某网壳结构设计实例与解析

合集下载

某热电厂干煤棚网壳结构设计与施工

某热电厂干煤棚网壳结构设计与施工

某热电厂干煤棚网壳结构设计与施工摘要:本工程为螺栓球节点三心圆柱面网壳结构。

网壳平面尺寸为120m×100m,跨度为120m,网壳上弦矢高为41.6m,网壳厚3.8m。

本文主要介绍了网壳的结构选型、结构设计、网壳累积滑移法施工。

关键词:三心圆柱面网壳结构选型结构设计网壳累积滑移法滑移节点构造前言:工程概况该煤棚采用落地式三心圆双层网壳结构,设计形式为正放四角锥螺栓球网壳,两端开口。

长100m,跨度为120m,上弦矢高为41.6m,厚3.8m,钢管材质选用Q235B,螺栓球选用45号钢锻造,屋面为0.6mm厚镀铝锌压型钢板。

经过几种方案比较,并参考同类工程经验,最终设计滑移方案进行施工。

1 结构选型根据本工程干煤棚工艺要求,该干煤棚净跨度为120m,这就使得该干煤棚网壳外型选择很重要。

经多方案比较,结构外型选用柱面网壳,柱面的横截面形状采用三心圆柱面结构形式,大圆半径为95.2m,小圆半径为36.8m,横截面剖面图如图1所示,这样可以使结构在满足受力要求的情况下,结构表面积最小,以减少屋面板用量,达到节省工程总造价的目的。

由于干煤棚工艺要求纵向两端开口,对于跨度较大的两端开口的三心圆柱面网壳,为了满足结构整体刚度要求,一般采用四角锥柱面网壳[1][2],而四角锥柱面网壳网格的布置有三种形式,斜放四角锥柱面网壳;正交斜置四角锥柱面网壳;正交正放四角锥柱面网壳。

本工程采用正交正放四角锥柱面网壳时,结构传力相对均匀、明确,而当采用斜放四角锥柱面网壳及正交斜置四角锥柱面网壳时,结构传力将相对向两端四个角部集中,结构的二端将产生较大的支座反力,由此,相应网壳结构的端部应采取加强措施,这样会对网壳支座和结构基础的处理带来困难。

本工程最终采用正交正放四角锥柱面网壳。

2 结构分析与设计2.1 荷载类型[3]结构设计中考虑了结构自重、恒载、活载、风荷载、水平地震作用、温度作用、不均匀沉降作用。

结构自重由计算程序自动计算;恒载计入屋面板及屋面次构件重,取均布面荷载0.2kN/㎡;屋面活荷载取0.5kN/㎡温度取 30°C的温度作用。

大跨结构第4讲-网壳结构

大跨结构第4讲-网壳结构

第4讲:网壳结构
北京体育学院体育馆 59.2m×59.2m 四块组合双层扭网壳 1988年建成,52kg/m2
第4讲:网壳结构
长春体育馆 120m×166m 1997年建成,80kg/m2
第4讲:网壳结构
国家大剧院, 212.2x143.6m,双层空腹椭球壳 137kg/m2
第4讲:网壳结构
=
4 R2
EBh
等效刚度B,等效厚度h
第4讲:网壳结构
考虑局部凹陷大变形影响系数η=0.25~0.3, 缺陷 敏感系数β=0.4~0.5,安全系数K=2.5~3.0
P des cr
=
βη
K
P lin cr
=
(0.04
~
0.05)
P lin cr
柱面网壳受径向均布荷载,也有近似临界荷载理论解
第4讲:网壳结构
国家大剧院椭球面
⎜⎛ x ⎟⎞2.2 + ⎜⎛ y ⎟⎞2.2 + ⎜⎛ z ⎟⎞2.2 = 1 ⎝ 105.963 ⎠ ⎝ 71.663 ⎠ ⎝ 45.203 ⎠
第4讲:网壳结构
②层数:单层、双层和单双混合;单层网壳应采用刚接节 点,双层网壳可采用铰接节点
③曲面曲率:正高斯—球面、抛物面;零高斯— 柱面、锥面;负高斯—马鞍面
∑ γ ∑ xj
=
m iX ji
m
i(X
2 ji
+
Y
2 ji
+
Z
2 ji
)
∑ ∑ γ yj =
m iY ji
m
i(X
2 ji
+
Y
2 ji
+
Z
2 ji
)

双层螺栓球网壳结构的应用实例研究分析

双层螺栓球网壳结构的应用实例研究分析

双层螺栓球网壳结构的应用实例研究分析网壳结构因其优美的造型设计和广泛的运用,成为近年来发展最快的结构之一,本文以浙江国华宁海电厂煤仓大跨度空间螺栓球网壳穹顶设计与施工为例,结合工程的具体情况,阐述其设计与安装原理。

结果表明:该施工方法降低工程造价、缩短工期和保障施工质量,增强市场竞争力,具有良好经济效益和发展前景。

标签:螺栓球结构;设计原理;应用实例;施工方案一、工程概况宁海电厂煤仓穹顶采用双层螺栓球节点球壳,半径68.349m。

球壳跨度129.63m,水平投影面积13194㎡。

网架矢高42.98m,球壳厚度2.0m,支承形式为下弦柱点支承。

考虑上弦恒荷载0.20kN/㎡,下弦悬挂荷载为60m直径沿环向2kN/m,活荷载0.5 kN/㎡,基本风压:0.6 kN/㎡。

径向位移40mm。

二、设计原理在选择结构的类型时,应该综合考虑结构的受力性能和经济性能,结构的平面形状尺寸、结构的矢高、边界支承条件等因素。

网壳结构要求简洁,传力均匀、明确。

首先通过计算求出结构承受的主要荷载情况、荷载大小、选择合适的荷载组合,对于电厂煤仓这样大跨度的空间结构,风荷载在计算中不可忽视。

利用哈尔滨工业大学的STACAD网架设计工程软件,进行网壳计算及施工图绘制。

恒荷载取0.20 kN/㎡,作用在上弦节点上。

风荷载是该工程中的重要荷载之一,风荷载体型系数的选取很重要,根据荷载规范和类似工程的风洞试验结果可以选取适合的体型系数。

该工程采用的双层网壳结构,是由两个同心或不同心的单层网壳通过斜腹杆连接而成的。

网壳采用四角锥网格,平均杆长3.5米,球壳厚度2.0m,总吨位510.3吨。

边界条件假定在结构计算尤为重要,网壳结构对边界条件的要求较高。

该工程中,为考虑网壳和扶壁柱的协同工作,将扶壁柱作为网壳弹性支承。

为此,将网壳离散为空间杆单元,扶壁柱作为空间梁单元,扶壁柱在标高±0.0处嵌固,对网壳和扶壁柱进行整体计算分析。

大跨度三心圆柱面网壳结构设计探析

大跨度三心圆柱面网壳结构设计探析

大跨度三心圆柱面网壳结构设计探析1.1 三心圆柱面三心圆柱面是指以三个不同半径的圆为轮廓画出三个相互挤压的圆柱,并使得这三个圆柱相互穿过的一种曲面。

在大跨度结构设计中,三心圆柱面常被用于网壳结构的形成。

1.2 网壳结构网壳结构是一种由薄壁材料构成的连续表面结构,其承载原理类似于一个由弹性线构成的网状结构。

网壳结构能够在各个方向上均匀地分散荷载,并具有轻量、经济、美观的特点。

1.3 大跨度结构大跨度结构是指跨度超过一定范围的建筑结构,通常用于体育馆、会展中心、机场等场所。

大跨度结构设计需要考虑到结构的承载能力、稳定性和美观性等因素,要求设计师在结构设计中进行合理的优化。

综合以上三点,大跨度三心圆柱面网壳结构是将三心圆柱面作为基本形式,通过特定的布置和连接方式构成连续表面的网壳结构,以实现大跨度结构的设计要求。

2.1 结构稳定性高大跨度三心圆柱面网壳结构采用了弧形构件的结构形式,使得整体结构具有较高的稳定性。

通过合理设计曲率,能够有效地减小结构产生的应力,提高结构的稳定性和承载能力。

2.2 结构自重轻大跨度三心圆柱面网壳结构借鉴了自然界中的网状结构,采用了轻量的材料和空间框架结构,使得整体结构的自重得到了有效控制。

在大跨度结构中,轻量化设计是非常重要的,能够有效减小结构的自重,降低建筑成本。

2.3 空间感强大跨度三心圆柱面网壳结构在设计中充分考虑了空间感的营造,通过曲线和曲面的设计,创造出流畅、舒适的空间形态。

这样的结构形式不仅能够提高使用者的舒适感,同时也为建筑增添了一定的美学价值。

2.4 施工难度大虽然大跨度三心圆柱面网壳结构具有良好的承载性能和美观效果,但其施工难度也相对较大。

由于结构的曲线和曲面特点,对材料加工和构件制作的精度要求较高,对施工工艺和方案的设计也较为复杂。

三、实例分析以某大型体育馆项目为例,该项目采用了大跨度三心圆柱面网壳结构,有效地解决了跨度大、自重轻、空间舒适的设计要求。

在该项目中,设计师通过多次方案比选和实验研究,最终确定了三心圆柱面网壳结构,并进行了详细的构件设计和施工工艺的优化。

某柱面网壳结构设计

某柱面网壳结构设计

某柱面网壳结构设计关键词:柱面网壳模态分析结构工程1 工程概况大跨结构有许多为人所肯定的优点,如受力合理,刚度大且质量轻,造价低,结构形式多变,不仅可以满足受力要求还可以突出结构的美,是现在的主流结构形式,另外,市场经济的发展大大改善了人们的生活质量,促进了文体、工业事业的繁荣发展,大跨度高性能结构在社会生活中的应用越来越广泛。

而轻质高强材料的研发和改进极大的丰富了结构计算理论,使得对任何极其复杂的大跨度结构的分析与设计成为可能。

大跨度结构在材料、工艺和设计在业界堪称先进,它的研究和发展同样标志着国家建筑科学技术水平的提高,因而,从小到简单的雨蓬、公路收费站,大到形态各异的体育馆、会展中心、候车(候机)厅、大型机库、煤棚等重要建筑,都可以见到大跨度结构。

本工程系某大型煤棚屋盖,下部用混凝土框架作支撑,网壳式屋盖既美化了结构的外观,同时也兼顾了结构物的使用功能(详见图1)。

结构采用双层正放四角锥圆柱面网壳,通过层间竖向、斜向撑杆支承屋面结构,屋盖长边跨度45m,短边跨度为30m,矢跨比1/3。

2 计算简图该工程为双层正放四角锥圆柱面网壳,下部采用混凝土框架作支撑。

本次研究只取上部网架三维建模进行计算。

结构应用q235b级钢上弦两纵边支撑,采用刚性铰支座。

用热轧无缝钢管作杆件,通过加肋、不加肋两种形式对空心球施焊,网架自重为。

3 使用程序和计算依据本次研究应用空间结构设计软件3d3s,参考建筑效果图和下部原结构施工图、jgj7-91《网架规范》、gb5009-2001《建筑结构荷载规范》、gb5017-2001《钢结构设计规范》和gb5017-2001《钢结构设计规范》进行计算。

4 荷载取值基于采光房的建筑设计和场地情况确定荷载取值:上、下弦静载和活载的分别取,基本风压和基本雪压的取值分别是。

进行设计计算时,荷载通过面荷载向上弦杆件双向导荷。

地震参数:结构所在地场地土属于ⅲ类,地震烈度达到8度,地震加速度为0.2g;设计地震分组为第一组,结构阻尼系数是0.02,考虑双向地震和竖向地震作用。

天津于家堡大跨度单层网壳结构设计与分析

天津于家堡大跨度单层网壳结构设计与分析

天津于家堡大跨度单层网壳结构设计与分析陈志华;徐皓;王小盾;宋长江;高修建【摘要】天津于家堡综合交通枢纽站房屋盖采用单层网壳结构,南北向跨度为144,m,东西向跨度为81,m,矢高为25,m,是目前国内跨度最大的单层网壳结构。

基于仿生学设计理念,建筑造型模仿贝壳形状和纹理,焊接箱形杆件沿空间螺旋线交织布置。

结合于家堡大跨度单层网壳结构,详细介绍了该单层网壳的结构设计和布置形式,并对其稳定性能和动力特性进行了研究,为大跨度、非规则单层网壳结构设计提供工程参考。

%The roof of Tianjin Yujiapu transport hub is a single-layer reticulated shell structure,which has a north-south span of 144,m,an east-west span of 81,m and a vector height of 25,m,and this structure is a single-layer re-ticulated shell with the largest span in China at present. Based on the design concept of bionics,the shell simulates the shape and texture of a conch,and its welded-box members distribute along spatial spirals. With regard to the large-span single-layer reticulated shell of Yujiapu,its structural form and design were described in detail. Then sta-bility properties and dynamic behaviors of the structure were studied. The purpose of this paper is to provide a refer-ence for the design of long span and irregular single-layer reticulated shell.【期刊名称】《天津大学学报》【年(卷),期】2015(000)0z1【总页数】5页(P91-95)【关键词】于家堡;单层网壳;结构设计;稳定分析;动力特性【作者】陈志华;徐皓;王小盾;宋长江;高修建【作者单位】天津大学建筑工程学院,天津 300072; 天津大学水利工程仿真与安全国家重点实验室,天津 300072;天津大学建筑工程学院,天津 300072;天津大学建筑工程学院,天津 300072;铁道第三勘察设计院集团有限公司,天津 300251;铁道第三勘察设计院集团有限公司,天津 300251【正文语种】中文【中图分类】TU393.3现代空间结构中,网壳结构常被用于覆盖大跨度无柱空间,是大跨度结构的较理想的结构形式之一.其中单层网壳又因杆件少、节点构造简单、建筑造型美观、结构受力合理、施工方便和经济等特点,具有较好的发展前景[1-2].随着单层网壳结构跨度的不断增大,网壳结构的稳定性和动力性能变得越来越重要,已成为结构设计中不可忽略的关键问题[3-4].本文结合天津于家堡大跨度单层网壳结构,详细介绍了该单层网壳的结构设计和布置形式,并对其稳定性能和动力特性进行了研究,为大跨度、非规则单层网壳结构设计提供工程参考.于家堡位于天津市塘沽区海河北岸,东西南三面临海河.京津城际延伸线于家堡综合交通枢纽位于于家堡中心商务区北端,东接规划中央大道,南邻规划于仁道,西接规划堡京路,北邻现状新港路.该交通枢纽连接京津城际延伸线及多条地铁线,总建筑面积约20余万平方米,铁路车场设置于地下,车站规模包括3座岛式站台与6条到发线.新建站房最高聚集人数约2,000人,远期每日旅客发送量达50,000人次,高峰小时发送量约为5,000人次.该交通枢纽周边设置有出租车停车场、社会车停车场、公交中心及控制中心等一系列配套设施,从而形成一个庞大、便利的交通枢纽中心.于家堡综合交通枢纽整体效果图如图1所示.天津于家堡综合交通枢纽站房屋盖采用大跨度单层网壳结构,南北向跨度为144,m,东西向跨度为81,m,矢高为25,m,是目前国内跨度最大的单层网壳结构.基于仿生学设计理念,模仿贝壳形状和纹理,焊接箱形杆件沿空间螺旋线交织布置,构成非规则的空间曲面造型.站房屋面采用ETFE膜材以达到整体结构简洁、轻巧、通透并与周围环境完美结合的效果.网壳南侧设主入口,东西两侧各设一个次入口,各入口门洞均为三角形样式;网壳顶部设有较大面积的天窗.网壳结构的平面图、立面图分别如图2和图3所示.于家堡大跨度单层网壳结构的杆件均采用Q345C钢材.由于网壳网格大小、疏密不一,故网壳结构不同部位的杆件类型和截面大小不同,杆件截面参数详见表1,各截面分布如图4所示.于家堡单层网壳结构通过36个支座与地下结构相连,约束条件为释放环向位移、约束径向和竖向位移的铰支座.于家堡单层网壳结构所承受的荷载除恒荷载外,还有活荷载、风荷载、雪荷载、温度效应等多种可变荷载作用[5-8].具体如下.(1) 恒荷载除网壳杆件自重外,还有:① 杆件附加恒荷载:用于模拟屋面排水沟、建筑装饰材料、灯具及屋盖吊挂荷载,顺时针发散的杆件取3.9,kN/m,逆时针发散的杆件取2.0,kN/m,顶环梁杆件取1.0,kN/m;②节点附加恒荷载:用于模拟节点板重量,节点板重量根据与之相连的杆件尺寸大致分为2.5,kN、5.5,kN、7.0,kN 3类;③天窗附加恒荷载:用于模拟天窗双层夹胶玻璃及其他附件,取2.0,kN/m2;(2) 活荷载:为最小不上人的屋面活荷载,取0.5,kN/m2,按满跨分布;(3) 风荷载:由于网壳曲面非规则,坡度变化较大,且结构重要性较高,故应由风洞试验确定风荷载,初步分析时暂时模拟4种风向并保守取值;(4) 雪荷载:基本雪压取0.4,kN/m2,模拟雪的不均匀堆积和不均匀除雪,按满跨或各种半跨分布;(5) 温度效应:模拟冬季均匀降温和夏季不同日照条件下的不均匀升温,设计温差为±25,℃,局部升温可达30,℃.考虑了73种荷载基本组合和66种荷载标准组合.经分析,该单层网壳结构的最大等效应力为183.6,MPa,远小于Q345,C钢材的强度设计值295,MPa;最大位移为122,mm(如图5所示),小于其位移限值L/400=200,mm的设计要求.于家堡大跨度单层网壳结构强度及位移均满足设计要求,结构体系合理、具有良好的力学性能.4.1 特征值屈曲分析对于家堡大跨度单层网壳结构进行特征值屈曲分析,荷载工况选取1.0恒+1.0全跨活.经分析,该单层网壳结构的前10阶特征值详见表2,前3阶屈曲模态如图6所示.4.2 非线性稳定性分析根据《空间网格结构技术规程》[7]文献[9],进行网壳全过程分析时应考虑初始几何缺陷(即初始曲面形状的安装偏差)的影响,采用一致缺陷模态法引入初始几何缺陷,缺陷分布可采用结构的最低阶屈曲模态,缺陷峰值可取网壳短跨的1/300.对于家堡大跨度单层网壳结构进行非线性稳定性分析.经分析,该单层网壳结构考虑初始缺陷和几何非线性时的稳定系数为5.93,考虑初始缺陷和双重非线性时的稳定系数为5.26,满足规范[7]要求,该单层网壳结构的稳定性较好.于家堡大跨度单层网壳结构的抗震设防类别为乙级,设计地震分组为第2组,场地类别为Ⅲ类,抗震设防烈度为7度,设计基本地震加速度为0.15g,小震加速度峰值为55,cm/s2,大震加速度峰值为310,cm/s2.按8度采用抗震构造措施,以提高结构的整体抗震性能.对于家堡大跨度单层网壳结构进行自振特性分析[10].经分析,该单层网壳结构的前10阶自振频率详见表3,前3阶自振模态如图7所示.天津于家堡大跨度单层网壳结构,南北向跨度为144,m,东西向跨度为81,m,矢高为25,m,是目前国内跨度最大的单层网壳结构.本文结合于家堡单层网壳结构,详细介绍了该单层网壳的结构设计和布置形式,并对其静力性能、稳定性和动力特性进行了分析研究.其建筑外观为贝壳形状,焊接箱形杆件呈空间双螺旋交织布置,为非规则的空间曲面造型.分析结果表明:(1) 该网壳结构在静力荷载作用下的强度及位移均满足设计要求;(2) 该网壳结构考虑初始缺陷和几何非线性时的稳定系数为5.93,考虑初始缺陷和双重非线性时的稳定系数为5.26,具有良好的稳定性能;(3) 该网壳结构的基频为1.54,Hz,且自振频率分布较为密集,结构刚度较好.综上所述,于家堡单层网壳结构体系合理,这种空间双螺旋线交织布置的杆件布置方式能够较好地满足结构强度和刚度要求,整体结构具有良好的稳定性能和动力特性.本文为大跨度、非规则单层网壳结构设计提供工程参考.【相关文献】[1]王成博,毕继红,田力,等. 单层网壳结构性能分析[J]. 空间结构,1997,3(4):14-21. Wang Chengbo,Bi Jihong,Tian Li,et al. Analysis on properties of single layer latticed domes[J]. Spatial Structures,1997,3(4):14-21(in Chinese).[2]徐皓,陈志华,王彬. 非对称荷载对大跨度非规则单层网壳结构性能的影响[J]. 建筑钢结构进展,2012,14(1):14-19,38. Xu Hao,Chen Zhihua,Wang Bin. The effect of asymmetrical loads on the structural performance of large-span anomalous single-layer reticulated shell[J]. Progress in Steel Building Structures,2012,14(1):14-19,38(in Chinese).[3]韩庆华,杨志,潘延东,等. 单双层球面网壳结构的静力特性及其稳定性能分析[J]. 天津大学学报,2002,35(4):447-451. Han Qinghua,Yang Zhi,Pan Yandong,et al. Static behavior and stability analysis of single-double layer reticulated dome[J]. Journal of Tianjin University,2002,35(4):447-451(in Chinese).[4]尹越,韩庆华,刘锡良,等. 北京2008奥运会老山自行车赛馆网壳结构分析与设计[J]. 天津大学学报,2008,41(5):522-528. Yin Yue,Han Qinghua,Liu Xiliang,et al. Analysis and design of reticulated dome of Laoshan cycling gymnasium for the Beijing 2008 Olympic Games[J]. Journal of Tianjin University,2008,41(5):522-528(in Chinese).[5] GB50009—2012 建筑结构荷载规范[S]. 北京:中国建筑工业出版社,2012. GB50009—2012 Load Code for the Design of Building Structures[S]. Beijing:China Architecture and Building Press,2012(in Chinese).[6] GB50017—2003 钢结构设计规范[S]. 北京:中国计划出版社,2003. GB50017—2003 Code for Design of Steel Structures [S]. Beijing:China Planning Press,2003(in Chinese). [7] JGJ7—2010 空间网格结构技术规程[S]. 北京:中国建筑工业出版社,2010. JGJ7—2010 Technical Specification for Space Frame Structures[S]. Beijing:China Architecture and Building Press,2010(in Chinese).[8] DB29-140—2011 天津市空间网格结构技术规程[S].天津:天津市建设管理委员会,2011. DB29-140—2011 Technical Specification for Spatial Grids Structure of Tianjin[S]. Tianjin:Tianjin Construction Administration Committee,2011(in Chinese).[9]尹越,王秀泉,闫翔宇. 乌兰浩特火车站站台雨棚钢结构分析与设计[J]. 天津大学学报:自然科学与工程技术版,2014,47(增):69-73. Yin Yue,Wang Xiuquan,Yan Xiangyu. Analysis and design of the steel structure of canopy roof of Ulanhot railway station[J]. Journal of Tianjin University:Science and Technology,2014,47(Suppl):69-73(in Chinese).[10] GB50011—2010 建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2010. GB50011—2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture and Building Press,2010(in Chinese).。

例谈科技馆钢网壳结构设计

例谈科技馆钢网壳结构设计

例谈科技馆钢网壳结构设计1工程概况盘锦辽滨新城文化中心(科技馆)位于盘锦辽滨沿海经济区,纬八路与经六路、滨湖路、南经三路所围地段。

内部为一个长117米,宽36米,高3层23.5米的钢筋混凝土框架结构,该结构的轴网尺寸均为9米。

外围包了一层扭曲的单层三向网格网壳结构,该结构的外包尺寸为长134.4米,宽72米,高23.5米。

在建筑内部形成了一个高22米,长134米,宽27米的宏大共享空间。

本文主要针对钢结构部分的设计进行介绍,外包的钢结构采用空间三向网格单层网壳,屋面的钢结构为单层梁格,辅助钢拉杆。

钢结构各部分的节点主要有相贯节点、主次梁节点、销轴支座、固定铰支座等。

2计算分析及计算设定内部钢筋混凝土框架结构采用PKPM建模分析,结构整体分析采用Midas/Gen。

对扭曲的单层三向网格网壳结构分别用STS、3D3S和Midas进行了分析比较,下面主要介绍Midas的分析结果。

分别把中部的混凝土框架结构简化为支座单独对钢结构部分进行了分析,也把混凝土部分参与进去作为整体进行了分析。

在后面的分析中,混凝土部分为钢结构部分提供了相对柔性的支承,使得整个模型各阶振型的周期普遍略长于把其简化为支座对应的周期。

偏安全考虑,采用把混凝土部分简化为支座进行最终的结构设计。

2.1计算参数的选用2.1.1荷载1)恒荷载结构自重:考虑节点重量,放大1.1倍;幕墙玻璃包括次龙骨:1.0 kN/ m2;2)活荷载不上人屋面:0.5 kN/m2;3)风荷载(本项目靠近营口,风荷载、雪荷载、地震作用均按照营口市的取值)○1基本风压:基本风压w0=0.65kN/m2(50年重现期);○2地面粗糙度类别:B类;○3结构体形系数、风振系数等取值:根据模型按照4m标高分成6个标高段计算µz,屋面处标高24m,µz=1.30;根据工程经验,本结构的整体刚度大,第一自震周期为0.688s,风振系数取1.5;体形系数根据封闭式双坡屋面,建筑的迎风面体形系数为+0.8和-0.5,横风向体形系数为-0.7,本次结构设计,对于压风和吸风均考虑体形系数。

网壳结构案例简单分析

网壳结构案例简单分析

网壳结构案例简单分析网壳结构是一种由连续曲面构成的结构形式,具有稳定性好、强度高、质量轻等优点,广泛应用于建筑、桥梁、体育场馆等工程领域。

下面以建筑领域的网壳结构案例为例进行简单分析。

案例一:深圳大运中心体育馆深圳大运中心体育馆是一座综合性体育馆,采用大跨度、大空间的网壳结构设计。

该体育馆的外形呈现出流线型的造型,整个建筑结构由一个由流线型钢结构和玻璃幕墙组成的半流线型壳体组成。

该体育馆采用了双壳结构设计,内外两层网壳之间通过钢柱连接,形成了稳定的整体结构。

内层网壳主要承担荷载,外层则起到防水、保温和装饰等作用。

该体育馆的网壳结构设计突破了传统结构的限制,实现了大跨度、大空间的结构需求。

网壳结构的采用使得整个建筑结构极为轻盈,给人以开放、流畅的感觉。

同时,网壳结构的外观造型独特,成为该体育馆的标志性建筑,增加了城市的地标性与艺术性。

案例二:中国花卉博览会花卉大厅中国花卉博览会花卉大厅是一座专门展示各种花卉的建筑,采用了网壳结构设计。

该建筑呈现出一个半球形的外形,内部采用由钢桁架支撑的网壳结构。

网壳结构的内侧覆盖着透明的玻璃幕墙,使得室内充满了自然光线,为花卉的生长提供了良好的环境。

网壳结构的外侧则由彩虹色的层叠板构成,形成了美观的外观。

该花卉大厅的网壳结构设计实现了自由曲面的建筑形式,使得内部空间显得开放、明亮。

网壳结构的采用使得整个建筑更加美观、轻盈。

室内外环境的统一,使得花卉展示更加生动。

同时,该建筑的网壳结构还具有良好的承载能力,可以抵御自然灾害。

网壳结构能够通过合理的网格分布来均匀承受荷载,增强结构的稳定性和抗震性能。

此外,网壳结构还具有易于施工、周期短、成本低等优点。

因此,在很多需要大跨度、大空间的建筑领域,网壳结构都得到了广泛应用。

总的来说,网壳结构的优点包括稳定性好、强度高、质量轻、施工周期短等。

通过以上两个案例的分析可以看出,网壳结构在建筑领域中具有很高的适用性,并且能够创造出独特的建筑形式和美观的外观。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档