轴对称图形与平移图形

合集下载

西师大版五年级数学上册第二单元《图形的平移、旋转与轴对称》课件

西师大版五年级数学上册第二单元《图形的平移、旋转与轴对称》课件
是绕点O进行
探究新知
课件PPT
第一步:明确旋转的三要素
1.旋转点:物体旋转时所绕点或轴,也叫旋 转中心。 2.旋转方向:沿顺时针方向旋转和沿逆时针 方向旋转。 3.旋转角度:对应线段的夹角度数或对应顶 点与旋转点连线的夹角度数。
探究新知
课件PPT
第二步:明确图形的旋转点
点O为图形的旋转点。
第三步:明确旋转方向
情景导入2
在方格纸上将三角尺绕点A旋转90°。
理解题意: 所谓旋转就是将 一个图形绕一个 定点转动一定的 角度;旋转前后 图形的形状、大 小不变。
探究新知
第一步:明确画图要求
课件PPT
1.根据“在方格纸上画出三角尺绕点A旋 转90°后的图形”可知:旋转点是点A。 2.旋转方向:顺时针方向或逆时针方向。 旋转角度:90°。
课件PPT
第2单元 图形的平移、旋转和轴对称
3 轴对称图形
复习导入
课件PPT
你还记得我们玩过的纸飞机吗?纸 飞机的左右两边是一样的吗?这种 图形有什么特点呢?今天我们就来 学一学吧。
课件PPT
情景导入1
下面哪些图形是轴对称图形?动手折一折,找 出轴对称图形的对称轴。
理解题意: 共有6个图形,要找轴对称图形,首先我们 要弄清楚什么是轴对称图形。
探究新知
方法二:
课件PPT
先在长方形上确定一个点A,再 数平移到图形②后,A与A'之间有 几格,通过数数发现A与A'之间有 8格,即向右平移了8格。
探究新知
方法三:
课件PPT
在图形①中确定线段AB,然后数 平移到图形②后线段AB与线段 A'B'之间有几格,通过数数发现 AB与A'B'之间有8格,即向右平移 了8格。

《轴对称图形》旋转平移和轴对称

《轴对称图形》旋转平移和轴对称

定义
平移变换是指将一个图形沿某 一方向移动一定的距离,而图 形的形状和大小保持不变。
特性
平移变换后的图形与原图形的 对应线段平行且相等,对应角 相等,对应点之间的距离相等

应用
平移变换在几何学中有着广泛 的应用,如证明平行线、矩形 、正方形等几何形状的性质等

轴对称图形与缩放变换
定义
缩放变换是指将一个图形的所有边按照同一比例 放大或缩小,而图形的形状和大小保持不变。
旋转对称图形的性质3
旋转对称图形的旋转角度必须是整数倍的360°,否则不能构成旋 转对称图形。
旋转对称图形的应用
01
旋转对称图形的应用1
在几何学中,旋转对称图形是研究空间几何关系的重要工具之一,可
以用来证明和解决一些几何问题。
02 03
旋转对称图形的应用2
在自然界中,许多物体都具有旋转对称性,如行星、卫星、恒星等天 体。这些物体的形状和大小可以通过其自转和公转的运动规律来描述 。
分类2
根据轴对称图形的对称轴数量,可以分为一维对称图形(如 线段)、二维对称图形(如圆形)、三维对称图形(如立方 体)等。
02
旋转对称图形
旋转对称图形的定义
旋转对称图形定义
如果一个图形绕某一点旋转一定角度后,能够与自身重合,那么 这个图形就叫做旋转对称图形,这个旋转中心称为旋转对称中心 。
旋转对称图形的旋转中心
定义
如果一个图形围绕某一点旋转 一定角度后,能够与原来的图 形重合,那么这个图形被称为
旋转对称图形。
特性
旋转对称图形的旋转中心是其对 称中心,任何旋转对称图形都有 一个旋转中心,并且所有围绕该 中心旋转的图形都会重合。
应用

轴对称和平移

轴对称和平移
课堂练习
1、选择题
1.如图所示的标志中,是轴对称图形的有()
A.1个B.2个C.3个D.4个
2、下列图形中一定是轴对称图形的是()
A、梯形B、直角三角形C、角D、平行四边形
3、下列轴对称图形中,只有两条对称轴的图形是()
4、下列英文字母中,是轴对称图形的是()
A、S B、H C、P D、Q
5、下列各种图形中,不是轴对称图形的是()
(3)图3向()移动了()格.
9、画一画,填一填:
(1)图3向()平移了()格.
(2)请画出图2向左平移10格后的图形.
(3)请画出图1的另一半,使它成为一个轴对称图形.
10、画出下列图形的对称轴.
课后练习
画出如图所示的每个正多边形的对称轴的条数,并填下表格中.
正多边形的边数
3
4
5
6
7
8
对称轴的条数
学生
课后自我评价
听课及知识掌握情况反馈
____________________________________________________。
家长督导意见
教学督导签字
班主任签字:教学主管签字:
老师
课后
赏识
评价
老师最欣赏的地方:
老师的建议:

轴对称和平移
知识梳理
1、轴对称
1.定义:一个(两个)平面图形沿某条直线对折能够完全重合.
2.特征:对应角相等,对应边相等.
3.判断方法:沿着某条直线对折看是否重合.
4.画法:(1)找关键点
(2)过每个关键点做对称轴的垂线截取与之相等的距离,标出对应点
(3)连接对应点.
5.重要结论:(1)线段是轴对称图形,对称轴是它的垂直平分线.

第一轮复习图形的位置变换(平移、旋转、轴对称)

第一轮复习图形的位置变换(平移、旋转、轴对称)

(1, 3) . 则点 C′的坐标是_______
典型习题
五、变换作图 如图, 在平面直角坐标系中, △ABC 的三个顶点都在格 点上,点 A 的坐标为(2,4),请解答下列问题: (1)画出△ABC 关于 x 轴对称的 △A1B1C1,并写出点 A1 的坐标; (2)画出△A1B1C1 绕原点 O 旋转 180° 后得到的△A2B2C2,并写出 点 A2 的坐标.
达标检测
8.下列图形中,既是轴对称图形,又是中心对称图形 的是( C )
达标检测
9.线段 MN 在直角坐标系中的位置如图所示,若线段 M′N′与 MN 关于 y 轴对称, 则点 M 的对应点 M′的坐标 为( D ) A.(4,2) B.(-4,2) C.(-4,-2) D.(4,-2)
达标检测
典型习题
解:(1)△A1B1C1 如图所示,A1(2,-4). (2)△A2B2C2 如图所示,A2(-2,4).
达标检测
1. 如图, 点 A, B, C, D 都在方格纸的格点上, 若△AOB 绕点 O 按逆时针方向旋转到△COD 的位置,则旋转的 角度为( C ) A.30° B.45° C.90° D.135°
典型习题
二、旋转的性质 如图,在直角△OAB 中,∠AOB=30° ,将△OAB 绕点 O 按逆时针方向旋转 100° 得到△OA1B1,则∠A1OB 的
70° . 度数为_______
典型习题
三、识别轴对称图形与中心对称图形
下图中,既是中心对称图形又是轴对称图形的是( B )
典型习题
四、轴对称的性质 如图,在平面直角坐标系中△ABC 的两个顶点 A,B 的 坐标分别为(-2,0),(-1,0),BC⊥x 轴.将△ABC 以 y 轴为对称轴对称变换,得到△A′B′C′(A 和 A′,B 和 B′, C 和 C′分别是对应顶点). 直线 y=x+b 经过点 A, C′,

五年级数学上册第二单元 轴对称和平移 知识点+练习

五年级数学上册第二单元  轴对称和平移 知识点+练习

第二单元轴对称和平移轴对称:1.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,那条直线就叫做对称轴。

两图形重合时互相重合的点叫做对应点,也叫对称点。

2.轴对称图形的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴。

3.轴对称图形具有对称性。

4轴对称图形的法:(1)找出所给图形的关键点,如图形的顶点、相交点、端点等;(2)数出或量出图形关键点到对称轴的距离;(3)在对称轴的另一侧找出关键点的对称点;(4)按照所给图形的顺序连接各点,就画出所给图形的轴对称图形。

平移:1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

2.平移的基本性质:(1)平移不改变图形的形状和大小,只改变图形的位置。

(2)经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等。

3.平移图形的画法:(1)确定平移的方向与距离。

(2)将关键点按所需方向平移所需距离。

(3)按原来图形的连接方式依次连接各对应点。

4、平移几格并不是指原图形和平移后的新图形之间的空格数,而是指原图形的关键点平移的格数。

设计图案的基本方法:平移、对称1.运用平移设计图案的方法:(1)选好基本图案;(2)根据所选的基本图案确定平移的格数和方向;(3)平移,描出对应点;(4)按顺序连接对应点。

2.运用对称设计图案的方法:(1)先选好基本图案;(2)依据基本图案的特点定好对称轴;(3)选好关键点,并描出关键点的对应点;(4)按顺序连接对应点,画出基本图形的对称图形。

北师大版小学五年级上册数学第2单元《轴对称和平移》1、把图形向右平移7格后得到的图形涂上颜色。

(1)向左平移2格2、把图形向左平移5格后得到的图形涂上颜色。

(2)向右平移5格3、把图形向右平移4格后得到的图形涂上颜色。

4、画出小船向右平移6格后的图形。

5、画出向右平移6格后的图形6、(1)小汽车向()平移了()格。

坐标平面内图形的轴对称和平移(基础) 知识讲解

坐标平面内图形的轴对称和平移(基础) 知识讲解

坐标平面内图形的轴对称和平移(基础)责编:杜少波【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则b a的值为_______. 【思路点拨】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=-3,1-b=-1,再解方程可得a、b的值,进而算出b a的值.【答案】25【解析】解:∵点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),∴a+b=-3,1-b=-1,解得:b=2,a=-5,ba=25,【总结升华】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)【答案】A.2.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】点P(-2,5)向右平移个单位长度,向下平移个单位长度,变为P′(0,1).【答案】2、4.4. 如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】(2014秋•宣汉县期末)如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).。

专题16 图形变换之平移与对称(解析版)

专题16 图形变换之平移与对称(解析版)

专题16图形变换之平移与对称考纲要求:1.理解轴对称、轴对称图形、中心对称、中心对称图形、平移的概念. 2.运用图形的轴对称、平移进行图案设计.3.利用平移、对称的图形变换性质解决有关问题.基础知识回顾:知识点一:图形变换1.图形的轴对称(1)定义:①轴对称:把一个图形沿某一条直线翻折过去,如果它能够与另一个图形重合,那么就称这两个图形关于这条直线对称.②轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴. (2)性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分.2.图形的平移(1)定义:在平面内,将某个图形沿某个方向移动一定的距离,这样的图形运动称为平移.(2)性质:①平移后,对应线段相等且平行,对应点所连的线段相等且平行;②平移后,对应角相等且对应角的两边分别平行、方向相同;③平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两个图形全等.3.图形的中心对称(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心.(2)①关于中心对称的两个图形全等;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.知识点二:网格作图坐标与图形的位置及运动图形的平移变换在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.图形关于坐标轴成对称变换在平面直角坐标系内,如果两个图形关于x轴对称,那么这两个图形上的对应点的横坐标相等,纵坐标互为相反数;在平面直角坐标系内,如果两个图形关于y轴对称,那么这两个图形上的对应点的横坐标互为相反数,纵坐标相等.图形关于原点成中心对称在平面直角坐标系内,如果两个图形关于原点成中心对称,那么这两个图形上的对应点的横坐标互为相反数,纵坐标互为相反数.应用举例:招数一、变换图形的形状问题【例1】下列倡导节约的图案中,是轴对称图形的是A. B. C. D.【答案】C【解析】将一个图形沿一条直线折叠,直线两旁的部分能够完全重合;这样的图形叫轴对称图形.故选C.招数二、平面坐标系中的图形变换问题【例2】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1.A2的坐标.【答案】(1)△A1B1C1即为所求;(2)△A2B2C2即为所求;(3)A1(2,3),A2(-2,-1).【解析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.招数三、函数中的图形变换问题【例3】已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.<﹣3.【答案】(1)﹣m﹣3;(2)y=﹣x﹣2(x>1);(3)﹣4<yP【解析】(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点,∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3.(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3,∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3,顶点坐标为(m+1,﹣m﹣3),∴抛物线G1∴x=m+1,y=﹣m﹣3,∴x+y=m+1﹣m﹣3=﹣2.即x+y=﹣2,变形得y=﹣x﹣2,∵m>0,m=x﹣1,∴x﹣1>0,∴x>1,∴y与x的函数关系式为y=﹣x﹣2(x>1).(3)如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4,∴函数H的图象恒过点B(2,﹣4),∵抛物线G:y=m(x﹣1)2﹣m﹣3,x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3,∴抛物线G恒过点A(2,﹣3),由图象可知,若抛物线与函数H的图象有交点P,则yB <yP<yA,∴点P纵坐标的取值范围为﹣4<yP<﹣3,招数四、三角形、四边形中图形变换问题【例4】将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.B.﹣1 C.D.【答案】A【解析】连接HF,设直线MH与AD边的交点为P,如图:由折叠可知点P、H、F、M四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,∵若正方形EFGH与五边形MCNGF的面积相等∴由折叠可知正方形EFGH的面积=×正方形ABCD的面积=,∴正方形EFGH的边长GF==[∴HF=GF=∴MF=PH==a∴=a÷=故选:A.【例5】如图,在中,,,,点M为边AC的中点,点N为边BC 上任意一点,若点C关于直线MN的对称点恰好落在的中位线上,则CN的长为______.【答案】或【解析】取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点落在MH上时,设,由题意可知:,,,,在中,,,解得;如图2中,当点落在GH上时,设,在中,,,,∽,∴,,;综上所述,满足条件的线段CN的长为或.故答案为为或.招数五、图案设计方案问题【例6】在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)【答案】见解析.【解析】如图所示方法、规律归纳:1.识别某图形是轴对称图形还是中心对称图形的关键在于对定义的准确把握,抓住轴对称图形、中心对称图形的特征,看能否找出其对称轴或对称中心,再作出判断.2.在平面直角坐标系中,将点P(x,y)向右(或左)平移a个单位长度后,其对应点的坐标变为(x+a,y)〔或(x-a,y)〕;将点P(x,y)向上(或下)平移b个单位长度后,其对应点的坐标变为(x,y+b)〔或(x,y-b)〕.3.要画出一个图形的平移、对称后的图形,关键是先确定一些关键点,根据相应顶点的平移方向、平移距离、对称不变的性质作出关键点的对应点,这种以“局部代整体”的作图方法是平移、对称中最常用的方法.4.利用平移、对称的性质解题时,要抓住平移规律及对称中不变的特点来解决问题.实战演练:1.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2【答案】C【解答】如图所示,n的最小值为3,2. 如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,则图中阴影部分的面积是()A.2 B.3 C.4 D.无法计算【答案】A【解析】如下图所示,∵抛物线y1=-x2+2向右平移1个单位得到抛物线y2,∴两个顶点的连线平行x轴,∴图中阴影部分和图中红色部分是等底等高的,∴图中阴影部分等于红色部分的面积,而红色部分的是一个矩形,长、宽分别为2,1,∴图中阴影部分的面积S=2.故选A.3. 将抛物线y=x2-6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A.y=(x-4)2-6 B.y=(x-1)2-3 C.y=(x-2)2-2 D.y=(x-4)2-2 【答案】D【解析】y=x2-6x+5= (x-3) 2-4,把向上平移两个单位长度,再向右平移一个单位长度后,得y= (x-3-1) 2-4+2,即y=(x-4)2-2.4.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A.B.C.D.【答案】B【解答】解:由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,∴Rt△BCG中,CG2+BC2=BG2,即a2+(2b)2=(3a)2,∴b2=2a2,即b=a,∴,∴的值为,故选:B.5. 如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是 .【答案】.【解析】试题解析:如图1,当点P为BC的中点时,MN最短.此时E、F分别为AB、AC的中点,∴PE=AC,PF=AB,EF=BC,∴MN=ME+EF+FN=PE+EF+PF=6;如图2,当点P和点B(或点C)重合时,此时BN(或CM)最长.此时G(H)为AB(AC)的中点,∴CG=2(BH=2),CM=4(BN=4).故线段MN长的取值范围是6≤MN≤4.6. 如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.判断线段DE、FG的位置关系,并说明理由.【解析】DE⊥FG.理由:由题知:Rt△ABC≌Rt△BDE≌Rt△FEG∴∠A=∠BDE=∠GFE∵∠BDE+∠BED=90°∴∠GFE+∠BED=90°,即DE⊥FG.7.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B 的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n >0,求m ,n 的值.【答案】(1)26x -;(2)72,1.【解析】(1)令0y =,则212602x x -++=,解得,12x =-,26x =,(2,0)A ∴-,(6,0)B , 由函数图象得,当0y 时,26x -;(2)由题意得,1(6,)B n m -,2(,)B n m -, 函数图象的对称轴为直线2622x -+==, 点1B ,2B 在二次函数图象上且纵坐标相同, ∴6()22n n -+-=,1n ∴=, ∴217(1)2(1)622m =-⨯-+⨯-+=, m ∴,n 的值分别为72,1. 8.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0).得到正方形A′B′C′D′及其内部的点,其中点A 、B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.由B 到B ′,可得方程组:⎩⎨⎧=+⨯=+2023n a m a ,解得:a =12,m =12,n =2. 设F 点的坐标为(x ,y ),点F ′点F 重合得到方程组:⎪⎪⎩⎪⎪⎨⎧=+=+y y x x 2212121 ,解得:⎩⎨⎧==41y x ,即F(1,4).9. 如图,在平面直角坐标系中,长方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上.点B 的坐标为(8,4),将该长方形沿OB 翻折,点A 的对应点为点D ,OD 与BC 交于点E . (I )证明:EO=EB ;(Ⅱ)点P 是直线OB 上的任意一点,且△OPC 是等腰三角形,求满足条件的点P 的坐标; (Ⅲ)点M 是OB 上任意一点,点N 是OA 上任意一点,若存在这样的点M 、N ,使得AM+MN 最小,请直接写出这个最小值.【答案】(I )证明见解析;(Ⅱ)P 的坐标为(4,2)或(,)或P (﹣,﹣)或(,);(Ⅲ).【解析】(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=x,∵点P是直线OB上的任意一点,∴设P(a,a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(a)2=a2,PC2=a2+(4-a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则a2=a2+(4-a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则a2=16,解得a=±,即P(,)或P(-,-);③如果PC=OC时,那么PC2=OC2,则a2+(4-a)2=16,解得a=0(舍),或a=,即P(,);故满足条件的点P的坐标为(4,2)或(,)或P(-,-)或(,);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=DE×BD=BE×DG,∴DG=,由题意有,GN=OC=4,∴DN=DG+GN=+4=.即:AM+MN的最小值为.10. 如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2、y=x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t >0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.【答案】(1)直线l1的表达式为y=﹣x+10,点P坐标为(8,6);(2)①t值为或;②当t=时,△PMN的面积等于18.【解析】(1)设直线l1的表达式为y=kx+b,∵直线l1过点F(0,10),E(20,0),∴,解得:,直线l1的表达式为y=﹣x+10,解方程组得,∴点P坐标为(8,6);(2)①如图,当点D在直线上l2时,∵AD=9∴点D与点A的横坐标之差为9,∴将直线l1与直线l2的解析式变形为x=20﹣2y,x=y,∴y﹣(20﹣2y)=9,解得:y=,∴x=20﹣2y=,则点A的坐标为:(,),则AF=,∵点A速度为每秒个单位,∴t=;如图,当点B在l2直线上时,∵AB=6,∴点A的纵坐标比点B的纵坐标高6个单位,∴直线l1的解析式减去直线l2的解析式得,﹣x+10﹣x=6,解得x=,y=﹣x+10=,则点A坐标为(,)则AF=,∵点A速度为每秒个单位,∴t=,故t值为或;②如图,设直线AB交l2于点H,设点A横坐标为a,则点D横坐标为a+9,由①中方法可知:MN=,此时点P到MN距离为:a+9﹣8=a+1,∵△PMN的面积等于18,∴=18,解得a1=-1,a2=﹣-1(舍去),∴AF=6﹣,则此时t为,当t=时,△PMN的面积等于18.。

5年级数学 北师大版上册课件第2章《欣赏与设计》

5年级数学 北师大版上册课件第2章《欣赏与设计》
第二单元 轴对称和平移
第 4 课时 欣赏与设计
1.结合欣赏与绘制图案的过程,体会轴对称、平移在图 案设计中的应用。(重点)
2.应用平移、轴对称等知识设计、绘制图案。(难点) 3.能从复杂的图案中抽出简单的图形。 4.感受图案的美,培养健康的审美情趣。
说一说,生活中有哪些轴对称和平移的现象。
说一说,轴对称图形和平移图形有什么特点? 轴对称图形的特征:轴对称图形沿着对称轴对折后, 折痕两侧的部分能够完全重合,两侧对称的点完全重 合。对称点到对称轴的距离相等。
通过轴对称或平移,可以设计出美妙的图案。
例题分析
上面各幅图案是怎样得到的?与同伴交流你的想法。
请你在下面方格纸上继续画下去。
请你用轴对称或平移的方法,设计一幅美丽的图案。
知识提炼
知识点:1. 利用平移、轴对称设计图案时,可以
只用一种方法,也可以两种都用。
2. 平移图形时,注意方向和距离;画轴 对称图形时,先找到对称点,再连线。
1.接着画下去。
2.取一张纸,分别按下列步骤折一折、画一画、剪一剪。你 发现了什么?
发现:通过轴对称图 形可以得到很多美丽 的图形。
3.(选自教材P28 T2)照样子继续画下去,形成一幅美丽 的图案,并涂上你喜欢的颜色。
同学们自己动手画一画。
4.(选自教材P28 T3)按规律,画出下一个图形。
小试牛刀
(选自教材P28 T1)说一说下面的每幅图案是怎样得到的, 并与同伴交流你的想法。
由 多次平移得到。 由
ห้องสมุดไป่ตู้轴对称
和平移后得到。


对称后得到。
判断:在设计图案时一定要运用平移 或轴对称的知识来设计。 ( )
并不是所有的图案都一定要运用平移 或轴对称的知识来设计。生活中有一些图 案就想呈现出一种不和谐之美,这样的图案 就不需要运用平移或轴对称知识来设计。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称与平移
知识要点
一、轴对称
(1)轴对称图形的定义:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。

例:下面图形中,不一定是轴对称图形的是()
A.长方形
B.正方形
C.圆
D.平行四边形
变形题型
长方形有()条对称轴,圆有()条对称轴,正方形有()条对称轴。

(2)轴对称图形的性质:
①在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

②在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

(3)画对称轴
方法:①找出对称轴的位置;②用虚线画出对称轴
例:画出下列每组图形的所有对称轴。

同类型题
请画出来下列各图的所有对称轴,并填在()里填上适当的数.
(3)画轴对称图形
方法:①描出关键点的对称点;②用线段按顺序连接各关键点
例:画出图形的另一半,使它成为一个轴对称图形。

同类型题
画出图形的另一半,使它成为一个轴对称图形。

二、平移图形
(1)平移的定义:在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移
例:下列现象中,不属于平移的是()
A.乘电梯从一楼到二楼
B.钟表的指针转动
C.火车在笔直的轨道上行驶
D.汽车在平坦笔直的公路上行驶
(2)平移图形的性质:①图形的位置发生改变;②图形的形状大小不变
例:仔细观察,填一填
同类型题
小鱼先向()平移了()格,再向()平移了()格,又向()平移了()格,最后向()平移了()格。

(3)画平移图形
方法:①按平移方向和平移格数描出各个关键点;②用线段按顺序连接各点
例:先画出向右平移8格的图形,再画出原图向上平移4格的图形。

同类型题
1.画一画。

房子向右平移5格,小船向下平移4格
(1)长方形向( )平移了( )格。

(2)六边形向( )平移了( )格。

(3)五角星向( )平移了( )格。

2.在方格里画出先向下平移3格,再向右平移4格后的图形。

相关文档
最新文档