信号。
2、三极管幅度调制电路:原理:三极管幅度调制电路是通过输入调制信号和载波信号,在它们的共同作用下产生所需的振幅调制信号。
图中7R1,7R4,7W1和7R3为分压式偏置电阻,电容7C10、7C2以及电感7L1构成的谐振滤波网络,7W2控制输出幅度,在信号输出处输出所需的振幅调制信号。
3、高频谐振功率放大电路:原理:高频谐振功率放大电路是工作频率在几十MHZ 到几百MHZ 的谐振功率放大电路。
图中前级高频功放电路中,6R2和6R3分压式偏置电阻,供给三极管6BG1偏置电压,输出采用6C5、6C6、6L1构成的T 型滤波匹配网络,末级高频功放电路中,基极采用由6R4产生偏置电压供给电路,输出采用6C13、6C13、6L3和6L4构成的T 型滤波匹配网络。
4、调幅发射系统:图1 调幅发射系统结构图原理:首先LC 振荡电路产生一个频率为30MHZ ,幅度为100mV 的信号源,然后加入频率为1KHZ ,幅度为100mV 的本振信号,通过三极管幅度调制,再经过高频谐振功率放大器输出稳定的最大不失真的正弦波。
本振功率放大调幅 信源三、实验方法与步骤:1、LC三点式振荡器电路:(1)调节静态直流工作点,将12V的直流稳压电源接入电路中,闭合K5A,调节电阻5W2,使得万用表测得电阻5R8两端的电压为3V。
(2)直流工作点调好后,将5K1拨到5C-11处,调节变容5C4和电阻5W1,在观测点V5-1连接示波器,通过示波器观测并记录输出波形,直到输出频率为30MHZ的稳定的最大不失真正弦波。
2、三极管幅度调制电路:(1)调节静态直流工作点,将12V的直流稳压电源接入电路中,闭合K7,调节电阻7W1,使得万用表测得电阻7R3两端的电压为0.3V。
(2)直流工作点调好后,闭合7K1,在高频信号源处输入频率为30MHZ,幅度为100mV的载波信号,接着闭合7K3,在1KHZ调制信号处输入频率为1KHZ,幅度为100mV的调制信号,用示波器连接V7-2,观察输出波形。
调节7C10,直到示波器上的波形达到最大不失真。
3、高频谐振功率放大电路:(1)将12V的直流稳压电源接入电路中,闭合K6A,打开K6B,在信源输入端输入频率为30MHZ,幅度为0.6V的信源信号,调节6C5,观察V6-2端输出的波形,保证输出波形达到最大不失真,且输出信号有增益。
(2)打开K6A,输入发射极电源,闭合K6B,接入电流表,开关K6C打到左端,开关6K1打到6R6处,在V6-3处连接示波器,调节变容6C13,使得V6-3端输出的波形达到最大不失真(在此期间应注意先观察电流表的示数,再看示波器的变化,电流表的示数应在60mA以下)。
4、调幅发射系统:将实验相应的三部分电路进行正确级联,接入12V 直流稳压电源,用示波器接于输出端口V6-3处,测量并分析记录整个调幅发射系统输出波形。
四、测试指标与测试波形:1.LC 三点式振荡器电路:1.1、振荡器反馈系数k fu 对振荡器幅值U L 的影响关系:表1-1: 测试条件:V1 = +12V 、 Ic 1 ≈ 3mA 、 f 0 ≈ 28MHz k fu = 0.1—0.5振荡器的反馈系数k fu --U L 特性结论:随着振荡器反馈系数k fu 的增大,振荡器幅值U L 也在逐渐增加,但是它的增长幅度在不断减小。
分析:当静态工作电流一定时,增大振荡器的反馈系数,振荡器的振幅也会随之增大,但是此时放大器的增益会随之减小,从而使增长幅度逐渐减小。
注:我认为表格中反馈系数的计算公式有误,反馈系数应该是反馈点电压与输出点电压的比值,即k fu =5C6/C N ,而不是5C6/(C N+5C6)。
1.2、振荡管工作电流和振荡幅度的关系: Ic –U L表1-2: 测试条件:V1 =12V 、 k fu ≈ 0.4、 fo ≈ 30MHz 、 Ic 1 = 0.5 — 6 mA数据值项 目5BG1电流 Ic (mA )0.51 2 3 4 5 U L V P-P 0.23 0.45 1.05 1.38 1.78 1.58 fo MHz29.8731.1531.8531.0830.8630.23振荡器的Ic –U L 特性结论:在一定范围内,随着振荡管工作电流的增大,振荡幅度也随之增大,但是当工作电流超过最佳静态工作电流时,振荡幅度会随之减小。
分析:在一定范围内,振荡管工作在欠压区,工作电流增大,振荡幅度也增大,之后,振荡管进入过压区,振荡幅度随着工作电流的增大而减小。
1.3、LC 三点式振荡输出波形:测试条件:V1 =12V 、 k fu ≈ 0.4、 fo ≈ 28MHz 、 Ic 1 = 3mA名称 单位 1 2 3 4 5 k fu 5C6/(C N+5C6)1.000 07633 0.5848 0.3984 0.1996 U LV P-P1.401.351.261.120.96波形特点与测量值分析结论:从图中可以看出输出波形为稳定的最大不失真正弦波,且频率为27.86MHZ。
总电路分析:1.在LC振荡实验电路中,我们发现将开关5K1必须拨到合适的位置处,因为要满足振幅起振条件,输出频率为30MHZ的正弦信号,应该增大反馈系数k fu和电压增益,但是增大反馈系数k fu,电压增益必定减小,反之,k fu减小,虽然可以提高电压增益,但是环路增益没有提高,因此要增加环路增益,反馈系数k fu要选取合适值。
因此在本次实验中LC三点式振荡器电路中开关5K1打到5C11—100处为最佳。
2. 我们发现提高三极管集电极的静态电流,可以增大跨导,从而可以增大电压增益,但是如果电流过大,就会造成回路有载品质因数过低,从而影响振荡频率的稳定性,因此在选取静态工作电流范围时一般取1~5mA.2.三极管幅度调制电路(基极):2.1、I C值变化对调制系数m的影响关系:“IC -- m”表1-3 测试条件:V1 = +12V UΩ= 1kHz/0.1 V p-p Ui = 30MHz/0.1 V p-p名称单位UΩ= 1KHz/0.1V P-P Ui = 30MHz/0.1V P-PIc mA 1 2 3 4 5Usm (A) V P-P0.324 0.436 0.468 0.540 0.660Usm (B) V P-P0.072 0.212 0.304 0.400 0.524m % 62.6 34.6 21.0 14.9 12.2I C值变化对调制系数m的影响的结论:在三极管基极调幅电路中,随着三极管工作电流的增大,调制系数随之减小。
2.2、三极管幅度调制电路(基极)输出波形:测试条件:V1 = +12V UΩ= 1kHz/0.1 Vp-p U i = 30MHz/0.1 Vp-pIc=3mALC三点式振荡输出波形波形特点与测量值分析结论:结论:由图可以看出输出波形是一个调幅信号的包络。
总电路分析:基极的调制特性主要是指当其他条件不变时,放大器性能随基极偏置电压变化的特性,当基极偏置电压增大时,集电极电流脉冲宽度和高度均增加,从而引起工作电流Ic的增大,放大器由欠压区进入过压区,进入过压区,集电极电流脉冲宽度和高度均增加,但是凹陷也增大,结果使得工作电流Ic继续增大,但是增大的十分缓慢,调制系数也随之减小。
3.高频谐振功率放大电路:由于,我们在课前准备的不充分,以及对实验步骤和实验要求把握得不到位,因此在实验过程中烧毁了一个电子元器件,导致电流表测得的电流一直超出量程,故以下数据没有进行测量和记录。
3.1.输入激励信号与输出信号电流/电压之间的关系,输出功率与工作效率表1-4 测试条件:V1=V2=12V、fo=30MHz/0.5-0.8 V p-p、R L=50Ω、(Ic不得超过60mA)级别激励放大级器(6BG1) 末级谐振功率放大器(6BG2)测量项目注入信号U i(V6-1)激励信号U bm(V6-2)输出信号U0(V6-3)未级电流I C(mA)峰峰值V P-P有效值V电源输入功率P D: Ic = mA、P D = mW高频输出功率P0 : Uo = V p-p RL = ΩP0 = mW 电路工作效率η: %3.2.谐振功率放大器的负载特性: R L-- Uo表1-5 测试条件:V1=V2 =12V、fo=30MHz U bm= 3—4Vp-p R L= 50Ω--150ΩRLΩ50Ω75Ω100Ω125Ω150ΩUo(V p-p)(V6-3)Ic(mA)(V2)结论:三极管幅度调制电路(基极)输出波形分析:在高频谐振功率放大电路实验中,我们在用万用表测试电流时,发现电流表的示数总是过大,而且直流电压源处也提示电流超过限定电流,于是我们降低输入信号的幅度,重新测试一遍后,发现还是同样的问题,刚开始我们以为是万用表问题,但是在打到蜂鸣档,短接后发现万用表是好的,再调试一会后,在老师的帮助下,我们发现原来是一个电子元器件烧坏了,之后我们分析了一下元器件烧坏的原因:1)由于刚开始输入信号源的幅度过大,导致流过元器件的电流大于其工作的最大电流,从而使得元器件烧坏。
2)不小心触碰了其他电路上的开关,导致流过该电路元器件的电流瞬间增大,从而烧坏元器件。
3)元器件本身就已经损坏。
(概率较小)4.调幅发射系统结论(给出实测波形以及各单元模块接口信号参数并分析):调幅发射系统各单元模块接口信号参数:LC振荡电路调幅电路频率1KHZ幅度0.1Vpp 功率放大实验实测波形粘贴处实验二、调幅接收系统实验一、实验目的与内容:通过实验了解与掌握调幅接收系统,了解与掌握三极管混频器电路、中频放大/AGC电路、检波电路。
二、实验原理:1、晶体管混频电路:原理:晶体管混频电路是将输入的高频信号(经滤波、放大)变换为频率固定的中频信号。
图中2R4为基极静态偏置电压,2C3、2B1和2R5为输出中频回路,输入30MHZ的单载波和30.455MHZ的本振信号,输出455KHZ的中频信号。